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SUMMARY

The contact force distribution in an ideal-
ized granular material is related to the macro-
scopic state of the stress. The link connecting
them is provided by a variational method
called the principle of virtual work. The stress
is expressed in terms of the contact force dis-
tribution in the material, and the contact force
is then expressed in terms of the macroscopic
stress. A macroscopic yield condition based
on these results is also discussed. All the
equations are expressed in the form of three-
dimensional Cartesian tensor equations.

1. INTRODUCTION

Many types of mechanical processing of
granular materials occur in industry — com-
pression, crushing, grinding, etc. In order to
analyze the performance efficiency of these
operations, information on microscopic inter-
particle characteristics, such as the statistical
distribution of contact forces, must be avail-
able. Since direct observation of such charac-
teristics is difficult from a practical point of
view, a way of estimating them from a know-
ledge of measurable quantities such as the
macroscopic stress is necessary.

In this paper, an assembly of rigid spheres
is taken as an idealized model of granular
materials, and expressions describing micro-
scopic properties in terms of macroscopic
quantities are deduced. (For the mechanics
of model granular materials, see, for example,
refs. [1 - 3].) The particle radius is assumed
to be fairly uniform and not to vary wildly
from particle to particle. The link connecting
them is provided by a variational method
called the principle of virtual work, which
demands, in general terms, that the total
amount of work done by the microscopic

interparticle interactions be equal to the work
described in terms of macroscopic variables.
All the equations are expressed in the form of
three-dimensional Cartesian tensor equations
invariant to coordinate translations and rota-
tions.

We first derive a fundamental relation
between the stress and the microscopic
contact force distribution. Then, we express
the contact force distribution in terms of

“the macroscopic state of the stress. Using

those expressions, we deduce a yield condi-
tion which relates local slips of the particles
to overall fracture of the material.

2. STRESS AND CONTACT FORCES

Suppose the material is subject to macro-
scopically uniform stress. However, the inter-
particle forces acting on each particle may
vary from particle to particle due to inhomo-
geneity of the material. Now, take all the
contact forces on particles in some particular
region in the material and superpose them on
a single hypothetical sphere (Fig. 1). The
radius a of the sphere is assumed to be the
average radius of the particles in the region.
(The precise interpretation of the average is
discussed later.) We call this hypothetical
sphere the representative particle, because
it represents all the particles in the region in
the sense of statistical average. If the number
of particles in the region is sufficiently large,
the distribution of the forces on the represen-
tative particle is approximated by a continuous
function of the contact direction n;. Here, n;
is the outward unit normal vector at the
contact point under consideration. Let
D(n)dQ2 be the number of contact points
contained in the differential solid angle dS2 of
the representative particle divided by the



168

1:(n)O(n)

Fig. 1. Force distribution on the representative
particle.

number of particles in the region under
consideration. Then, D(n) is the contact point
density, and_' by definition

N = { D(n)da (1)

is the average number of contact points per
single particle, which is usually referred to
as the coordination number. Next, let
fi(m)D(n)dQ be the total force acting on the
differential solid angle dQ of the represen-
tative particle divided by the number of
particles in the region, and call fi(m)D(n)
the contact force density. By definition,
fi(n) is the average contact force per single
contact point having n; as the contact direc-
tion.

Since the particles are in mechanical
equilibrium, the total vector sum of the
contact forces on the representative par-
ticle should vanish:

§ fmD(myaa =0 (2)

Likewise, the torque balance demands
that

ff[ in)nj; D(n)dQ = 0 (3)

where by [] we designate the alternation of
tensor indices.

Now, consider the following uniform
first-order deformation of the material:

xX; = Auxj (4)
according to which the point x; moves to

xi after deformation. For the displacement
u; = x;—x;, we have

u; = Fux;, Fy=A;—35, (5)

where § ; is the Kronecker delta. The
distortion tensor F;; is resolved into the
symmetric part and the skew part, i. e.,

Fy=E; +Ry (6)

Ey = Fy, Ry = Fyij) (7

where by () we designate the symmetrization
of tensor indices. Here, E;; is the strain tensor
and R;; the rotation tensor. If all the particles
are rigid, any deformation that does not
change the microscopic state of interparticle
contact is actually impossible except overall
rigid rotations. However, we can hypothetically
imagine this kind of deformation, Le., virtual
deformations. The virtual deformation (4)
distorts a ‘rigid’ spherical particle into an
ellipsoid. Let the representative particle be
subject to that virtual deformation. The dis-
placement ¢;(n) at the contact point having
n; as the contact direction is given by

(i(n) = aFn; (8)

(Fig. 2). Since the contact forces are assumed
not to change during the virtual deformation,
the virtual work done by the contact forces
on the representative particle is

§f::DAQ = aF;; § fin;Dgy
' = “Eiiff(t"nDdQ (9)

Fig. 2. Virtual deformation of granular material.

The last equality follows by virtue of the
torque balance, eqn. (3). If v is the solid
volume fraction of the material, the number
of particles in unit volume is y/(4/3)ra®, and
this relation, precisely defines the average
radius g of the particles. Hence, the virtual
work done in unit volume is

3 v
=7 =7 Byf funpDas (10)

Meanwhile, the virtual work done per unit
volume by the virtual strain E;; under the
stress 0;; must be

W= aiiEii (11)

because the stress is assumed not to change
during the virtual deformation. The condition
that eqn. (10) and eqn. (11) always coincide
is



Fig. 3. Regular array of two-dimensional granular
material.

3 v
4 ng?
which gives a fundamental 'relation that
connects the microscopic contact forces and
the macroscopic stress.

The important fact to be noted is that f,D
is obtained by taking averages over a certain
region. If, in particular, the region is taken
so as to contain only one particle, then the
left-hand side of eqn. (12) is the local stress
around that particle, where a is taken to be
the radius of that particle, y the local solid
volume fraction and f; the contact force on
that particle. (In this case, of course, the
integral is replaced by summation because
the density fD has singularities of the Dirac

0 = ff(;n,-)DdQ (12)

~ delta function.) This enables us to define

local stress in the discrete material and to
study stress fluctuations in the material.
If, on the other hand, the region is taken to
be the whole volume of the material, then
the left-hand side of eqn. (12) is the overall
average stress.

3. TWO—DIMENSIONAL EXAMPLES OF THE
FUNDAMENTAL RELATION

Let us consider an idealized two-dimensional
granular material, i.e. an aggregate of circular
cylinders, to test that eqn. (12) represents the
true relationship. In the case of two-dimen-
sional granular materials, the number of par-
ticles in unit area is y/na2, instead of
v/(4/3)na3, where v is the solid area fraction
and a the average radius of the circles. Hence,
eqn. (12) must be modified to

Y
g;j = E;ff(,n”Ddﬂ (13)
where dQ is the plane differential angle.
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Fig. 4. Close packing of two-dimensional granular
material.

Consider, as an example, the regular array
of particles shown in Fig. 3. There exist two
types of contact. The contact force is resolved
into tangential and normal components as in
Fig. 3. The two types of contact have tangential
forces of the same magnitude 7 due to the
torque balance. The equilibrium conditions,
egns. (2) and (3), are automatically satisfied
by describing the contact forces as in Fig. 3.

-The solid area fraction y is clearly

v =n/4sin(f —a) (14)
The integral fda in egn. (13) is interpreted

as a summation, since the force density f,D
has singularities of the Dirac delta function.
From eqn. (13), we finally obtain

2 2
Oxx= — T COS(ﬁ +a)— V1cos“a + vy cos ﬂl
2a sin(f — a)

1 . v sin?a + vzsinZB]

v 2¢ [ T oos(f +a) sin( —a)
- [ in(8 + )
Oy = — |T S a) —
Y 2

v,c0s a sin a + vycos B sin

sin( —a) ' (15)
Let us check the validity of this result by
using directly the definition of stress. Consider
the cross-section AB in Fig. 3. The force the
upper part exerts on the lower part across the
line is due to v, and r. Let F; be the contact
force at point Q in Fig. 3. Then
F,=718np —vycosf
= (16)
F,=~—171cosf —w,sinp
The contact points on the line AB are
equidistant with interval 2a so that the force
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per unit length is (F,/2a, F,/2). The unit
normal to the line is (-—sin a, cos a). Hence,
if the macroscopic stress is 0;j, we should have

[ Fx /2J loxx oxy
F,/2 Tyx o,J
If we substitute eqns. (15) into the right-
hand side, we can confirm the validity of this
relation. Hence, eqns. (15) also give the correct
relation in the usual form. In the terminology
of structure analysis, this example is statically
determinate in the sense that we can solve

eqn. (15) for 7, », and v, in terms of Oyx,
O,y and Oyy.

Consider another example shown in Fig. 4.
The solid area fraction is

y=3n/6 (18)

We can obtain the macroscopic stress gy
from eqn. (13) in the same way.

—sin aJ an

COs a

1 1
Oxx = gl (—7m)— ﬁ(‘l% +n "'Vz)I
1
Oyy = ry (11 —73) =3y, + ”2)] (19)
1
Oxy ='4: —V3(r + T2) — (1 _”2)]

This case is, however, statically indeter-
minate, i.e. we cannot uniquely determine
T1s T2, Yo, ¥; and v, in terms of o, , g,y and
9yv, and hence different microscopic states of
contact force can represent the same macro-
scopic states of the stress. In Fig. 4, the coor-
dinate system is set in a particular manner.
However, if the coordinate axes are rotated

by a certain angle, the stress calculated by eqn.

(13) is necessarily the same as is obtained by
applying the tensor transformation rule to
eqns. (19), because eqn. (13) is a Cartesian
tensor equation and hence is invariant to coor-
dinate rotations.

4. CONTACT FORCE IN TERMS OF THE STRESS

The force density £D on the representative
particle is thought of as a smooth function
when the average is taken over a sufficiently
large number of randomly packed particles.
Hence, it is expanded into series of spherical
harmonics. In our Cartesian tensor notation,
the expansion has the form

iD= A; + Bijn; + Gjenjny. + . . . (20)

Retaining only the first two terms, omitting
the higher harmonics, substituting this into
the equilibrium conditions, eqns. (2) and (3),
and using identities

f ndQ = 0, frinyaq = iu&u (21)
3

we obtain

A,‘=O, B[iil =0 (22)

Substitution of eqn. (20) into the funda-
mental relation, eqn. (12), then yields

y
% =3 Bj; (23)
Hence,

a2
fiD = > 0ijh; (24)

This result seems quite reasonable, if we
take into account the fact that eqn. (24) gives
the force per unit solid angle of the represen-
tative particle. This implies that the force per
unit area is (1/y)o;;n;. If the material were a
complete continuum, the force density on a
plane with unit normal n; in the material
would be g;n;, whereas in this case it is divided
by v, the solid volume fraction, due to the
existence of the voidage in the material.

Now, let us turn to the density of contact
points. Experiments have shown that the
contact point density takes its maximum in
the direction of maximum compression and
its minimum in the direction of minimum
compression (e.g. {4, 5]). Then, it is reason-
able to assume the following quadratic form.

== (7)oj;n;n; (25)

Here, C(7) is a positive scalar dependent
on the solid volume fraction 7. (The negative
sign indicates that we have adopted the usual
convention that the tensile stress is positive.)
In view of eqn. (1), the coordination number,
which also depends on v, is given by

N(y) = = C(7)o, f nndQ = —4sC(v)p  (26)

where p = — 0,,,,/3 is the hydrostatic pressure,
Hence C(y) = — N(y)/4#np and consequently

N(v)
D=-— Tn’p oin;n; (27)



which gives the density of contact points
under a given stress. The experimental function
form of N(y) is discussed in many books and
papers (e.g. [3, 6]). Combination of eqn. (27)
and eqn. (24) yields

P 4ma®  oyn;
¢ = —
TN(?) opineen,

which expresses the average contact force per
one contact point in a prescribed contact
direction n; in terms of the solid volume
fraction y and the stress g;;.

(28)

5. MACROSCOPIC YIELD CONDITION

Let F; be the contact force at a particular
contact point with the contact direction n; on
the representative particle and let the force be
resolved into tangential and normal compo-
nents, 7; and v respectively. From eqn (24),
they are given by

02
Ti= — (oi,-n,- - o,-kn,-n,-n,,)
yD
(29)
02
v=— —o;n;n;
D T

If these forces obey the Coulomb friction
law, they must satisfy the inequality

VTiTi<u'v +¢' (30)

where 1’ is the friction coefficient of the
particle and ¢’ the cohesion constant. As we
increase the external load, the stress may
finally become such that the inequality sign
in (30) is replaced by an equality sign. Then,
the contact is said to be in a critical state, and
slip at that contact is possible. Let us, however,
assume that the material does not exibit
overall fracture until the critical condition
is satisfied in all directions on the average, in
other words, until

§ [m,. —@v+c¥| Dda =0 (31)
is satisfied. Identities (21) and

fn,-nin,, dQ =0

M(8ij8k1 + 8ij) + 8udji)

4
fn,-n,nkn,dfl = Ig

(32)
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reduce eqn. (31) to

1542

1~~ —
1/50”0" l/z(_s—zu'z)p
y 15
2 l/-‘ ' 33
‘Z Vag—ar) (33)

where G;; is the stress deviator:

- 1
ij = 0y iy 8ijOkk (34)

Equation (33) coincides with the so-called
extended von Mises criterion. From this, we
can determine the macroscopic internal angle
of friction ¢ and the macroscopic cohesion
constant ¢ in such a way that eqn. (33) is
reduced to the usual Coulomb law in the
case of plane deformations. We finally obtain

tan ¢ = 15 '

l’s-—wu'z“’

o= Y 15 o
21’6 19,{2

which relate the microscopic characteristics of
the particles to macroscopic yield.

If we assume, instead of eqn. (31), that the
macroscopic fracture begins whenever any
contact direction becomes critical, we appar-
ently obtain the so-called Mohr-Coulomb
criterion. We can also derive relations similar
to eqgns. (35), but the results would be much
more complicated.

(35)

6. CONCLUDING REMARKS

We have investigated the relations between
the microscopic state of interparticle contact
and the macroscopic state of the stress. The
basic principle we used is the principle of
virtual work. We have expressed the stress in
terms of the contact forces and the contact
forces in terms of the stress. Using these
relations, we also derived a macroscopic yield
criterion.

The analysis of contact force distribution
of granular materials has been frequently seen
in many problems such as compression of sand
for molds and comminution of a solid body.
Usually, the coordinate axes are fixed in a
particular manner, and all the vector and
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tensor quantities like forces and stresses
involved in the problem are treated compo-
nentwise in reference to the particular coordi-
nate system, which often complicates the
analysis. In this paper, all the equations are
expressed in the form of three-dimensional
tensor equations invariant to coordinate trans-
formations. As we have seen, the results are
quite satisfactory from a logical point of view
and also quite reasonable from a physical
point of view, so that our way of formulation
seems helpful in a wide variety of practical
problems.
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