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Measurement of Particle Orientation Distribution

by a Stereological Method
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Abstract

Practical procedures are described for a stereological method
which determines the spatial distribution of particle orientation
from the distribution observed on cross sections. First, the two
dimensional distribution of needle-like particles is determined by
counting the number of intersections with parallel probe lines.
Next, the three dimensional distribution of needle-like particles s

determined by counting the number of intersections with a
cutting plane. Then, the three dimensional distribution of disk-
like particles is determined by counting the number of
intersections with a probe line. Finally, the distribution of disk-
like particles is determined by measuring the total length of the
cross sections on a cutting plane.

1 Introduction

There are many natural and manufactured composite materials
in which non-spherical particles, such as needle-like or disk-like
ones, are distributed. In many cases, the macroscopic properties
— mechanical, thermal, electrical, chemical, etc. — of such ma-
terials are greatly affected by the internal distribution of particle
orientation. It is an important task, therefore, to measure the in-
ternalparticleorientationdistribution. However, thatisnoteasyin
practice. If needle-like particles are distributed on a plane, we can
take a photograph, measure the orientation of each particle and
make a histogram, but it is a tedious and painful task. Moreover,
the result is sensitively affected by the length of the class interval.
It is desirable, therefore, to have a systematic procedure which
could also be applied by a computer system. On the other hand, if
the particles are distributed within a three dimensional sample,
direct counting is almost impossible. Usually, what we can
observe is limited to cross-sections of a material.
Estimating three dimensional properties by observation of two
dimensional cross sections is an important subject in many areas.
This type of study is known as “integral geometry” or “geometri-
cal probability” in mathematics (e. g., [1 — 3]) and as “stereology”
in metallurgy, biology and medicine (e. g., [4 — 8]). In particular,
the estimation of the particle size distribution of spheres from the
size distribution of particle cross sections appearing on a material
surface has been well studied (cf. [2—8]) and numerical
computation schemes have also been examined in detail [9]. On
the other hand, the characterization of structural anisotropy like
particle orientation distribution by observation of surfaces was
alsostudied [3 — 8] inrelation to “Buffon s needle problem” [10].
Hilliard [11] first formulated it as estimation of the “distribution
density”. Hisresult was further generalized in tensor formulation
and described in terms of “fabric tensors” by Kanatani [12]. The
same principle can be applied in geomechanics to estimating the
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crack distribution within a rock [13] and to computer image

_processing and artificial intelligence [14 —16].

In this paper, we consider needle-like and disk-like particles and
prescribe actual procedures for estimating the particle orienta-
tion distribution from observations of cross sections based on the
general theory of Kanatani [12].

2 Two Dimensional Distribution
of Needle-Like Particles

Suppose needle-like particles are scattered on the xy-plane. We
idealize the situation by regarding each particle as a line segment
with no width. Particle orientation is then specified by the angle,
0, measured from the x-axis. Since®and® + mdesignate the same
orientation, we choose one randomly with a probability of 1/2.
Then, the “distribution density” f () is so defined that f(0) d0 is
thetotallengthof those particlesinunitarea whoseorientations are

2n
between 6 and 8 + d6. Hence, c = | f(6)d@ is the total length
0

of the particles in unit area. If the particles are partially aligned in
a certain direction, f(0) takes on its maximum along that
direction. If the particle orientation distribution is completely
random, then f(6) is constant (uniform distribution) and the
entire system is macroscopically isotropic.

Although the particle orientation distribution is completely spe-
cified by the distribution density f(6), it is not easy to determine
f(8) according to its definition as stated above, If we try to do so,
we must measure the orientation of each particle and make a
histogram, choosing an appropriate class interval. However, the
histogram is sensitive to the choice of the class interval. If it is too
large, the subsequent analysis becomes very rough. If it is too
small, the result becomes unreliable. This difficulty arises from
the fact that the definition of the distribution density, f(8),
involves infinitesimals or a limit taking process. On the other
hand, there exists a procedure to determine f(8) which does not
involve any limit taking processes. That is the “stereological
procedure” to be discussed in this paper.
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Let us put a line of orientation ® randomly onto the plane and
consider the expected number of intersections with the particles.
Suppose all the particles are dissected (conceptually, of course)
into infinitesimal line elements of length d1. Consider those line
elements whose orientations are between 6 and 6 + d0. By the
definition of f(0), there are f(8) d6/d1 such line elements in unit
area. Such a line element intersects the probe line when its center
falls inside the region of width [sin(®@ — 6)|d6 along the line
(Figure 1). Since the area of that region is|sin(® — 0)|d6 per unit
length of the probe line, there are|sin(@ — 0)|f(8)d6 line ele-
ments intersecting unit length of the probe line. Integrating this
over all particle orientations, we find that the expected number
of intersection per unit length of the probe line is given by

N@) = ~];'~ [sin(@ — 6)|f(0)do . 1)
0

This was called the two dimensional “Buffon transform” in [13].
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Fig. 1: A line element of length dl and orientation 0 intersects a line of
orientation ® when the center of the line element falls inside the band
area of width|sin(® — 0)|dl along the probe line.

3 Inverse Buffon Transform and the Fabric Tensor

The number of intersections N(®) between the particles and a
probe line of orientation ® can be measured for an arbitrary @. If
we can invert the Buffon transform Eq. (1), we can obtain the dis-
tribution function f(0). This is done as follows [13]. We express
N(®) as a Fourier series:

N(@©) = _2% = [1 + f' (A,cos n® + B, sin n@)], ¥)

2r

C = [N@©)dO, 3)
0

ARl “cosn® |
[Bn:| FATCR gN(e)[sinnG)Jd@' 2

Here, ¥ ' denotes summation with respect to even indices. Odd

terms do not appear because, by definition, N(®) is “symmetric”

with respect to the origin, i.e., N(®) = N(®@ + ). Then, the

distribution density f(0) is given in the following Fourier series:

C/4 b :

f(8) = [ — ¥ (n* — 1) (A,cosn0 + anmne)] .(5)
2n n=2

(A general principle to invert Eq. (1) is discussed in [13] in terms
of the rotation group, invariant operators and the group repre-
sentation theory.)

It may seem that we can use the fast Fourier transform, (FFT)
[19], to compute efficiently all the Fourier coefficients simultane-
ously, say up to a given degree N, obtaining f(8) by Eq. (5).
However, as can be seen from Eq. (5), the computation becomes
very unstable if high harmonics are involved because they are
greatly amplified. Moreover, in view of the statistical nature of
our procedure, we are usually not interested in the details of the
exact distribution. It suffices, therefore, to consider harmonics
up to the second order. Hence, we are lead to the following
procedure:

Take N equally spaced orientations ®, = nk/N,k =0,1,....,N
— 1, in the interval 0 = ® < m. Put equally spaced parallel lines
of orientation ®, on the plane, and let N, be the number, per unit
length, of intersections with the particles. Approximate the
Fourier coefficients of Egs. (3) and (4) by the following corre-
sponding sums,

N-1

C=2n ¥ N/N, ©
k=0

A NSt [eos2mk/N)

{BJ e k=0 [sm(an/N)} / E N, . 0]

Then, N (®) is approximated by

N(@) = [1 + A,c082@ + stin2®J, 3)

27
and hence the distribution density () is approximated by

£(0) = —C—/i[1 — 3(A,c0s20 + stmzey] ©

On the other hand, what is often required is not the form of f(8)
itself but its characteristics such as the orientation of the distribu-
tion peak, symmetries of the distribution and the discrepancy

_from isotropy. These characteristics become clear if we rewrite
Eq. (9) in terms of xy-coordinates. If we putx = cosandy =

sin@, Eq. (9) becomes

/4
f(x,y) =(;—[1 + E D;;x J} ; (10)
ii=1
De e
Dy = -3 [Bz —A2:| ) (11)

where x; = x and x, = y. The coefficient tensor D;; is called the
“fabric tensor” of the distribution in [12]. It vanishes if the
distribution is isotropic. Hence, it describes the deviation from
isotropy. Since it is a symmetric tensor, it has two mutually
orthogonal principal axes. If we take these axes as the x — and the
y —axis, D;; becomes

A
e

where A and — A are associated principal values (eigenvalues).
(Note that D;; of Eq. (11) is a deviator tensor (traceless tensor),
and the trace is an invariant.) In view of Eq. (10) or (9), this
means that the distribution takes its maximum and minimum
along the principal axes of D; and that A is the ratio of increase or
decrease of distribution from isotropy along that direction. Since
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the principal axes are mutually orthogonal, the distribution of
Eq. (9) or (10) expresses “orthogonal anisotropy” and is sym-
metric with respect to each principal axis.

As an example, consider the distribution of Figure 2. Figure 3
shows the number of intersections with unit length of parallel
lines of 18 different orientations (at 10 ° intervals) whose spacing

0

Fig. 2: A two dimensional distribution of needle-like particles.

Fig. 3: Data of intersection counts on Figure 2 and the curve approxi-
mating the data distribution. Both are normalized so that the total
becomes unity.

Fig. 4: The distribution density f(0) determined from the curve of
Figure 3 (normalized so that the total becomes unity).

is 1/24 the diameter of the circumference. The solid curve is the
approximation of Eq. (8) and the dashed one is the circle corre-
sponding toisotropy. However, we have normalized the data and
curves so that the total becomes unity. Eq. (7) gives A, = 0.026
and B, = 0.057. Figure 4 is the corresponding shape of the

(normalized) distribution density according to Eq. (9). The fabric
tensor is

—0.078 —0.171]
: 13
[—0.171 0.078J (43
The orientations of the principal axes are 6 = 35.5° and 125.5°,
and the associated principal values are A = =+ 1.188, at which
ratio the distribution differs from isotropy. It is difficult to guess
this result by just looking at Figure 2.

4 Three Dimensional Distribution of Needle-Like
Particles

Suppose needle-like particles are scattered in three dimensional
space. The orientation of each particle is specified by spherical
coordinates, 8, ¢, associated with a fixed xyz-coordinate system
(Figure 5). Here again, 0, ¢ and © — 8, ¢ + m designate the same
orientation, so that we choose either of them randomly with a
probability of 1/2. Let the “distribution density™ f(0, ) be defined
in such a way that (0, ¢) sin0d6d¢ is the total length of those
particles whose orientations lie between 8 and 0 + d@ and

2n n

between ¢ and ¢ + d¢. Hence,c = | [ (8, ¢p)sin0d0disthe
00

total length of the particles in unit volume. If the particles are
partially aligned in a certain direction, (8, ¢) takes its maximum
along that direction. If the particle orientation distribution is
completely random, then f (8, ¢) = const. (uniform distribution)
and the system is macroscopically isotropic. However, direct ob-
servation of f (6, ¢) according to its definition is almost impossi-
ble. Therefore, we consider the stereological procedure.

X

Fig. 5: Spherical coordinate system to describe the orientation of a
needle-like particle,

Let us place a plane, whose unit normal is ®, ® in spherical coor-
dinates, randomly into the space and consider the expected
number of intersections with the particles. Imagine that all parti-
cles are dissected into infinitesimal elements of length dl.
Consider those line elements whose orientations are between 8
and B + df and between ¢ and ¢ + d¢ in spherical coordinates.
By the definition of (0, ¢), there are £(8, ¢)sin8d08d ¢/dlsuch
line elements in unit volume. Such a line element intersects the
cutting plane when its center falls inside the region of width
|cosy|dl along the plane, where y is the angle made by two unit
vectors whose spherical coordinates are 8, ¢ and ®, & respective-
ly. Namely,

cosy = sinfsin®cos (P — ¢) + cosOcos® . (14)

(See Figure 6.) Since the volume of that region is|cosy | d 1 per unit
area of the cutting plane, there are|cosy|f(0, ¢)sin8d8d ¢ line
elements intersecting unit area of the cutting plane. Integrating
this over all particle orientations, we find that the expected
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number of intersections per unit area of the cutting plane is given
by

2n

N@,®) = [ | |cosy|f(®,p)sinddode . (15)
00

This was called the three dimensional “Buffon transform” in
[13].

Fig.6: Alineelement of length dland orientation 6, ¢ in spherical coor-
dinates intersects a plane whose normal is in orientation @, ® in spherical
coordinates when the center of the line element falls inside the layer of
width|cosy|dl along the plane.

According to [13], the inverse transform is given as follows. We
express N (@, ®) in the spherical harmonics series

Gal: =73 (s
N(@,q)) = H[l + E' [TAHOPH(COSO)
n=2

n
+ Y PM(cos®) [A,,cosm® + Bnmsinm(a]”, (16)
m=1

C = [ [N@®,®)sin@dedd , A7)

[
Q=
Sw— x

= Al 2n n
lAnm} _2@n+1) (n-m! [ {N(®,®)P™ (cos®)

Bim C (n+ m)! 5,
“cosm® | .
{ AR :|sm®d®d¢> A (18)

where ¥/ again denotes summation with respect to even indices.
Odd terms do not appear because, by definition, N(®, ®) is
“symmetric” with respect to the origin, i.e., N(@, ®) = N(n —
®,® + m). Here, P, (2)is the nth Legendre polynomial and P (z)
the associated Legendre function.

If N(®, ®) is given by Eq. (16), the distribution density f (8, ¢) is
given as follows [13]:

c I = 1
f(ﬂ, q)) = '-[;[1 o+ E;A'n[_Z_AnOPn(COSG)
n=

+ ¥ PM(cosf) [A,,cosmB + B, sian]J 3 19)
m=1

c=C/2n, (20)

n
A, = (=1D)™2- 122 (n — 1)(n + 2)/ : 21
n = (=1) (n )( ) (n /2) (21)
In practice, however, it is sufficient to consider only terms up to
the second order. In terms of Cartesian coordinates, Eq. (19) is
rewritten in the form

i 3
£(x,y,2) = 4—‘;{ it Duxix,l : 22)

ij=1

where x = sinf cos¢, y = sinf sing and z = cosf and we put x,
= X, X, = y and x; = z. Hence, the distribution density is
completely specified by the density ¢ and the fabric tensor Dy,
whose principal axes are the orientations along which the distri-
bution takes onextremes. Each principal valueis theratioat which
the distribution increases along the corresponding principal axis.
The distribution has the symmetry of orthogonal anisotropy
whose axes are the principal axes of the fabric tensor Dy;. If the
distribution is isotropic, D;; = 0 and hence D;; measures the
extent to which the distribution deviates from isotropy.

5 Three Dimensional Distribution of Disk-like
Particles

Suppose disk-like particles are scattered in three dimensional
space. The orientation of each particle is specified by its unit
normal. Since there are two possibilities for the direction of the
unit normal, we choose one of them randomly with a probability
of1/2. LetBand ¢ be the spherical coordinates of theunitnormal.
The “distribution density” f (0, ¢) is defined in such a way that
f(0, ¢) sin6bdOd¢ is the total area of those particles whose
normals lie between 6 and 0 + d0 and between ¢ and ¢ + din

nn

spherical coordinates. Hence, ¢ = [ [ £(8, ¢) sin8d0d¢ is the
00

total area of the particles in unit volume. If the particle are
roughly aligned, f (0, ¢) takes its maximum along the direction to
which the particles are nearly perpendicular. If the particle orien-
tation distribution is completely random, then f (0, ¢) = const.
(uniform distribution) and the system is macroscopically
isotropic. However, direct observation of f (6, ¢) according to
this definition is, again, almost impossible.

Let us place a line of orientation ® and @ in spherical coordi-
nates randomly into the space and consider the expected number
of intersections with the particles. (In practice, one must first cut
the material with a plane on which the probe line lies.) Imagine
that all particles are dissected into infinitesimal surface elements
of area dS. Consider those surface elements whose normals lie
betweend and 8 + d0 and between ¢pand ¢ + d ¢ inspherical co-
ordinates. By the definition of f(8, ¢), there are (0, ¢) sinb
d0d d/dS suchsurface elements in unit volume. Such a surfaceel-
ement intersects the probe line when its center falls inside the cy-
lindrical region of area |cosy|dS along the line, where y is the
angle made by two unit vectors whose spherical coordinates are 0,
¢ and @, ® respectively, cf. Eq. (14). (See Figure 7.) Since the
volume of that region is |cosy|dS per unit length of the probe
line, there are |cosy|f(B, ¢) sin0dBd ¢ surface elements which
intersect unit length of the probe line. Integrating this over all
particle orientations, we find that the expected number of inter-
sections per unit length of the probe line is again given by Eq.
(15), i.e., the three dimensional Buffon transform, though the
interpretation of (0, ¢) is different. Since the basic equation is
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the same, subsequent procedures also proceed in the same way.
Namely, if we express the observed data N (®, @) in the spherical
harmonics series of Eq. (16), the distribution density f(8, ¢) is
given by Eq. (19).

Fig. 7: A surface element of area dS whose normal has orientation 0, d
in spherical coordinates intersects a line of orientation ®, @ in spherical
coordinates when the center of the surface element falls inside the cylin-
drical region of cross section|cosy|dS along the probe line,

On the other hand, there is an alternative approach. Instead of a
probe line, let us place a plane whose normal is ®, ® in spherical
coordinates randomly into the space and consider the expected
length of the intersections with the particles. Imagine that all par-
ticles are dissected into infinitesimal surface elements of area dS
as before. Consider those surface elements whose normals lie
betweenBand 6 + d6 and between ¢ and ¢ + d¢ in spherical co-
ordinates. Imagine that a cutting plane of unit area moves per-
pendicular to itself, sweeping out unit volume. Then, the average
length of the intersection with a surface element as described
above equals the projected area |siny|dS of that surface element
as shown in Figure 8, where v is the angle made by two unit
vectors whose spherical coordinates are 0, ¢ and ©, @, cf. Eq.
(14). Hence, since there are f (6, ¢) sin8d0dd$/dS such surface
elements in unit volume, the expected total length of the intersec-
tions with such surface elements is |siny|f (0, ¢) sin8dB8d¢ per
unit area of the cutting plane. Integrating this over all particle
orientations, we find that the expected length of intersections per
unit area of the cutting plane is given by

2n n

N(@,®) = | | |siny|f(0, 0)sin0dOd¢ . (23)
00

IsinTldS

Fig. 8: If a plane of unit area whose normal has orientation ®, @ in
spherical coordinates cuts unit volume of the space, the expected length
of the intersection with a surface element whose normal has orientation
8, ¢ in spherical coordinates is equal to the area of the image projected
onto a plane perpendicular to the probe plane and parallel to the
intersection,

This is another type of the three dimensional Buffon transform.
Inversion of Eq. (23) is similar to the previous cases [13]. Namely,
if we express the observed data N(®, ®) in the spherical
harmonics series of Eq. (16), the distribution density is again
given by Eq. (14) except that Egs. (20) and (21) are replaced as
follows:

¢ = C/n?, (24)

A, = 22-1(n — 1)/n (n'/lz)z. (25)

Whichever approach we may take, the distribution density f (8,
¢) is obtained in the form of Eq. (19). If higher order fluctuations
are neglected, the distribution density is characterized by the
density ¢ and the fabric tensor D;; in the form of Eq. (22). Thein-
terpretation of the fabric tensor Dj; is the same as before.

6 Procedures of Measurement in Practice

We have shown that the distribution density f (0, ¢) of particle
orientations, whether the particles are needle-like or disk-like, is
completely determined once we know N (@, @), i. e., the number
of intersections with a probe line or a cutting plane or the length
of intersections with a cutting plane. However, we can only make
a finite number of observations, in other words, values of func-
tion N (®, @) at a finite number of points on a unit sphere. There-
fore, we must estimate function N (®, ®) froma finite number of
values.

One procedure is the Monte Carlo method. We choose orienta-
tions randomly, choosing points on a unit sphere randomly, and
observe the data for these orientations, Then, coefficients of Eq.
(16) areestimated by approximating the integrals of Egs. (17) and
(18) by appropriate summations, cf. [18]. However, this means
that we must cut the material with planes of various orientations.
In order to do so, we must prepare a large number of material
samples, all of which are supposed to have the same characteris-
tics. This brings difficulty in many cases.

Another way is to observe only special orientations and estimate
N (®, ®) for all orientations. Thisisimpossible for a general form
of N(®, @) but is possible if the form of N(®, ®) is restricted.
Suppose high order fluctuations of the distribution density f (0,
¢) can be neglected and f (6, ¢) is described by Eq. (22). In this
case, we may say that the anisotropy is “weak”. From Egs. (16)
and (19), N(®, ®) must also have the same form

C 3 3
N(n) = —lj + ¥ Fijxlij, (26)

4n ii=t

where we have put n = (x, v, z). In order to specify N (n), we only
have to know C and F;;. Once they are known, we obtain the
density ¢ and the fabric tensor D;; by

¢ =:C/2n y Dij = 4Fij y (27)
if the number of intersections is used and by
Cc = C/T[z . D]‘j = _Fij » (28)

if the length of intersections is used.
Since there are only six unknowns (one for C and five for F;
which is a symmetric deviator (i. e., traceless) tensor), they are
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determined in general if N(n) at six different values of n are
observed. However, this would yield unreliable results due to
possible errors in the measurement. It is desirable, therefore, to
compute C and F;; in the form of sums or averages of a large
number of observed data. This is given as follows [18].
Consider the following integrations.

M® = fc,N(mds, (29)
M® = fomXix;Nm)ds . (30)

Here, C(2) is a unit circle on the xy-plane around the z-axis, and
fcids designates the line integral along C(z) (Figure 9). If we
substitute Eq. (26), noting Fy; + F,, + F;; = 0, we obtain the
following expressions.

z

C(z)

¥l

(x,y)

Fig. 9: Unit circle around the z-axis on the xy-plane.

1 1
Mw=70-7&9, (31)
2 C
M@ = —=F.. (32)

Define similar quantities on the yz- and the zx-plane as well.
Then, we can determine C and F;; in terms of them as follows.

C = % MO + MO + M®) | (33)

=
[

= 2(=-2M® + M® 4+ M@)/(M® + M® + M®@) , (34)

|
M
I

2M® — 2M® + M@)/(M® + MY + M®@), (35)

Fj; = 2(M® + M® — 2M@)/(M® + MY + M®) | (36)

F,, = 12M{/(M® + MY + MO)(= Fy), (37)
F,, = 12M§/M® + M® + M@ (= Fy), (38)
F,, = 12MY/(M® + M® + M@) (= F}3) . (39)

Therefore, if we know the values of quantities like Eqs. (29) and
(30), we can compute C and F; by Egs. (33) to (39). Now, we
consider how to estimate quantities like Eqs. (29) and (30) from
observations.

First, consider the case of disk-like particles. Cut the material
randomly with a plane parallel to the xy-plane and draw on the
surface a line making angle kn/N, k = 0,1, ..., N — 1 from the
x-axis. Let N{” be the number of intersections with the particles
per unit length of the line (Figure 10). Then, approximate M®
and M§ by

N-1
MY =2n ¥ N¥/N, (40)
k=0

N-1
MY = 1 ¥ NPsin(nk/N)/N . (41)
k

=0

Fig. 10: A probe line drawn at angle k n/N from the x-axis on a surface
parallel to the xy-plane.

Repeat the same process for the yz- and the zx-plane and compute
M®, M, M® and M. Then, C and F; are given by Egs.
(34) to (39), and c and the fabric tensor D;; are given by Eq. (27).
Thus, we need only to cut the material with planes parallel to the
Xy-, the yz- and the zx-plane. If we use a rectangular, box-shaped,
material sample, we may use its three faces alone to estimate the
distribution. Itis, of course, better to draw parallel lines of equal
spacing instead of one line on a surface and then to cut the
material with planes parallel to it to observe new surfaces succes-
sively.

Consider next the case of using cutting planes to count the
number of intersections with needle-like particles or measure the
length of intersections with disk-like particles. In this case, cut
the material into a cylinder with the z-axis as its axis. Let N2 be
the number of intersections with needle-like particles or the
length of intersections with disk-like particles observed in unit
area of the strip on the cylinder whose central angle, ¢, is in the
range2n(k — 1/2)/N < ¢ = 27 (k + 1/2)/N (Figure 11). Then,
approximate M and M@ by

N-1

M® = 2z | N[@/N, 42)
k=0
N-1

M@ = n | NfPsin(@nk/N)/N . (43)
k=0

Fig. 11: A probe area of central angle 27/N on a cylindrical surface
around the z-axis.

Repeat the same process for cylindrical surfaces with the x- and
the y-axis as the axes and compute M ™, M%), M® andM . Then,
C and F; are given by Egs. (34) to (39), and c and the fabric tensor
D, are given by Eq. (28). Thus, we only need to cut the material
with cylindrical surfaces around the x-, the y- and the z-axis. We
can also peel the cylinder shaped material successively to observe
new surfaces.

7 Concluding Remarks

In this paper, we have shown stereological procedures to estimate
the two and three dimensional orientation distributions of needle-
like or disk-like particles from observations on two dimensional
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surfaces based on a relationship called the “Buffon transform?”.
An important idea behind this is the concept to the “distribution
density” which characterizes the particle orientation distribu-
tion. Alsoimportant is the fact that the distribution density is spe-
cified by the density ¢ and the fabric tensor D;; if higher order
fluctuations are neglected. In this case, we can use a simple
method requiring only three material samples. Our procedures
can be performed manually but can also be implemented by a
computer image processing system.
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