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PAPER

Direct Reconstruction of Planar Surfaces by

Stereo Vision

Yasushi KANAZAWA' and Kenichi KANATANI!', Members

SUMMARY  This paper studies the problem of reconstructing
a planar surface from stereo images of multiple feature points
that are known to be coplanar in the scene. We present a direct
method by applying maximum likelihood estimation based on a
statistical model of image noise. The significant fact about our
method is that not only the 3-D position of the surface is recon-
structed accurately but its reliability is also computed quantita-
tively. The effectiveness of our method is demonstrated by doing
numerical simulation.
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1. Introduction

Stereo vision is one of the most fundamental means of
3-D sensing from images and is widely used as a visual
sensor for autonomous navigation of robots[1],[7]. In
the past, the study of stereo vision has mainly focused
on the correspondence detection between the two images.
In fact, detecting correspondences is a very difficult task
to automate efficiently, and many detection techniques
have been proposed [1]. However, various other issues
arise when we reconstruct 3-D from detected correspon-
dences. First of all, the 3-D reconstruction should be
accurate. Hence, we must apply an optimization tech-
nique that maximizes the accuracy of the reconstruc-
tion by considering the statistical characteristics of the
Image noise. At the same time, the reliability of the
reconstructed 3-D must be evaluated[6]. If the errors
involved in the reconstructed 3-D cannot be estimated,
robots cannot take appropriate actions to archive given
tasks effectively. This paper presents a new theory for
reconstructing planar surfaces by stereo vision in a sta-
tistically optimal way and evaluating the reliability of
the reconstruction in quantitative terms.

Many man-made objects have planar surfaces.
Hence, 3-D reconstruction of planar surfaces is one of
the most important tasks for autonomous robot opera-
tions. If the feature points we are observing are assumed
to be coplanar in the scene, the parameters of the plane
can be computed by the following least-squares method:
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1. Correspondences of the feature points are estab-
lished between the two stereo images.

2. Their 3-D positions are computed by triangulation.

3. A planar surface is fitted so that the sum of the
squares of the perpendicular distances from the
computed positions to the surface is minimized.

This method is very simple but indirect. In this paper,
we propose a method for a direct reconstruction based
on geometric constraints and a statistical model of im-
age noise.

In order to reconstruct an optimal planar surface,
we introduce the principle of maximum likelihood esti-
mation and derive a scheme for nonlinear optimization.
At the same time, we derive a theoretical bound on the
attainable accuracy of the estimation in the form of the
covariance matrix of the estimate. In order to compute
the optimal solution, we use a numerical scheme called
renormalization|3]. By numerical simulation, we show
that the obtained solution almost attains the theoretical
bound on accuracy. This means that we can quantita-
tively predict the reliability of the reconstructed surface.
This fact has a great significance in robotics applica-
tions of stereo vision.

2. Camera and Stereo Model

Let {P,},a = 1,..., N, be feature points on a planar
surface in the scene. Let n be the unit normal to the
surface, and d the distance of it from the origin O. We
call {n,d} the surface parameters. As illustrated in
Fig. 1, we take the first camera as the reference coordi-
nate system and place the second camera in a position

Fig. 1 The camera model and the coordinates systems.
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obtained by translating the first camera by vector h and
rotating it around the center of the lens by matrix R.
We call {h, R} the motion (or stereo) parameters. The
two cameras may have different focal lengths f and f'.

Let {(za,¥a)},a = 1,...,N, be the image coordi-
nates of the feature points projected on the image plane
of the first camera, and {(z,,y,)},« = 1,...,N, those
for the second camera. We use the following three-
dimensional vectors to represent them:

Za/f zo/f'
o= Y/f |, To=| v/l |- (1
1 1

In the absence of noise, the vectors @, and x,, the
motion parameters {h, R}, and the surface parameters
{n,d} satisfy the following relation (we omit the deriva-
tion [2],[47):
R"(hn' —dI)
Viedr
Here, a x A denotes the matrix defined by the vector
product of three-dimensional vector a and each col-
umn of 3 x 3-matrix A, and the superscript T denotes

transpose. Let B, and v be a 3 x4-matrix and a four-
dimensional vector, respectively, defined by

xl x Azo =0, A= )

B, = (m; « RTha] &' x RTma> , 3)
1 n
V= —— . 4
V1+d? ( —d ) @
Then, Egs. (2) can be rewritten in the following form:
B.v =0. &)

From Fig. 1, we see that vectors x,, h and Rz, are
coplanar. It follows that R'z,, R"h, and x!, are
also coplanar. Consequently, vectors a,, X R"h and
xl, X Rz, are collinear, so the matrix B, has rank 1.

3. Statistical Model of Image Noise

In the presence of noise, vectors @, and «/, do not nec-
essarily satisfy Eq. (5). Write

x', =z, + Az, (6)

where &, and Z,, are the true values of x, and x,,
respectively. We regard Az, and Azx), as random vari-
ables that have means 0 and covariance matrices V'[z,]
and V[z. ], respectively[6]. The absolute magnitude of
the image noise is very difficult to estimate a priori. Let
€ be its average magnitude, which is unknown. We call
it the noise level. On the other hand, geometric charac-
teristics of image noise such as uniformity and isotropy
can be easily predicted, so we introduce the normalized
covariance matrices Vy|z,] and Vp[a,], which are as-
sumed to be known, and express the covariance matrices
in the following form:

V[wa] = 62VO [ma]u

Ty = Ty + Axg,

Viz,] = e Volzy,). @)
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4., Maximum Likelihood Estimation

We apply maximum likelihood estimation for estimating
an optimal value of v. First, we optimally correct x,,
and x/, in the form

Fo = oy — Ay, T, =, — Azl (8)
so that Eq. (5) is satisfied for a fixed value of ». If the
image noise has a Gaussian distribution, this correc-
tion is done for each a by the optimization based on
the Mahalanobis distance[4] in the form

Jo=(Azy, Vo[a] " Azy)
+ (Az, Volzl,]” Azl,) — min, (9)

where Vp[x]~ is the generalized inverse of Vg[x] and
(a,b) denotes the inner product of vectors @ and b. The
residual J, obtained by substituting the resulting opti-
mal values &, and ﬁ:’a is a function of v, so we rewrite
it as J,[v] and seek an optimal value of v by the mini-
mization

N
1 .
i Z Jo V] — min. (10)
a=1
This minimization can be rewritten in the form
LN

Jvl =+ ;(Bau, Wo(v)Bav) — min,  (11)
where

W,(v)= <VO[Bay]> . (12)

2

The notation (- ); means computing the generalized in-
verse after projecting the matrix to a matrix of rank
2[4]. In Eq.(12), the matrix Vy[Bqav| is given in the
following form [4]:
VolBov] = &, x AVpz,]AT x @,
+ (AZ,) x Volz,,] X (AZy)
+ [Vo[zl] x AVplza]AT]. (13)

Here, the vector product A x a of a 3 x 3-matrix A and a
three-dimensional vector a is a 3 x 3-matrix defined by

Axa=(axA")". (14)

The exterior product [A x B] of 3 x 3-matrices A and
B is a 3 x 3-matrix defined by

3
Z €ikl€jmnAkmBln7 (15)

k,l,m,n=1

[A x Bl;j =

where €, is the Eddington epsilon, taking values 1, —1,
and 0 if (ijk) is obtained from (123) by an even permu-
tation, an odd permutation, and otherwise, respectively.
The matrix V, [Bov]| as defined by Eq. (13) should have
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rank 2 if the matrix A is computed from the true surface
parameters {n, d} (see the second of Egs. (2)). However,
the values of {n,d} used in the course of optimization
are not exact, so the matrix V; [B,v] no longer has rank
2. The operation (-); is applied to constrain the rank
to be 2 in order to prevent numerical instability of the
computation [4].

Let v be the optimal solution of the minimization
(11) under the constraint || = 1. It can be shown that
the theoretical covariance matrix of the optimal solution
v has the form

N
V] = € (Z P,,BZWQ(V)BQP,,> ,  (16)
a=1

where Py = I — vv'. This covariance matrix gives a
theoretical bound on attainable accuracy (we omit the
proof[4]).

5. Renormalization

If W, (v) is replaced by a constant matrix W, the
function J{v] in Eq.(11) can be written in the form

Jv] = (v, Mv), (17

where M is the moment matrix defined by

N
1 T
M=+ BIW.B,. (18)

a=1

The solution that minimizes Eq.(17) under the con-
straint |v| = 1 is given by the unit eigenvector for
the smallest eigenvalue of M. It appears that the op-
timal solution of Eq.(11) can be obtained by letting
W, = W,(vg) for an appropriate estimate vy and
minimizing Eq.(17). Using the resulting solution v,
we can update the weight by letting W, = W, (v{)
and iterate this process. However, such iterations intro-
duce statistical bias into the solution[3]. This is shown
as follows.
Define 4 x 4-matrices N" and N(? by

oo ((hy Xoh)Vo[wa]+(h, Y oh)z,a])
Yot (Volza] Xah) T + (0, Y ah)z])

5 (Volal X aht (20, Y ah)ze)
S ((Volral: X o)+ (20, Vo) )

)
% ZN (VO[wa]Yah)T

% Z?szl %[wa]yah (19)
% Zcx:l(vb[wa]; Ya) ’
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where X, and Y, are 3 x 3-matrices defined, respec-
tively, by

Xo = R(z\, x W, xx )R, (20)
Y, =RW,x V[ ]R", (21)

and the inner product (A; B) of 3 x 3-matrices A and
B is defined by

3
(4;B) = Y AyBy;. (22)

i,j=1
It can be shown that the expectation of M has the form
EM] =M +&NY + NG, (23)

where M and N™ are the values of M and N® ob-
tained by replacing @, and &/, by their true values &,,
and zj,, respectively, in their definitions. Since E[M] is
biased from M by O(€?), the expectation of the eigen-
vector v of M is also biased from its true value & by
O(€?) according to the well known perturbation theo-
rem[3].

On the other hand, we can see from Egs. (19) that

EIN®O = NV 1 202N®, (24)
Define the unbiased moment matrix M by
M=M-&NW L AN (25)

Then, we have E[M] = M. Hence, we can obtain an
unbiased estimator of v if we use M instead of M.
However, the noise level € is unknown. If we overesti-
mate or underestimate it, the resulting solution is still
biased. In order to resolve this difficulty, we introduce
a numerical scheme called renormalization, which treats
€? as an unknown parameter. The procedure for renor-

malization is described as follows[3],[4],[6]:
l.Letc=0and W, ,=I,a=1,...,N.

2, Compute the moment matrix M defined by
Eq. (18).

3. Compute the 4 x 4-matrices NV and N®) de-

fined by Egs. (19), and compute the following 4 x 4- -
matrix

M=M-cN® 4 2N®?, (26)

4. Compute the smallest eigenvalue A of M and the
corresponding unit eigenvector v.

5. If A\~ 0, return v, ¢ and M. Otherwise, update ¢
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and W, as follows:

2
D= ((u, NOp) —2¢(v, N(Q)V))

— (v, N®), @27
itD >0,
MWy — @) —
c<—c+(V’N v) — 2¢(v, N¥v) \/B’
2(v, N@yp)
if D <0, c<—c—l——£\»1—, (28)
(v, NDuv)
A=R"(h(v1,v2,v3) +val), (29)
W, «— (wfx X AVyle]AT x a,
+ (Az,) X Vo[za] X (Axy)
+ clVolay] x AVa[aJAT]) . (30)

6. Go back to Step 2.

If the vector v is obtained, we can compute the param-
eters {n,d} of the fitted plane in the form

__ ’ 31
1—v}

where the symbol N[-] denotes normalization into a

unit vector. An unbiased estimator of the squared noise

level €2 is given in the following form[4]:

2 c

T~ 1-3/2N°

é

(32)

The covariance matrix V{v] given by Eq. (16) is approx-
imated by

VI~ S (33

Thus, we can compute by renormalization not only an
optimal estimate of v but also an estimate of the un-
known noise level € and the reliability of the computed
estimate v.

6. Back Projection of Feature Points

After the vector v is determined, we correct x,, and x,
© by the criterion given by Eq. (9) so as to satisfy Eqgs. (2).
Then, we back project the corrected &, and &/, onto
the estimated plane. This procedure is carried out as
follows[4]:

1. Correct &, and !, in the form

#o = o — (Vo[zal AT x &) Woa(z, x Az,),
ay, =z, + (Volw] x (AZa))Woo (g, X Aza),
(34)
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where the 3 x 3-matrix W, is defined by
Woe = (w; X AVp[eo]AT x @,

4 (Az,) x Volz] x (Ama)>2_. (35)

2. If &), x A&, % 0, let ¢, — &, and x|, « &,, and
go back to Step 1.

3. Compute the 3-D position 7, by
d&,

(n3"ﬁa)'

To =

(36)

7. Experiment
7.1 Numerical Simulation

We illustrate the effectiveness of our method by doing
numerical simulation. We place a planar grid in a 3-
D scene and regard the grid points as feature points.
The two cameras are assumed to have the same fo-

cal length f = 600 (pixels). After projecting the fea-

ture points onto the image planes, we add as image
noise a Gaussian random number with standard devi-
ation 3 (pixels) to each of the image coordinates in-
dependently. Hence, the noise level e is 1/200, and
Volza) = Wolzl,] = diag(1,1,0) (the diagonal matrix
with 1, 1, 0 as the diagonal elements in that order).
However, the value ¢ is regarded as unknown in the
simulation. Figure 2 shows the generated stereo images.
The surface reconstructed by our method is shown in
Fig. 3. For the sake of comparison, we show the surface
reconstructed by the least-squares method (as described
in Sect.1) in Fig.4. We can observe that our method
produces a better result than the least-squares method.

7.2 Analysis of Error Behavior

We define the error vector by

d—d

)+ 2 a, (37)
d

where we put Pj = I —nn' and {f,d} are the true
surface parameters. From the theoretical covariance ma-
trix V[v] given by Eq. (16), the covariance matrix V'[u]

R

Auneayaiy
N
REmateet
HRETsau
AN T AT
UV U
II‘I“\““\
.l punsi

Fig. 2 Simulated stereo images with noise.
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(a) (b)

Fig. 3  Planar surface reconstructed by our method: (a) a view
from the left camera; (b) a side view.

(a) (b)

Fig. 4 Planar surface reconstructed by the least-squares
method: (a) a view from the left camera; (b) a side view.

of the error vector is computed in the following form
(we omit the derivation [4]):

VIu] = V[n] + %(V[n, dnr’ +aVin,d")

+ E}Q-V[d]ﬁﬁﬁ. (38)
Here, V[n], V[n,d], and V[d] are given as follows:
Vin]= (1+d?)
VIvhn Vvliz Vvhs
XPp | Vvl Vvl Vvl | Pp,
VIvlsi Vivisa Vivlss
V[VJ14
V[TL, d] = —(1 + (i2)2PffL V[U]24 N
V[I/]34
Vid = (1 +d®)>*V[v]a. (39)

We repeat the computation 100 times, each time us-
ing different noise, and plot the error vector three-
dimensionally in Fig.5. The ellipsoids in the figures
indicate the theoretical standard deviation in each ori-
entation computed from Eq. (16). We can observe that
the solution computed by the least-squares method is
statistically biased and that the bias is removed by renor-
malization. We can also see that the theoretical bound
is almost attained; the number of points inside the el-
lipsoid has approximately the same percentage as theo-
retically predicted.
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) (b)

Fig.5  Distribution of errors: (a) our method; (b) least-squares
method.

(a) (b)

Fig. 6  Primary deviation pair: (a) a view from an angle (60°
from the optical axis of the first camera); (b) a side view.

7.3 Reliability of 3-D Reconstruction

The unit eigenvector £, of the covariance matrix Viv]
for the largest eigenvalue Ap,y indicates the orientation
of the most likely deviation of v from its true value, and
v/ Amax indicates the standard deviation in that orienta-
tion. Hence, we can visualize the reliability of the re-
constructed planar surface by displaying the two planes
represented by the two vectors

V+ N[f/ + V /\maxgmax]a
v™ = N[ - V Amax€max)- (40)

These two planes indicate the most likely deviation of
the reconstructed planar surface. We call them the pri-
mary deviation pair. Since the covariance matrix Viv]
can be computed by the approximation (33) from the
data alone, the primary deviation pair can be computed
without any knowledge of the true noise level. The pri-
mary deviation pair computed from Fig.2 is shown in
Fig.6.

Il

7.4 Real-Image Example

Figure 7(a) shows real stereo images. Figure 7(b)
shows a grid pattern defined by feature points (corners
of the windows) extracted from the left image. The
motion parameters {h, R} are computed by the opti-
mal camera calibration system[5]. In Fig.8, the re-
constructed grid pattern is displayed in solid lines, and
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(a)

(b) |

Fig. 7 (a) Real stereo images. (b) Feature points extracted from the left image.

TR
i

(2) (b)

Fig. 8  Reconstructed planar surface and its primary deviation
pair: (a) a view from an angle (75° from the optical axis of the
first camera); (b) a side view.

the primary deviation pair is displayed in dashed lines.
This example demonstrates that we can visualize the re-
liability of 3-D reconstruction without any knowledge
of the magnitude of the image noise. In this experiment,
the distance between the two cameras is very short as
compared with the distance to the building surface (ap-
proximately 1/16). Since the noise level ¢ is estimated
from the degree to which Eq. (5) is not satisfied, the er-
ror in the motion parameters {h, R} is also treated as
“image noise”. Hence, the reliability of this 3-D recon-
struction is very low.

8. Conclusion

We have presented a direct reconstruction method for
reconstructing a planar surface by stereo vision. Our
method can not only reconstruct an optimal estimate
but also allows us to evaluate the reliability of the com-
puted estimate quantitatively. By doing numerical sim-
ulation, we have shown that the obtained solution al-
most attains the theoretical bound on accuracy. Our
method can be applied to many applications in real en-
vironments, such as recognizing walls and ceilings in
robotics workspaces. The ability to evaluate the relia-
bility of 3-D reconstruction has a great significance in
such applications. '
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