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SUMMARY

This is a critical review of the existing
theories on characterizing the random packing
of granular materials by means of entropy
maximization. It is pointed out that the state
density function, which specifies the limit-
taking process and determines the asymptotic
form of entropy, must be introduced in order
to assure the invariance to parameter transfor-
mations. The entropy for the particle size
distribution is first formulated, and an
application to the void fraction distribution is
illustrated. These examples show the relation-
ship between the present entropy and those in
information theory, statistical mechanics and
thermodynamics. Then, a new viewpoint is
presented; entropy is regarded as a measure of
the ‘distance’ between statistical distributions.
1t is concluded that in this new sense the
entropy provides a useful tool for the descrip-
tion of random quantities involved in granular
materials.

1. INTRODUCTION

There have been several attempts to charac-
terize the random packing of granular
materials as a state of maximum entropy
analogous to statistical mechanics (e.g. [1 -
5]). This approach has given the misleading
impression that physically reasonable statis-
tical distributions are derived by maximizing
the entropy irrespective of the physical laws
governing the microscopic interactions among
the particles. In this paper we critically
review the existing theories of ‘entropy
maximization and point out that the entropy
alone does not suffice to determine the actual
distributions of random quantities involved in
granular materials, A close examination

reveals that a crucial assumption on the
randomness is tacitly posed in all the existing
theories of this type and that there exists no
logical justification for it. As a matter of fact,
this difficulty is traced back to the
mathematical foundation of statistical mech-
anics (e.g., see [6]). The crucial point is the
limit-taking process involved in the formula-
tion. Usually, entropy of this type is defined
with regard to discrete random variables.
Then, an asymptotic form is obtained in the
limit of continuous variables. The subtle point
is the fact that the resulting asymptotic fOrm
depends largely on the way of limit taking.
There are a number of possible limit-taking
processes, and the entropy takes different
forms accordingly. Hence, the form of
entropy thus obtained is not invariant to
parameter transformations. In order to assure
the invariance, we must introduce a state
density function which specifies the limit-
taking process. The form of the state density
function is not determined by the statistical
consideration alone. It must be determined by
an a posteriori criterion. This fact is illus-
trated in detail in this paper.

On the other hand, a new viewpoint is
proposed for the use of entropy in describing
the packing structure of granular materials;
we regard entropy as a quantity measuring a
kind of distance between two statistical distri-
butions. This viewpoint is extensively dis-
cussed in Kullback [7] in relation to the
mathematical theory of statistics, and it is in
this new sense that the entropy is most useful
in the description of random quantities.

Quantities involved in the random packing
of granular materials are various types of
random variables, and they are characterized
by their distribution functions, e.g. the distri-
butions of the particle size, the void fraction,
the number of contact points, the contact
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forces, etc. Entropy is defined for each of
these quantities. In this paper, the particle
‘size distribution is considered first. Then, we
apply the formulation to the void fraction
distribution, which most of the theories of
this type have dealt with. Other quantities can
be treated in a similar manner. (For theoret-
ical treatment of the contact force distribu-
tion, see Kanatani [8]. See also Kanatani [9]
for the mechanics of model granular
materials.) We follow Jaynes [10 - 12] for the
formulation and show the relationship be-
tween the present entropy and those appear-
ing in information theory, statistical mech-
anics and thermodynamics. It then becomes
clear that the entropy actually measures the
distance between distributions, as stated
above.

2. ENTROPY AND CANONICAL DISTRIBUTIONS

Here, we consider the size distribution of
particles. Suppose that the particles are all
spheres and that the radius a ranges in the
interval @,y;p < @ < @max - The number N of the
particles is assumed to be sufficiently large.
Now, divide the interval into n consecutive
sub- mtervals [am, a'l,[a',a"],...,[da",
Omax]. Letay, as, ..., a, be the midpoints of
these sub- mtervals in ascendmg order, and let
the actual values of the radius be quantized to
discrete values by identifying all the values in
one sub-interval with its midpoint value. Let
N, be the number of the particles whose radius
is quantized to g;, and put

b; =N|'/N (1)

which represents the fraction of the particles
classified into the ith subinterval.

Now, let us consider the most probable dis-
tribution of p;. Consider an arbitrary assign-
ment of N particles to the n sub-intervals. If
N; is the number of particles assigned to the ith
sub-interval, then the number of possible '
assignments which lead to this configuration is

=N!/N;!Na!...Np! (2)

Taking the logarithm of this expression, and
assuming that N and each N; are sufficiently
large, we apply the Stirling approximation
formula to obtain

logW =—N (N) (N‘) 3
og stle g\ 3)

If each assignment is equivalent a priori,
the most probable assignment is the one that
maximizes this expression. Hence, it is con-
cluded that the most probable p; is obtained
by maximizing the entropy:

— Y pilogp; (4)
i=1
subject to
n
Y pi=1 (5)
i=1

and other necessary constraints. For example,
if the average radius is specified to be a, then
we must add the constraint

n

2 a;p;=a (6)

Now, let us consider an asymptotic form of
the entropy by taking the limit in such a way
that N » o, n » « and the length of each sub-
interval goes to zero with the boundary values
@min and @, fixed. The crucial point is that
we must not replace expression (4) by

— [p(a) log p(a) da (7

because this form is not invariant to param-
eter transformations. For example, consider a
monotone function b(a) of a. The probability
density p(b) of b is defined by p(a) da =

p(b) db. Hence, p(a) = p(b) db/da. Substitu-
tion of this in (7) yields

—[p(b) log p(b) db — [p(b) log(db/da) db (8)

which does not coincide with [p/b) logp(b) db
because of the second term. There are in
general a number of choices of parameters for
a single object. For example, the parameters
equivalent to the radius of a sphere are the
diameter 2a, the projected area na?, the
volume 41703/3 and so on. We must have the
same form of entropy for each of them, and
one form must be derived from another by

the parameter transformation alone.

Now, we carefully derive a correct asymp-
totic form of (4). The continuous probability
density p(a) is defined in such a way that the
fraction of the number of particles in the dif-
ferential interval [a, a + da] is equal to p(a) dc.



Next, the state density function 2 (a) is de-
fined in such a way that the fraction of the
number of midpoints of the sub-intervals in
the differential interval [a, a + da] is equal to
0 (a) da in the limit. Then, we obtain

—[p(a) 10g(p(a)/22(a)) da — log n (9)

The last term diverges as n - o, but it is inde-
pendent of p(a) and hence it can be dropped
for maximization. Thus, we arrive at a contin-
uous version of entropy of the form

H = —[p(a) log(p(a)/2(a)) da (10)

The integration is carried out over a;, < a <
amax - Henceforth, it is understood that the
integration is carried out over the range where
the state density function takes on positive
values. It is easily checked that this form is in
fact invariant to parameter transformations,
since the state density function Q (b) for b =
b(a) of the previous example is given by

Q(a) da = Q(b) db and hence Q (b) = Q(a) da/
db.

It should be noted that we do not have to
consider the state density function if we
assume that the midpoints a,, a,,...,a, are
always equidistant in the process of the limit
n - oo The tricky point is that the asymptotic
form becomes different if they are not equi-
distant. However, there is no reason to
assume that they are equidistant. In fact, we
may as well take the limit such that (a;)?,
(@2)?,..., (a,)? are kept equidistant, or such
that 1/a,,1/a,-4,..., 1/a, are equidistant.
Therefore, we must necessarily introduce the
state density function as defined above. The
derivative db/da in (8) reflects the fact that if
the values of one parameter are equidistant,
the transformed values in general are not.

The constraints (5) and (6) become

pta)yda=1 (11)

ﬁzp(a) da=a (12)

It can be shown by the method of Lagrange
multipliers that maximization of the entropy
(10) subject to the constraints (11) and (12)
yields

pla) = e*Q(a)/Z(a) (13)

where 6 is the Lagrange multiplier associated
with the constraint (12) and Z(0) is the nor-
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malization factor to satisfy the constraint (11),
iLe.,

Z(0) = [e**Q(a) da ' (14)

We call the distribution (13) the canonical
distribution and Z(8) the partition function
after statistical mechanics. Since

— log Z(6) =-Z—,£e—)=fap(a) da (15)
de Z(8)

the value of ¢ is determined from a by solving
a = (d/d8) log Z(8) (16)

We call the parameter 8(a) so determined from
a the conjugate average radius. We can also
see from :

d? _Z'(o)__(Z'(e))2

FTE log Z(8) = _Z(G) _Z(a) a7
that the variance of the radius is given by
(a—a)? = (d%d6?) log Z(0) (18)

The value of the entropy (10) for the
canonical distribution (13) is

H(a) =—f%a + log Z(0) (19)

which is, by virtue of eqn. (16), the Legendre
transform of log Z(6) with respect to a. Hence,
we obtain the differential equality

dH = —9da, ie. §=—dH/da (20)

The method of Lagrange multipliers only
gives the condition that the entropy be-
comes stationary, but it can be shown from
the convexity of the logarithmic function
that the canonical distribution (13) indeed
maximizes the entropy. Similarly, it can be
shown that the right-hand side of eqn. (16) is
a monotone function of 8 and hence #(a) is
defined as a single-valued function of a (e.g.,
see {6]).

All the above formulations parallel those of
statistical mechanics. To see it, we only have
to replace a by E, the energy of a gas in
thermal equilibrium. The temperature T is
related to 8 by 8 = —(kT)™?, where k is the
Boltzmann constant. The thermodynamic
entropy S is related to H by S = kH. Equation
(13) is the Gibbs canonical distribution, and
eqns. (16) and (18) are well-known identities
of the partition function. Equation (20) in
this case is rewritten as

dE =—TdS, ie. T !=dS/dE (21)
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If the increment dE of the total energy
consists of the increment dV of the internal
energy and the increment pdU of the work
done by the external pressure, eqn. (21) is
expressed as

dU=TdS—pdV (22)

which is the well-known ‘law’ of thermodyn-
amics.

Thus, we have completely solved the
problem of finding the most probable
distribution of particle size in a granular
assembly, but are we to be satisfied? Of
course not, for the state density function is
yet to be given. The problem is that there
exists no theoretical method to find it. As
long as it is indeterminate, the whole theory
remains formal and in a sense trivial. In statis-
tical mechanics, the state density function
Q2(F) is defined so that the number of eigen-
states of the Hamiltonian with energy levels in
the interval [E, E + dE] is equal to Q(F) dE.
This is equivalent to saying that all the
configurations of the eigenstates that realize
the total energy E are mutually equivalent
a priori. This is one of the most crucial
assumptions in statistical mechanics (e.g., see
(61).

Most of the existing theories of entropy
maximization applied to granular materials
failed to introduce the state density function.
Hence, they have given the misleading impres-
sion that physically reasonable distributions
are derived by entropy maximization without
any regard to the physical laws governing the
microscopic interactions. A close examination
reveals that the state density function is
tacitly assumed to be the uniform distribution
with respect to some particular form of the
parameter in all the theories. For example,
Mogami [1], Brown [3] and Shahinpoor [4]
implicitly assumed that the state density for
the void ratio is uniform. This means that the
possible values of the void ratio in a sample
are kept equidistant in the process of the limit
taking. Jowitt and Munro [3] also assumed
tacitly that particular 28 distinct packings are
equivalent, i.e., the state weighting factors
(instead of the state density function in this
discrete case) are all equal. It has now be-
come apparent that the assumption for the
state density should be elucidated at first. The
plausibility of the assumption is checked only
by the predictions the theory makes.

Meanwhile, there is a way to circumvent
such clumsy hypotheses. Note that eqn. (4)
coincides with Shannon’s entropy [13] in
information theory, and it measures

_ambiguity or complexity of the distribution

on the assumption that all the sub-intervals
are equivalent a priori. In the limit of n > o,
we have obtained eqn. (10), which coincides
with Kullback’s information [7] in statistical
information theory. It can be shown that H is
always nonpositive and that if no additional
constraints exist, H takes on its maximum
value 0 only when p(a) = Q(a) (see [7]). This
implies that —H is a quantity that measures a
kind of distance between the two distribu-
tions p(a) and 2 (a). This distance is directed,
i.e. nonsymmetric, and its properties are fully
discussed by Kullback [7]. From this view-
point the canonical distribution (13) is inter-
preted as the nearest distribution to £ (a)
subject to the constraint (12). In view of this
it is now apparent that the maximization of
entropy is utilized only when a certain
standard distribution  (a) is specified. This
distribution is regarded as the distribution of
a priori equivalent states, i.e., the distribu-
tion most probably expected when no addi-
tional constraints (except the normalization)
exist. Now, what we can do is first to define
the most random or the most probable distri-
bution © (a) and then to measure the amount
of difference between the actual distribution
and the reference distribution by the use of
the entropy. Indeed, we cannot define the
amount of randomness unless we know the
reference distribution, since even a uniform
distribution of some parameter is changed to
a non-uniform distribution by a parameter
transformation.

3. ENTROPY OF TWO-DIMENSIONAL MODEL
GRANULAR MATERIALS

In order to illustrate the viewpoint in the
previous section, let us consider the void
distribution of granular materials, which most
of the existing theories of entropy maximiza-
tion have dealt with. Here, we follow the
model of Kanatani [5]. Consider a two-
dimensional model granular material consist-
ing of cylindrical rods of equal size. Let V be
the bulk volume (per unit length of the
cylinders) and N be the number of the



particles (i.e. the cylinders). The packing is
assumed to be macroscopically random.
Microscopically, however, the assembly is
considered to consist of small cells in which
the particles are packed regularly (Fig. 1). (If
the packing is so random that each cell
contains only one particle, the cells are called
the ‘Voronoi cells’ [14].) Consider n sub-
intervals of the void fraction as in Section 2.
LetE,, E,, ...., E, be the values of the mid-
points of the sub-intervals, and identify all the
values in the sub-intervals with their midpoint
values as before. Let V; be the total volume of
those cells whose void fraction is identified
with E;, and let N; be the number of the
particles in these cells. Then

N;=N (23)

Fig. 1. Microstates and their probabilities.

Put
pi=VyV (24)

Then, the sample is regarded as a composite
consisting of microstates 1, 2,..., n with
respective probabilities p,, p,,..., p,. (Or,
equivalently, they can be regarded as the
probabilities of the Voronoi cells with respec-
tive void fractions.) Let E be the average void
fraction of the overall sample. By definition,
E= (V —uN)/V, where v is the volume of one
particle. From eqns. (23) and (24), we obtain

n i —UNf Vl' n
Z v =3 Eip; (25)
i=]l i=1

i.e., the average void fraction E equals the
expectation value of the local void fraction
with respect to the probabilities (24). (Note
that if the void ratio e = E/(1 — E) is used
instead of the void fraction E, the correspond-

" Q(E) =
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ing probabilities are given by N;/N instead of
(24) as noted by Shahinpoor [4].)

Fig. 2. A typical microstate of the two-dimensional
model granular material.

Assuming that the packing is sufficiently
dense, we consider the microstate to be the
regular array of particles as is shown in
Fig. 2. Consider a unit parallelogram made by
the four lines passing the centres of the
particles in contact. The microstate is unique-
ly specified by the two parameters a and g as
indicated in Fig. 2. In the limit of n - e, they
are considered to be continuous variables such
that

1/6<a<u/3, 0<B<a/2 (26)

If « =7n/6 or /3, the microstate is the densest
packing. The associated void fraction is given
by

E(a,p)=1—

- (27)
4 sin 2a

Now, we must define the state density
function Q (a, B), which specifies the limit-
taking process and describes the most random
distribution. First, we assume that Q does not
depend on g, i.e., it is uniform with respect to
B. Since g specifies the angle of rigid rotation,
we can safely assume that the sample contains
microstates of all directions uniformly. Next,
we assume that the angle « distributes
uniformly in the interval [n/6, #/3] in the
most random sample. Thus, we put

2(a,B) =6/n (28)

We again emphasize the fact that we have now
defined a sample that has the most random
packing.

Changing the parameters from (a, 8) to E,
we obtain from eqn. (27) the state density for
the void fraction E as follows:

6
(1—EWI6E? =33+ 16— (29

(Note that Q(E) is given by Q(E) dE =
Q(a,B) da and hence Q(E) =
Q(a, f)/(dE/da).) This distribution is plotted
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in Fig. 3, where E, is the minimum value of £
(attained when « = n/6 or n/3) and E, the
maximum value (attained when a = n/4).
They are respectively

Eo=1—+/376=0.0931...

(30)

E,=1—n/4=0.2146...

20
o
c

1o

0 .

E01 015 _ OZE

E

Fig. 3. The state density function, which defines the
‘most random’ distribution,

Let us consider the entropy maximization
subject to the constraint that the average void
fraction is E. This is achieved by working on
parameter « instead of E, because our
formalism is invariant to parameter transfor-
mations. The canonical distribution for a is
then given by

p(a) = (6/m)e? Y Z(g) (31)
n/3
Z(0) = (6/1) f e?E@) gy (32)
n/6

where the conjugate average void fraction 6 is
. determined from E by solving

E = (d/d8) log Z(8) (33)

Equation (31) is plotted in Fig. 4, and the
parameter transformation yields the canonical
distribution for E, which is shown in Fig. 5.
The conjugate average void fraction 6 is a
function of E and is plotted in Fig. 6. Figures

3

-S5O

-100

Fig. 4. Conjugate average void fraction 0(£).

’ {
\ E=020
4
T
a
3
E-=018
2
N
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1t (@
= =0%
0 =012 ,
e B (7 a mm3

Fig. 5. Canonical distribution for the contact angle a.

0
o0 o5 g 07§

Fig. 6. Canonical distribution for the void fraction E.

4 and 5 show that as the average void fraction
E decreases, the sample contains the larger
proportion of dense microstates. The entropy
for the canonical distribution is shown in
Fig. 7. It is nonpositive, and it attains its
maximum at

E=E,(=0.1760...) (34)

at which p(E) coincides with Q(E) of egn.
(25). When E = E,, the sample consists entire-
ly of the densest packing, and when E = E,, it
consists entirely of the microstates of min-
imum density (« = n/4). Thus, both of these
extremes are far from random, and the
entropy approaches —oo. In other words, —H
measures the distance between p(E) and
QE).

Eo 01 o5 e Eozg,

Fig. 7. Entropy of canonical distributions.



We have considered-only the entropy of the
-anonical distribution as an example. How-
ever, the entropy is defined for any distribu-
zion. If the actual distribution p(E) is given,
we can measure the amount of difference be-
tween that distribution and Q(E). Or we can
take the canonical distribution (31) as the
reference distribution and measure the differ-
ence from it. In this sense, the entropy plays
an important role in measuring randomness of
the sample.

4. CONCLUSION

We have pointed out that in order to define
the entropy for continuous quantity we must
introduce the state density function, which
specifies the limit-taking process and deter-
mines the asymptotic form -of the entropy, to
assure the invariance to parameter transforma-
tions. Then we have reached a conclusion that
the entropy maximization has its significance
only when a certain standard distribution,
which defines the most random distribution,
is given as a reference. Thus the applicability
of the entropy maximization is limited in this
sense.

On the other hand, it has been shown that
the entropy measures the distance between
the distribution under consideration and the
reference distribution. This observation
widens the applicability of entropy, and it is
in this sense that entropy plays an important
role in the description of granular materials.
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