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A PLASTICITY THEORY FOR THE KINEMATICS OF
IDEAL GRANULAR MATERIALS
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Abstract—A plasticity theory is formulated for ideal granular materials. The material is assumed to be
isotropic and incompressible. All the equations are expressed in the form of 3-dimensional tensor equations.
This theory is based on a new interpretation of the associated flow rule with associated constraints of
deformation. The characteristic surface is analyzed to see the possible discontinuity of the deformation.
Thep the elastic strain is incorporated and the singular wave propagation is analyzed to determine the
possible velocities and directions of propagation.

1. INTRODUCTION

IT Has BEEN shown that the statics of granular materials such as soils and powders based on the
Coulomb criterion provides a satisfactory basis for the analysis of limit equilibrium (e.g.
Sokolovskii[1]). However, various attempts to describe deformations have been less successful
for further development. In fact, there exist many different schools of thought, each claiming a
particular type of formalism. This refiects the fact that the range of types of granular
material and their behaviour is indeed very great. Therefore, any mathematical model is a
drastic idealization of actual materials and should not be expected to be valid over a wide range
of conditions.

The first attempt to give a theoretical foundation on the basis of the plasticity theory may be
attributed to Drucker and Prager[2). However, they have often been criticized later. The issue
is twofold. First, their theory predicted an increase in specific volume to an unrealistic extent
during shear deformations. The second point is closely related to the former. They applied the
associated flow rule, which had been developed for metal plasticity, but it has been argued that
the rule does not hold when applied to granular materials in which frictional stresses are
involved. For metals, the rule is implied either by the Bishop-Hill theory of polycrystals[3} or
by the plastic work postulate of Drucker(4] or II'iushin [5]. It has been pointed out, however,
that neither holds for granular materials (e.g. Mandel[6]). It has also been shown that the
existence of the plastic potential or the associated flow rule is expected only when the
microscopic rearrangement of the material is governed via the thermodynamic conjugate force
(Rice(7,8]). Therefore, the associated flow rule does not necessarily follow in granular
materials in which the microscopic frictional slip is the mechanism of deformation.

Since the work of Drucker and Prager[2], the subsequent theories can be classified into two
categories according to the effort to overcome one of the two aforesaid defects. As for the
former, various types of yield functions, plastic potentials distinct from the yield functions and
hardening rules have been elaborated for the fitting of experimental data[9-12). This approach
has the merit that the basic principle is simple and easy to manipulate. Moreover, the
mechanical foundation need not be taken seriously in practical applications. Instead, however,
the equations tend to be complex and lengthy, and a number of ad hoc assumptions become
necessary. ’

As for the second point, on the other hand, efforts have been made to pursue a mechanically
consistent theory not relying on the dubious associated flow rule. Spencer(13] introduced the
idea that deformation occurs by shear on certain critical planes, assuming that the strain-rate is
dependent on the stress-rate as well as the stress. Goodman and Cowin[14] assumed that the
stress depends on the gradient of the solid volume fraction of the material as well as on the
strain-rate. Kanatani[15] analyzed microscopic interparticle friction and collisions and took
statistical average of the interactions to obtain constitutive equations for an equivalent model of
the flow. He also analyzed the distribution of the voidage and the contact forces by a statistical
consideration(16, 17).
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In this paper, we reexamine the Drucker-Prager theory. We first review the associated flow
rule and observe that the rule need not be abolished if it is used in a different sense. Then, we
present a plastic theory for ideal granular materials based on the new interpretation of the
associated flow rule. All the equations are expressed in the form of 3-dimensional Cartesian
tensor equations. We limit our discussion in small deformation, since the analysis of large
deformation requires quantitatively different and highly sophisticated discussions such as the
selection of the reference coordinate system(8]. Here, we consider the stable flow regime of
deformation -without dilatancy, hardening and unloading. These effects can be incorporated by
the same principle[18]. Our theory for the perfect plasticity turns out a straight extension of
both the Levi-Mises theory of metal plasticity and Kanatani's theory of statistical
construction[15]. Then, we analyze the characteristic surfaces to see the possible occurrence of
discontinuity (Hill[19], Thomas[20]) or physically the localization of deformation (Mandel [6],
Rudnicki and Rice[21], Storen and Rice[22), see also [23,24]). Then we incorporate the elastic
strain to obtain an extension of the Prandtl-Reuss theory of metal plasticity. Finally, we
analyze the propagation of singular surfaces and determine the possible velocities and direc-
. tions of propagation. Our theory is shown to include the statics of limit equilibrium in it, so that
it is a natural Msion of the statics to kinematics.

2. THE ASSOCIATED FLOW RULE FOR GRANULAR MATERIALS

The associated flow rule is the rule that relates the plastic strain-rate and the stress through
differentiation of the yield function. This procedure was first worked out in the theory of metal
plasticity [25]. Later, Drucker[4] proposed what he called the fundamental postulate of material
stability and derived the rule from his postulate. His postulate states that when a body is in an
arbitrary equilibrium, the work done by any cycle of application-and-removal of additional
loading is non-negative. Let the initial stress in an equilibrium at time f =0 be of. and let 1,
designate the first occurrence of plastic strain. Furthermore, let the loading be continued until
t=1, and the removal of the added load take place until t =, when the stress is again al.
Since the work done by the stress on the elastic strain during a closed cycle vanishes. and since
plastic deformation occurs only during the interval 1, <t < ., the work done by the additional
loading is :

f:(o',-,-—a'}f) én dt, (1)
n

where € is the plastic strain-rate. Throughout this paper, we adopt the Cartesian tensor
notation and the rule of summation convention. Taking the limit t,- ¢, and applying Drucker's
postulate to it, we obtain

(0;—a3)és z 0 ' )

for an arbitrary equilibrium stress . This means that the angle made by the six-dimensional
vectors o; — o'} and éf is not greater than /2. Then, e can conclude that (i) the yield surface
is convex and (ii) if the surface is smooth, vector €} i« normal to the yield surface at the point
of the yield stress a;. Consequently, if the yield equation f(a;)) =0 is regular, then we have for
the plastic strain-rate

A
ei=A P (3)

where A is a scalar quantity. This is also referred to as the normality condition.

Later, Il'iushin(5] asserted that the cycle of loading be replaced by a cycle of the total
strain. It has been known that although Drucker’s postulate and Il'iushin’s postulate lead to
similar results when only infinitesimal deformations are considered, the former is not invariant
to the definition of conjugate stress in the case of finite deformations whereas the latter is
(Hill{26}, Hill and Rice[27]). Yamamoto[28] and Green and Naghdi[29)] gave generalizations
which include thermal effects as well. On the other hund, it is well known that the associated

.
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Fig. 1. Friction on a plane.

flow rule predicts an increase in specific volume when applied to granular materials of
Coulomb-type yield surfaces. This is easily understood, as was pointed out by Drucker (30] and
Mandel[6], if we consider the following example. Imagine a block on a horizontal plane as is
shown in Fig. 1. If the friction between the block and the plane obeys the Coulomb law, the
yield equation is F=+uN, where u-is the friction coefficient. As is seen from Fig. 2, the
associated flow rule predicts normal displacements which do not actually occur. Suppose the
block is in equilibrium under the normal force N* and the horizontal force F*. Let us apply a
force F which has a small backward horizontal component but has an upward normal
component large enough to cause slip (Fig. 3). Then, remove the force to reduce the system in
the initial state of equilibrium forces. The work done by the added force during this process is
clearly negative, because the block moves in the direction opposite to the horizontal component
of F. (Note that the normal component of F does not do any work.) Thus, Drucker's postulate is
violated, and the system is not stable in the sense of Drucker. It is evident that if the block
could move upward, Druker’s postulate would be satisfied.

The frictional slip is a basic concept in the mechanics of granular materials, for the Coulomb
criterion is derived from the local slip condition on potential slip-planes. If local slips are the
mechanism of deformation, the specific volume must be conserved during deformations. This
fact assigns an internal constraint of deformation. Of course, the so called dilatancy may occur
in granular materials. However, this phenomenon is closely related to the packing configuration
of the constituent granules[16], and hence it cannot be expected to be derived from the
Coulomb-type criterion alone. In fact, we should not ascribe too many effects to one criterion.
Rather, they should be treated separately[18].

Now, we try to modify Drucker’s postulate so that it can be applied to plastic deformations
with associated internal constraints. A constraint of deformation defines an associated con-
straining stress, which is a portion of the stress that does not do any work for admissible
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Fig. 3. A counterexample of Drucker's postulate.
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deformations but does work only for virtual displacements violating the constraint. Since the
constraints give an additional set of kinematic equations, the corresponding constraining
stresses must be treated as so many additional independent kinematic variables, which are often
referred to as Lagrange multipliers of the constraints. Hence, we must treat the constraining
stresses separately from the remaining potential and dissipative stresses. Drucker’s postulate is
apparently a demand for the dissipative stresses. Hence, we propose the following modification
to Drucker’s postulate; when a body is in an arbitrary equilibrium, the work done by any cycle
of application-and-removal of loading such that the constraining stresses are kept constant is
non-negative. The normal force N in Fig. 1 is the constraining force for slips on the plare, and
it is easily seen that this new postulate is satisfied by that system. The constraining stress
associated with the constraint of incompressibility is simply the hydrostatic pressure p =
- (1/3)ay. Following the previous procedure, we again obtain inequality (2). However, the yield
stress o;; on the yield surface is now linked with the initial stress o'} by a special stress-path along
which p is kept fixed. Hence, the choice of o'} is not arbitrary, and (i) and (ii) do not follow this time.
Let us write the deviators of o; and €§, respectively, as

G=o-jhow =354 @
where §; is the Kronecker delta. Inequality (2) is rewritten as
(G- D+ (00 e 20 | )
The second term vanishes according to our postulate. Hence, we have
R HGEL ©)

for an arbitrary stress deviator o that gives equilibrium stress for given fixed p. Write the yield
equation in the form f(d, p) =0. Then, we can conclude the normality condition

éﬁ:A_aL

dtrﬁ

M

4

where by /30y, is meant the differentiation with fixed p. The fact that the r.h.s. gives deviator
components is readily seen from

3| _9f dou_ of (81;65 -% a,-,a,k). ®)

aa',, P 3&”‘ 60” 66',*

We have now reached a new expression of the associated flow rule for materials for which only
incompressible plastic deformations are admitted. Note that application of this new rule to
metal plasticity does not bring about any modifications to the existing theories, because it has
been usually assumed that the yield function for metals does not depend on the hydrostatic
pressure. It is also clear that, with the constraining stress fixed, the microscopic rearrangement
criterion of Rice[7,8] is satisfied because the remaining stress is the conjugate force with
respect to the work.

3. EQUATIONS FOR PERFECT PLASTIC FLOWS OF GRANULAR MATERIALS

In the following, we denote the strain-rate tensor by Ej, i.c.

Ey = 300,')(= éﬁ). (9)

where o; is the velocity and 9; designates d/ax. By () is indicated the symmetrization of
indices. We first investigate the perfect or rigid plastic flows, so that E; is the purely plastic
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strain-rate. We adopt as the yield equation the extended von Mises equation
f(G; P)=VI(12)6:63]—ap -k =0, (10)

which Drucker and Prager[2] introduced (see Appendix). This is also an outcome of Kanatani’s
statistical theory of particle flow [15). Application of the associated flow rule in our sense to eqn
(10) yields

A G
E""Z ap+k 1
The scalar quantity A is determined by solving eqn (11) in terms of &;; and substituting it in eqn
(10). We then obtain A = +\/(2E;E;). The positive sign is chosen in order that the specific rate
of energy dissipation ¢;E; be positive. Thus, we obtain the following constitutive equation.

. _  ap+k
% = VD EEal o (12
The right-hand side is a homogeneous form of degree 0 in Ej, and hence there exists no
one-to-one correspondence between the stress and the strain-rate. Clearly, coaxiality and
material incompressibility are satisfied at the same time. ‘

Consider plane deformations in order to express the two constants a and & in terms of the
internal friction angle ¢ and the cohesion constant c. Let the x — y plane be the shear plane and
let the y-axis coincide with the principal axis of maximum compression in the x —y plane.

Then, we can write
e s ' .
E; =[ ¢ 0], & =[ i O:I, (13)

where e and s are positive. Substitution of these expressions into eqn (12) yields
s=ap+k ' 14

" From the diagram of the Mohr stress circle, we obtain
a=sing, k=ccosg, (15)

(Fig. 4). These expressions are different from those of Drucker and Prager[2] because of our
assumption of incompressibility. If a =0 in eqn (12), the effects of hydrostatic pressure
vanishes and eqn (12) reduces to the Levi-Mises equation for metal plasticity. If, on the other
hand, the cohesion k is neglected, eqn (12) reduces to the equation of Kanatani’s statistical
theory of particle flow[15]. We call eqn (12) the extended Levi-Mises equation.

S
¢
Fig. 4. The internal friction angle ¢ and the cohesion constant c.
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The equation of motion for a continuum in general has the form
dy; _
P, = %9t pb, (16)

where p is the density and b; the body force per unit mass. By d/d¢ is meant the Lagrange
derivative d/at + v;0, Equation (16) into which eqn (12) is substituted and the equation of
incompressibility give the following four equations for four independent variables vy, Uy, U, and

14

PG == a0+ Eydp + 3 5~ 5 PEEudyin + ob,

;= 0. (l7)

Hence, we have put g =p + kfa and A = VI(1/2)E;E;], and A is the Laplacian operator.

4. CHARACTERISTIC SURFACES OF PERFECT PLASTIC FLOW

Characteristic surfaces for a given set of partial differential equations are defined as follows.
Suppose all the values of the derivatives appearing in the equations except those of the highest
rank of differentiation for each quantity are specified on a certain surface. In general, the set of
equations determines the remaining values of the highest derivatives. If they are indeterminate
in particular, the surface is said to be a characteristic surface for the given data. Then, one
cannot integrate the equations by specifying boundary conditions on that surface. This implies
that discontinuity in the highest derivatives can arise across the surface even if all the
remaining quantities are continuous across the surface. Physically, this phenomenon is under-
stood as the localization of deformation. and the necessary analytical methods have been
provided by Hill[19], Thomas[20], Mandel[6] et al. Rudnicki and Rice[21] analyzed the
instability of rock deformation, considering constitutive equations that describe the dilatancy,
the hardening and the vertex effect of the yield surface. Stéren and Rice[22] also analyzed the
localized necking in thin metal sheets by the same principle (see also [24, 5]). Here, we follow
the notation of Thomas [20).

Denote the discontinuity in quantity Z by [Z], i.e. [Z)=2Z" - Z", where the superscript +
refers to the side of the given unit normal and — the opposite side. Since the highest derivatives
of unknown quantities in eqns (17) are dp and 0xd;v;, we assume that they are discontinuous
across a certain surface whose unit normal is n; and that all the remaining quantities are
continuous across the surface. This is equivalent to saying that the discontinuity is of order 1 with
respect to p and of order 2 withrespect to v;. Then, we have the following geometrical compatibility
conditions

[épl=nP,  [dd))=mnV, (18)

Here, P and V; represent the magnitude of discontinuity[19, 20). Evaluation of discontinuity in
eqns (17) then gives the following set of linear equations for P and v

3
( - A; n+ AZE,-,-n,-) P +% (A*pdy — PE;Eynin)V, =0,
nV, =0, (19)

Non-zero discontinuity is possible only when the determinant of this set of equations vanishes.
If we choose such a Cartesian coordinate system that the components of n; become (0,0, 1),
then the vanishing of the determinant of eqn (19) is

Azsz P'(Az - sz)lz _ﬁEuEtylz —ﬁszEzzlz
AZE,, —-PpE,E, /2 P(A*~E2)[2 -pE.E.2
NE,-NJa  -pEE[ -PE.E,J2  pA-EL2| =0,
~ 0 0 0. 1 (20
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which reduces to
A*-aE,A-(E%+E3})=0. (V2]
Since n; = (0,0, 1), we can rewrite this as
A% - aEgnnA — ExEgnin, + EyEgninenin; = 0. (22)

But this is a Cartesian tensor equation invariant to translations and rotations of the coordinate
system, and hence if it holds in one particular coordinate system, it must necessarily hold in any
other coordinate systems. All the terms in eqn (22) are quadratic in Ej, so that they can be
replaced by corresponding terms of gy according to eqn (12). Taking account of eqn (10), we
obtain

(dp + k)l - {a(ap + k)é}; + &ﬁ&u}nﬂi + 6,k&,-;n,n,,n,ng =0. (23)

Considering plain deformations and putting n; = (cos 6, sin 6, 0), we substitute eqn (13) in eqn
(23). Here, 6 is the angle between the surface normal and the principal axis of minimum
compression. Then, we obtain

c0s 20 (cos 26 —a)=0. (24)
By virtue of eqn (15), we can conclude that
0=+ nld, = (ald— ¢[2). (25)

We have thus obtained two types of characteristic surfaces. One is the surfaces of maximum
shearing which make the angle m/4 to the principal stress axes. The other is the stress
characteristic surfaces of limit equilibrium. There has been an argument that these two types
should coincide, because intuitively initial shear is thought to start along one of the stress
characteristic surfaces of limit equilibrium[13, 31-36}. However, there is no definite reason why
they should coincide in a developed fluid-like flow of granular materials. Moreover, our result is
compatible with the experimental fact that discontinuity is observed across the surfaces of
maximum shearing during plain deformations[31]. We can actually determine the amount of
discontinuity. After some manipulations, we get

P=x+ (ﬂp + k)Ej,'njn,' v
T2AVIAA - aEyniny)]
V=% VIAA ‘Alfzfﬁknlﬂt)] v ( E; An; — aE;n;

il = A-aE oy Em”unm), (26)

where V =v/(V,V,). The absolute value of V is indeterminate, because the determinant of eqns
(19) to be solved is put zero. We can see that the discontinuity P vanishes on the surface of
maximum shearing for plane deformation. Hence, only discontinuities with respect to the velocity
field are possible across the surface of maximum shearing, which again agrees with the
consequences of the statics of limit equilibrium.

S. ELASTIC-PLASTIC THEORY OF GRANULAR MATERIALS

We now extend the previous results to an elastic-plastic theory, incorporating the elastic
strain as well. Let the total strain-rate E; be decomposed into the elastic part E}; and the plastic

part E}
E,',' = E:, + E?, (27)

in such a way that the elastic strain-rate E% determines the stress-rate Dgy/dt. For simplicity,
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we assume linearity and put

DOk = JE, + ASiEu (28)

where 1 and A are constants. In order that this expression be invariant to translations and
rotations of the coordinate system, the time derivative Do;/D¢ must be interpreted as

ilis ii
St Ul — Oududy — Tpdudiy, (29)

where [ ] designates the alternation of indices. This time derivative is called the covariant time
derivative[20] or the Jaumann-Noll derivative{26, 37). Taking the deviator and the trace of eqn
(28), we can rewrite it as

D&'i e D '3
B =2uEs, —D‘T’ = - kE%, (30)

where x(=(2p +34)/3) is the bulk modulus of the material. The plastic strain-rate is, on the
other hand, given by the associated flow rule in our sense, i.e.

, Ek=0. (31

4

-'.’.= a—f
E" Aan,'

Combination of eqns (30) and eqns (31) yields

do; i

), Do__,E. G2)
14

This set of equations is an extension of the Prandtl-Reuss equation for metal plasticity, and
hence we call them the extended Prandtl-Reuss equations. The scalar A is determined by taking
the derivative Df/Dt of the yield equation f(;;, p) = 0. We get

Df_of | Dg; ofDp_, of (',_ I )_ dp _
Df ~d0;|, Dt Tap D1~ F | \EimA 3oy |,) % ap B =0
af/alful,af/atfulp :
The equation of continuity and the equations of motion are
d d
(—5 + pow; =0, P d—l;i = djo; + pb,, . (4

respectively. Equations (32) and (34) provide ten equations for ten unknowns p, v, p and G5

4 " 6. PROPAGATION OF SINGULAR SURFACES
We now investigate the propagation of singular surfaces. We assume that the derivatives

appea_ring in eqns (32) and (34) are discontinuous across a surface which is moving in the
direction of its unit normal n; with velocity U. Hence, the singular surface is of order 1. The
kinematic compatibility conditions are
[9p)=nmM, [6p]=nmV, [46;]= ms; [ap)l=nP,
[aplat) = - UM, [avjat)=-UV, ([agdat)=~US, [éplot)=-UP, (35)

where M, V, i,;.- and P represent the magnitude of singularity{20, 37]. Consider a particular
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point on the singular surface, and take such a moving coordinate system that the material
velocity at the point is zero with respect to it. Then, evaluation of discontinuities of eqns (32)
and (34) at that point gives the following linear equations for M, V,, 3; and P

- UM +pn,V; =0, (36)
~pUVi=-nP+nS,, 7
. ] 1 3
= Ui~ unu Vi — GunuVy = 2u ("an"j 8t Vi —[A] 5%,‘ p)' (38)
-UP=- KNy Vk, (39)
where
(A= nVidfl day, — (xl2p)n, Viofl ap (40)

013G um | 0f] 3G ), :

It is evident that the relation between U and n; is obtained by putting the determinant of this
system of equations to be zero. However, a little manipulation provides us a simpler form.
First, eliminate P by substituting eqn (39) in eqn (37) multiplied by U. We obtain

UnS; = - pUV;+ knn,V, (41)

Eliminate 5:,-,- by substituting into this equation eqn (38) multiplied by n.. The result is written
after rearrangement in the form

A;,-V,- = 0, (42)
where
A= (n-pU+3 106 )5..+(1 +1) m+ mdume = 63— b 3)
i H—p 2 MO ) Oji 3 © il T ik Mk 2 Gii jir
A= 2unn,of] day),of Wﬁ;le - knnf] o ,9f] Ip (4d)
# aﬂ 00 m paf/ ao'um!p ' :

The condition for V;#0 is

det (A;)=0. (45)

This is also the necessary and sufficient condition for the existence of the singular surface when
U#0. The reason is as follows. If V; =0, then eqns (36), (38) and (39) give the trivial solution
M =0, %;=0and P =0. Therefore V;#0, and hence eqn (45) is necessary. For non-zero V,
eqns (36), (38) and (39) determine M, 3; and P. These values necessarily satisfy eqn (37),
because eqn (41) is derived from eqn (39) multiplied by n; and eqn (42). Then, eqn (37) is
derived in turn from eqns (41) and (39). Thus eqn (45) is also sufficient. In the case of U =0,
however, there can possibly be a singular surface across which V;=0. This possibility is
considered later.

If we adopt the extended von Mises eqn (10) as the yield equation, the expression for A
becomes

A,',' = E%T)i n,n*&,,d'k,- +ﬁ ’l’nk&h. (46)

Assume small shearing stress ¢;/u <1 for simplicity, and omit those terms containing ; in eqn
(43). The terms in eqn (46) cannot be neglected, because they are ratios of the stress
components. This approximation is equivalent to approximating the Jaumann-Noll derivatives in
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eqn (32) by corresponding Lagrange derivatives[20,21]. Consider plane motions and put
E, =E, = E,, =0. Then, it can be seen from eqns (32) that if ¢, = ¢,, = ., =0 at ¢ =0, then
so thereafter. Substitute eqns (13) and (14) along with n; = (cos 8, sin 6, 0) into eqn (45). We
obtain

(n-pU% {(u -pUh*+ ((I —a cos 20)x —%u) (n-pU?
—u (x + p.) sin? zo} =0. @

The first obvious solution is
U=v(up), (48)

which is equal to the velocity of shearing waves in the elastic domain. It is seen from eqn (42)
that the discontinuity vector V; is perpendicular to the x — y plane. The remaining solutions for
U are plotted in Figs. 5 and 6, where instead of « and x we have used the internal friction angle
& according to eqns (15) and the Poisson ratio v = Af2(A + p) = (3x —2u)/2(3x + p). The
following cases are of particular interest.

(1) 8=0, . The singular surface is the surface of minimum compression. The possible
velocities are

U=Vilp),  VI3+(1-a)x)lpl. (49)

The discontinuity vector V; for the former velocity is tangent to the surface, whereas it is
normal to the surface for the latter. Hence, the former corresponds to the shearing wave and
the latter the compression wave,

(2) 6=+ #/2. The singular surface is the surface of maximum compression. The possible
velocities are

U=Viglp), VI3+(1+a))p). (50)

Again, the former corresponds to the shearing wave and the latter the compression wave.
(3) 6 == «/4. The singular surface is the surface of maximum shearing stress. The possible
velocities are

U=0, VI(#43)u+«)pl (8]}
The latter is equal to the velocity of the compression wave in the elaslic' domain.

2} v=03

U/,

-—

0 /4 0 /2
Fig. 5. The propagation speed of singular surfaces; v = 0.3, Uy = /(u/p).
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3t ¢=30°

U/U,

N

ooo
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<X <
N n

Fig. 6. The propagation speed of singular surfaces; ¢ = 30°, Uy = V/(uip).

(4) U =0. If the singular surface is stationary, we have
c0s20=0, axl(x+ul3). (52)
The first solution is 6 = + #/4, the surface of maximum shearing stress. The second solution
0 = 0%(¢, v) is plotted in Fig. 7. In the limit of incompressibility «/u —»=(v—0.5), the angle 6*

approaches * (n/4 — ¢/2) as is expected. If the singular surface separates a region of plastic flow
from a region in elastic limit equilibrium and is stationary, the surface must be either of the two

types.

7t
x W
@

m

gt60»:0

0 01 02 f y .
03 , 04 05

Fig. 7. The direction of stationary singular surfaces.
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Finally, let us investigate the remaining possibility that U =0, V; =0 and yet M, P and i,;
are not zero at the same time. From eqn (37)

n,-iﬁ = n,'P. (53)

Differentiate the yield eqn (10) and evaluate discontinuity of d,f = 0. Since the result must hold
for k=1, 2 and 3, we finally obtain

&iiiii = 2a(ap + k)P. (54)

Consider again plain deformations and put $,, =5, =%, =0. Taking account of £, =-%,,
along with n; = (cos 6, sin 6,0), we can express eqn (53) and eqn (54) in the form

cosf sind  —cosé . [o

—sind cos @ —sin @ p (55)
Gu—6, 26, —-2alap+k)] LP] |O

The vanishing of the determinant yields
(G — 7y,) €05 20 + 20,, 5in 20 = 2a(ap + k). (56)

If we substitute (13) into this, we obtain
6 == (nl4- ¢[2). (57)

The singular surfaces are nothing but the stress characteristic surfaces in the limit equlibrium.
We have now exhausted all the possibilities of singular surfaces of order 1.

7. CONCLUDING REMARKS

We have presented a plasticity theory for the kinematics of ideal granular materials based
on a new interpretation of the associated flow rule with associated internal constraints.
Adopting the extended von Mises equation as the yield equation, we have obtained the
extended Levi-Mises equation in the form of a 3-dimensional tensor equation, which exhibits
perfect plasticity, incompressibility and coaxiality. We have shown that the stress characteristic
surface in the limit equilibrium is also the characteristic surface of the velocity equations as is
intuitively expected. Besides, in plain deformations the surface of maximum shearing stress is
also the characteristic surface of the velocity equations in accordance with experimental
observations. Then, we have extended the theory to an elastic-plastic theory, incorporating
elastic strains as well, and have obtained the extended Prandtl-Reuss equations. Finally, the
singular surface propagation was analyzed and the possible velocities and directions of
propagation were determined. The resulting relations hold in particular for a singular surface
separating the plastic flow region from the region of elastic limit equilibrium. Thus, our theory
includes the statics of limit equilibrium in it, and hence it seems to provide a proper basis for
further development and applications in many problems.
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APPENDIX

Consider in the material a surface element of unit normal n,. If the stress is o3 the tangential stress 7; and the normal
pressure o on the surface element are, respectively

T = Ry — MANG), g == oy (AD)

The Mohr-Coulomb yield criterion states that the material s stable as long as the Coulomb yield criterion is not met on any
surface element. Hence the yield equation is expressed as

max {77, - (u'e + P} =0, (A2)
L]

wlf:erg u' and ct are positive constants and n; can assume all directions. If, on the other hand, we demand that the Coulomb
criterion be satisfied on the average over all directions, we can write the yield equation as

wn~(p'o+c¥=0, (A3)

v&here the bar designates the average with respect to n; over the whole solid angle 4z. Substitution of eqn (Al) and
identities

=35 nap=0,

magny; = (lllS)(&uéy + 8”5" + 8”5“) (A4)
in eqn (A3) yields the extended von Mises eqn (10) with
_J(_15m? - 15\
@ \/(2(3-2,/*))‘ k \/(2(3 -2;4"3) ¢ as)

Note that if p’ =0, then eqns (A2) and (A3) reduce, respectively, to the Tresca criterion and to the von Mises criterion for
metal plasticity.



