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A B S T R A C T

Given 3-D sensor data of points slightly moving in space, we consider the problem of discerning whether
or not translation, rotation, and scale change take place and to what extent. For this purpose, we propose a
new method for fitting various motion models to 3-D sensor data. Based on the observation that subgroups
of 3-D affinity are defined by imposing various internal constraints on the parameters, our method fits 3-D
affinity with internal constraints using the scheme of EFNS, which, unlike conventional methods, dispenses
with any particular parameterizations for particular motion models. Then, we apply our method to simulated
stereo vision data for motion interpretation, using various model selection criteria. We also apply our method
to the GPS geodetic data of the land deformation in northeast Japan, where a massive earthquake took place
on 11 March 2011. It is expected that our proposed technique will be widely used for 3-D analysis involving
hierarchical motion models in various domains including computer vision, robotic navigation, and geodetic
science.
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1. Introduction

Suppose multiple points are slightly moving in space and we
measure their 3-D positions before and after the motion, using 3-D
sensors such as stereo vision and range finders. We consider the
problem of discerning what type of motion is taking place, e.g.,
translation, rotation, scale change, or all. A different interpreta-
tion is: for measuring the 3-D positions of stationary points by
two different 3-D sensors, are they correctly calibrated? If not,
is there sensor misalignment of translation, rotation, scale, or all?
For this, we postulate different motion models such as translation,
rotation, and scale change, fit each model to the observed data, and
judge which model best explains them. To this end, we need to fit
each candidate model to the observation, but different models have
different sets of parameters. For example, the translation model
requires only the x, y, and z components of the translation, but if
rotations are involved, we need to introduce some parameters such
as Euler angles, quaternions, and Lie algebra parameters [4].

In the past, different parameterizations were combined with dif-
ferent optimization techniques that best suit them. For example,
3-D rotation was parameterized by quaternions [21], which was

optimized by the FNS (Fundamental Numerical Scheme) of Choj-
nacki et al. [2], and 3-D similarity was parameterized by extended
quaternions and a translation vector, which were optimized by the
Gauss-Helmert method [13]. Since the residual, i.e., the cost func-
tion to be minimized, has a different form for different parameter-
ization with different derivative expressions, a different minimiza-
tion technique is required for each model.

This paper proposes a unified approach for fitting different mod-
els by exploiting the hierarchical structure of the motion models.
We note that translation, rotation, scale change, and their combi-
nations define subgroups of the group of affine transformations, or
affinity for short, and that different subgroups are associated with
different internal constraints. By internal constraints, we mean the
condition that the motion must satisfy irrespective of observation
data; if observation is involved, the constraints are external. For
optimization with internal constraints, we adopt the EFNS (Ex-
tended FNS) of Kanatani and Sugaya [15]. This is a method for
computing the so-called “fundamental matrix [3] ” F for 3-D anal-
ysis from two images. The fundamental matrix F must satisfy not
only the external constraint called the “epipolar equation” but also
the internal constraint det F = 0. If the internal constraint is disre-
garded, F is easily computed by the FNS of Chojnacki et al. [2].
The EFNS is an extension to the FNS so that the internal constraint
is automatically satisfied at the end of the iterations. However,
the EFNS can deal with only a single scalar external constraint,
such as the epipolar equation, but affinity and their subgroups are
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described by 3-D vector equations. In this paper, we extend the
EFNS to multiple external constrains.

Section 2 gives a mathematical formulation of 3-D affinity and
its internal constraints. Section 3 describes the principle of max-
imum likelihood (ML) that takes inhomogeneous and anisotropic
uncertainty of 3-D sensor data into consideration. In Section 4,
we present our optimization procedure in the presence of internal
constraints without using any particular parameterization. In Sec-
tion 5, we show simulated stereo vision experiments to show how
to interpret the motion using various model selection criteria. In
Section 6, we apply our method to the GPS geodetic data of the
land deformation in northeast Japan, where a massive earthquake
took place on 11 March 2011. In Section 7, we conclude that our
proposed technique is expected to play an important role in various
domains such as computer vision, robotic navigation, and geodetic
science.

2. 3-D affinity and internal constraints

Let r = (x, y, z)> and r′ = (x′, y′, z′)> be, respectively, the 3-D
positions of a generic point before and after a motion. The motion
is affine if

r′ = Ar + t, (1)

for some nonsingular matrix A and a translation vector t. We place
no restriction on the magnitude of the motion, i.e., the motion can
be arbitrarily large. As described in Introduction, we intend to use
our method to interpret small motions, but this is only for applica-
tion perspective; the subsequent theory and procedure apply to any
motion.

We write the elements of the matrix A and the vector t as

A =
 u1 u2 u3

u4 u5 u6
u7 u8 u9

, t =
 u10L0

u11L0
u12L0

 , (2)

where L0 is a reference length having the same order as r and r′.
Using such a reference length is equivalent to using a unit of length
such that the components of r and r′ have order 1; this stabilizes
numerical computation with finite length. We can write (1) as

u0x′ = u1x + u2y + u3z + u10L0,

u0y′ = u4x + u5y + u6z + u11L0,

u0z′ = u7x + u8y + u9z + u12L0, (3)

where we let u0 = 1. Introducing this dummy u0 and regarding (1)
as homogeneous linear equations in the parameters is the “key” to
our method. If we define 13-D vectors u, ξ(1), ξ(2), and ξ(3) by

u = (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12, u0)>, (4)
ξ(1) = (x/L0, y/L0, z/L0, 0, 0, 0, 0, 0, 0, 1, 0, 0,−x′/L0)>,
ξ(2) = (0, 0, 0, x/L0, y/L0, z/L0, 0, 0, 0, 0, 1, 0,−y′/L0)>,
ξ(3) = (0, 0, 0, 0, 0, 0, x/L0, y/L0, z/L0, 0, 0, 1,−z′/L0)>, (5)

we can write (3) as

(ξ(1),u) = 0, (ξ(2),u) = 0, (ξ(3),u) = 0, (6)

where and hereafter we denote by (a,b) the inner product of vec-
tors a and b.

Subgroups of 3-D affinity can be specified by imposing appro-
priate internal constraints φ1(u) = 0, ..., φr(u) = 0, where φ1(u), ...,
φr(u) are homogeneous polynomials.

Example 1. Note that (3) defines a rigid motion if A is a rota-
tion matrix. A matrix represents a rotation if and only if the three
columns are mutually orthogonal unit vectors. It represents a re-
flection if its determinant is negative, but we do not consider the

sign, since we are fitting a motion model to given sensor data.
Thus, a rigid motion is specified by the following quadratic forms:

φ1(u) = u1u4 + u2u5 + u3u6, φ2(u) = u4u7 + u5u8 + u6u9,

φ3(u) = u7u1 + u8u2 + u9u3,

φ4(u) = u2
1 + u2

2 + u2
3 − u2

4 − u2
5 − u2

6,

φ5(u) = u2
4 + u2

5 + u2
6 − u2

7 − u2
8 − u2

9,

φ6(u) = u2
1 + u2

2 + u2
3 − u2

0. (7)

If φ6(u) = 0 is removed, the matrix A is a scalar multiple of a
rotation matrix and hence (3) represents a similarity.

Example 2. The motion is identity if A = I and t = 0. This is
specified by the following linear forms:

φ7(u) = u2, φ8(u) = u3, φ9(u) = u4, φ10(u) = u6,

φ11(u) = u7, φ12(u) = u8, φ13(u) = u1 − u5,

φ14(u) = u5 − u9, φ15(u) = u1 − u0, φ16(u) = u10,

φ17(u) = u11, φ18(u) = u12. (8)

If φ15(u) = 0 is removed, the matrix A is a scalar multiple of the
identity I, and hence (3) represents a scale change. If φ16(u) = 0,
φ17(u) = 0, and φ18(u) = 0 are removed, (3) represents a translation.

The domain U of u that satisfies internal constraints φ1(u) =
0, ..., φr(u) = 0 is an algebraic variety in R13. We can ignore the
convention u0 = 1, because the solution u of (6) has scale inde-
terminacy. Hereafter, we regard u as a unit vector (‖u‖ = 1); we
renormalize it to u0 = 1 in the final stage of evaluating A and t.
Thus, the domainU of u is written as

U = {u | ‖u‖ = 1, φ1(u) = 0, ..., φr(u) = 0} ⊂ R13. (9)

Since U is the intersection of the unit sphere ‖u‖ = 1 with the r
hypersurfaces defined by φk(u) = 0, k = 1, ..., r, it is a (12 − r)-D
variety. Consider the surface normals toU. The surface normal to
the unit sphere ‖u‖ = 1 is u itself. Each hypersurface φk(u) = 0 has
surface normal ∇uφk. It follows that all the surface normals to U
constitute a linear space

Nu = {u,∇uφ1, ...,∇uφr}L, (10)

where { · · · }L denotes the linear space spanned by · · · . If we define

Mu = {∇uφ1, ...,∇uφr}L, (11)

the space Nu is decomposed into the direct sum

Nu = {u}L ⊕Mu. (12)

The “core” of our EFNS procedure is the following lemma:

Lemma 1. φk(u) = 0⇐⇒ (∇uφk,u) = 0

Proof. If φk(u) is a homogeneous polynomial of degree Dk, we
have φk(tu) = tDkφk(u) for arbitrary t. Differentiation on both sides
with respect to t yields (∇uφk(tu),u) = DktDk−1φk(u). Letting t =
1, we obtain (∇uφk,u) = Dkφk(u). 2

Thus, the domainU in (9) can be alternatively written as

U = {u | ‖u‖ = 1,u ∈ M⊥u }, (13)

where ⊥ denotes orthogonal complement.

3. Maximum likelihood estimation

Let rα and r′α, α = 1, ..., N, be, respectively, the measurements
of N points moving in space before and after their motion. Unlike
2-D data, 3-D sensor data often have large inhomogeneous and
anisotropic uncertainty. We model this uncertainty by independent
Gaussian noise of mean 0 and covariance matrices σ2V0[rα] and
σ2V0[r′α], where σ, which we call the noise level, describes the
magnitude of the noise, while V0[rα] and V0[r′α], which we call the
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normalized covariance matrices, describe the directional depen-
dence of the noise distribution of each measurement. We assume
that the noise level σ is unknown but the normalized covariance
matrices V0[rα] and V0[r′α] are known. This separation is merely
a convenience, reflecting the fact that the absolute magnitude of
noise is difficult to estimate, while maximum likelihood estima-
tion, as shown shortly, can be done only using V0[rα] and V0[r′α].

Let ξ(k)
α be the values of ξ(k) in (5) computed from rα and r′α.

From (5), the perturbations ∆ξ(k)
α of ξ(k)

α are related to the perturba-
tions ∆xα, ∆yα, ∆zα, ∆x′α, ∆y′α, ∆z′α of the original data xα, yα, zα,
x′α, y′α, and z′α in the form

∆ξ(1)
α = T>1


∆xα
∆yα
∆zα
∆x′α
∆y′α
∆z′α

, ∆ξ
(2)
α = T>2


∆xα
∆yα
∆zα
∆x′α
∆y′α
∆z′α

, ∆ξ
(3)
α = T>3


∆xα
∆yα
∆zα
∆x′α
∆y′α
∆z′α

, (14)

where we define

T1 =
1
L0

(
I O O O 0
O O O O −i

)
, T2 =

1
L0

(
O I O O 0
O O O O −j

)
,

T3 =
1
L0

(
O O I O 0
O O O O −k

)
. (15)

Here, O and 0 denote submatrices and columns consisting of 0
of appropriate dimensions (which are easily understood), and we
put i = (1, 0, 0)>, j = (0, 1, 0)>, and k = (0, 0, 1)>. We define the
covariance matrix between ξ(k)

α and ξ(l)
α by

σ2V (kl)
0 [ξα] = E[∆ξ(k)

α ∆ξ
(l)>
α ] = σ2T>k

(
V0[rα] O

O V0[r′α]

)
Tl, (16)

where E[ · ] denotes expectation over data uncertainty.
Let ξ̄(k)

α be the true values of the observations ξ(k)
α . Under our

noise model, maximum likelihood (ML) estimation is equivalent to
minimizing the Mahalanobis distance, hereafter simply called the
residual,

J =
N∑
α=1

(
ξ(1)
α − ξ̄

(1)
α

ξ(2)
α − ξ̄

(2)
α

ξ(3)
α − ξ̄

(3)
α

 ,


V (11)
0 [ξα] V (12)

0 [ξα] V (13)
0 [ξα]

V (21)
0 [ξα] V (22)

0 [ξα] V (23)
0 [ξα]

V (31)
0 [ξα] V (32)

0 [ξα] V (33)
0 [ξα]


−1


ξ(1)
α − ξ̄

(1)
α

ξ(2)
α − ξ̄

(2)
α

ξ(3)
α − ξ̄

(3)
α

), (17)

subject to the constraint that the true values ξ̄(k)
α satisfy (6). In-

troducing Lagrange multipliers λ(k)
α to (6), differentiating J −∑N

α=1
∑3

k=1 λ
(k)
α (ξ̄(k)

α ,u) with respect to ξ̄(1)
α , ξ̄(2)

α , and ξ̄(3)
α , and

a b c

U U U

Figure 1: The solution is constrained to be in U. (a) A posteriori correction. (b)
Internal access. (c) External access.

letting the result be 0, we obtain

−


V (11)

0 [ξα] V (12)
0 [ξα] V (13)

0 [ξα]
V (21)

0 [ξα] V (22)
0 [ξα] V (23)

0 [ξα]
V (31)

0 [ξα] V (32)
0 [ξα] V (33)

0 [ξα]


−1 
ξ(1)
α − ξ̄

(1)
α

ξ(2)
α − ξ̄

(2)
α

ξ(3)
α − ξ̄

(3)
α

−

λ(1)
α u
λ(2)
α u
λ(3)
α u

 = 0,

(18)

from which we obtain

ξ̄
(k)
α = ξ

(k)
α +

3∑
l=1

λ(l)
α V (kl)

0 [ξα]u. (19)

Substituting this into (ξ̄(k)
α ,u) = 0, we obtain

3∑
l=1

λ(l)
α (u,V (kl)

0 [ξα]u) = −(ξ(k)
α ,u), (20)

which defines a set of linear equations in λ(k)
α . Let Vα be the matrix

whose (kl) element is (u,V (kl)
0 [ξα]u):

Vα =
(
(u,V (kl)

0 [ξα]u)
)
. (21)

The solution of (20) is written as

λ(k)
α = −

3∑
l=1

W (kl)
α (ξ(l)

α ,u), (22)

where W (kl)
α is the (kl) element of V−1

α , which we symbolically write
as

W (kl)
α =

(
(u,V (kl)

0 [ξα]u)
)−1
. (23)

If (22) is substituted into (19), which is then substituted into (17),
we can express the residual J in the form

J =
N∑
α=1

3∑
k,l=1

W (kl)
α (ξ(k)

α ,u)(ξ(l)
α ,u), (24)

which is to be minimized over the domainU of u.

4. Optimization with internal constraints

The strategies for minimizing a cost function J with internal
constraints are roughly classified into three categories:

1. A posteriori correction. The function J is first minimized
without considering the internal constraints and the solution u
is modified a posteriori so as to satisfy them (Fig. 1(a)). For
example, if the matrix A is constrained to be a rotation, we
first we compute it as a general 3 × 3 matrix and then correct
it to enforce AA> = I and det A = 1. The well known tech-
nique for this is the use of the singular value decomposition
[5].

2. Internal access. The unknown u is parameterized so that in-
ternal constraints are identically satisfied. For example, if the
matrix A is constrained to be a rotation, we parameterize it in
terms of Euler angles or quaternions [4]. Then, the function J
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is optimized in the resulting (“internal”) parameter space of a
smaller dimension (Fig. 1(b)).

3. External access. We do iterations in the unconstrained (“ex-
ternal”) parameter space in such a way that the solution auto-
matically satisfies the internal constraints at the time of con-
vergence (Fig. 1(c)).

The EFNS of Kanatani and Sugaya [15] is an external access
approach for computing the fundamental matrix F with the inter-
nal constraint det F = 0. However, it can deal with only a single
scalar external constraint. We now extend it to multiple external
constraints. Differentiating (24) with respect to u, we obtain

∇uJ =
N∑
α=1

3∑
k,l=1

∇uW (kl)
α (ξ(k)

α , u)(ξ(l)
α ,u)+2

N∑
α=1

3∑
k,l=1

W (kl)
α (ξ(l)

α ,u)ξ(k)
α .

(25)

Since W = (W (kl)
α ) is defined to be the inverse of the matrix Vα in

(21), we differentiate VαWα = I with respect to ui on both sides to
compute ∇uW (kl)

α . From

∂Vα
∂ui

Wα + Vα
∂Wα

∂ui
= O, (26)

we obtain

∂Wα

∂ui
= −V−1

α

∂Vα
∂ui

Wα = −Wα
∂Vα
∂ui

Wα. (27)

From (21), the (kl) element of the above equation is

∇uW (kl)
α = −

3∑
m,n=1

W (km)
α ∇u(u,V (mn)

0 [ξα]u)W (nl)
α

= −2
3∑

m,n=1

W (km)
α W (nl)

α V (mn)
0 [ξα]u. (28)

After this is substituted, (25) becomes

∇uJ = 2
( N∑
α=1

3∑
k,l=1

W (kl)
α ξ

(k)
α ξ

(l)>
α

)
u−2

( N∑
α=1

3∑
m,n=1

v(m)
α v(n)

α V (mn)
0 [ξα]

)
u,

(29)

where we define v(k)
α by

v(k)
α =

3∑
l=1

W (kl)
α (ξ(l)

α ,u). (30)

Hence, if we define matrices M and L by

M =
N∑
α=1

3∑
k,l=1

W (kl)
α ξ

(k)
α ξ

(l)>
α , L =

N∑
α=1

3∑
k,l=1

v(k)
α v(l)
α V (kl)

0 [ξα], (31)

we can write (29) as

∇uJ = 2(M − L)u. (32)

As is well known in calculus, the residual J takes a stationary
value at u ∈ U if and only if the gradient ∇uJ is orthogonal toU at
u; otherwise, we can move withinU so that J increases/decreases.
In terms of the spaceNu in (10), this stationarity condition is writ-
ten as ∇uJ ∈ Nu. However, we can easily see that (24) is ho-
mogeneous in u with degree 0: the value J is unchanged if u is
multiplied by any nonzero constant. Hence, ∇uJ is everywhere or-
thogonal to u. It follows from (12) that ∇uJ ∈ Nu is equivalent
to

∇uJ ∈ Mu. (33)

Let PM be the projection matrix onto the orthogonal complement
M⊥u ofMu. Then, (33) is equivalent to

PM∇uJ = 0. (34)

From (13), we can see that u belongs to the domainU if and only
if

PMu = u. (35)

Thus, the ML solution with internal constraints is obtained if we
find a unit vector u that satisfies (34) and (35). We see that (32)
and (34) imply

PM(M − L)u = 0. (36)

If (35) is satisfied, this can be written as

PM(M − L)PMu = 0. (37)

Note that PM is a symmetric matrix. Thus, if we define the sym-
metric matrix

X = PM(M − L)PM, (38)

finding the unit vector u that satisfies (34) and (35) is equivalent to
finding the unit vector u that satisfies

Xu = 0, PMu = u. (39)

The solution is obtained by the following iterations:

1. Provide an initial guess u.
2. Compute the matrices M and L in (31).
3. Compute ∇uφ1(u), ..., ∇uφr(u). Let {u1, ..., ur} be the or-

thonormal system obtained from them by Schmidt orthogo-
nalization, and compute the projection matrix

PM = I −
r∑

k=1

uku>k , (40)

where I here is the 13 × 13 identity matrix.
4. Compute the matrix X in (38).
5. Let v0, ..., vr be the unit eigenvectors of X for the smallest

r + 1 eigenvalues.
6. Compute the projection û of the current value u onto N̂u =
{v0, ..., vr}L as follows:

û =
r∑

k=0

(u, vk)vk. (41)

7. Compute

u′ = N[PMû], (42)

where N[ · ] denotes normalization to unit norm (N[a] =
a/‖a‖).

8. If u′ ≈ u, return u′ and stop. Else, let u←N[u + u′], and go
back to Step 2.

Justification. The proof that the above iterations produce the
desired solution is as follows. We first show that at the time of
convergence the space N̂u computed in Step 4 coincides with the
null space of X. The definition of PM in (40) implies PMuk = 0,
k = 1, ..., r. From the definition of X in (38), this means that u1,
..., ur are all null vectors of X, i.e., eigenvectors with eigenvalue
0. Hence, the r of the r + 1 vectors v0, ..., vr computed in Step 5
are null vectors of X. If N̂u is not the null space of X, one of v0,
..., vr, say v∗ has a nonzero eigenvalue λ∗ (, 0) and is orthogonal
to the rest. Since the remaining r vectors span the space Mu =
{u1, ..., ur}L, the vector v∗ is orthogonal toMu.

By construction, the vector û of (41) is an element of N̂u =
{v∗}L ⊕ Mu. Since u′ of (42) is its orthogonal projection onto
M⊥u within N̂u, it equals ±v∗. At the time of the convergence of
the iterations, u = u′ = ±v∗ is satisfied. Since v∗ is the eigenvector
of X with eigenvalue λ∗, we have Xu = λ∗u holds. Computing the
inner product with u on both sides, we obtain

(u,Xu) = λ∗ (, 0). (43)
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However, u (= ±v∗) is orthogonal to all the null vectors of X, so it
is orthogonal to the spaceMu. Hence,

PMu = u, (44)

from which we see that

(u,Xu) = (u,PM(M−L)PMu) = (u, (M−L)u) = (u,Mu)−(u,Lu).
(45)

On the other hand, we can show that (u,Mu) = (u,Lu) identically
holds as follows:

(u,Mu) =
N∑
α=1

3∑
k,l=1

W (kl)
α (ξ(k)

α ,u)(ξ(l)
α ,u),

(u,Lu) =
N∑
α=1

3∑
k,l=1

v(k)
α v(l)
α (u,V (kl)

0 [ξα]u)

=

N∑
α=1

3∑
k,l=1

( 3∑
m=1

W (km)
α (ξ(m)

α ,u)
)( 3∑

n=1

W (ln)
α (ξ(n)

α ,u)
)
V (kl)
α

=

N∑
α=1

3∑
m,n=1

( 3∑
k,l=1

W (mk)
α V (kl)

α W (ln)
α

)
(ξ(m)
α ,u)(ξ(n)

α ,u)

=

N∑
α=1

3∑
m,n=1

W (mn)
α (ξ(m)

α , u)(ξ(n)
α ,u). (46)

Here, we have noted that Wα = V−1
α and hence WαVαWα = Wα.

Thus, we conclude that (u,Xu) = 0, which contradicts (43). This
means that at the time of convergence, all elements of N̂u are null
vectors of X. Since u = u′ = ±v∗ ∈ N̂u, we see that Xu = 0. Con-
sidering (44), we see that u (a unit vector by construction) satisfies
(39). 2

In Step 5 of the procedure, it would seem more natural to com-
pute the smallest r + 1 eigenvalues in absolute value, but we have
confirmed by experiments that convergence is faster for comput-
ing the smallest r + 1 eigenvalue. The same was observed for the
original FNS of Chojnacki et al. [2] and the EFNS of Kanatani and
Sugaya [15], for which convergence is faster for computing the
smallest eigenvalue rather than the smallest eigenvalue in absolute
value [15, 14].

Theoretically, Step 8 of the procedure could be “if u ≈ u, re-
turn u′ and stop. Else, let u ← u′ and go back to Step 2”. In
order to improve convergence, however, the “midpoint” (u′ + u)/2
is normalized to a unit vector N[u′ + u], which greatly improves
convergence. In fact, we have confirmed that this technique also
improves the convergence of the original FNS of Chojnacki et al.
[2], which sometimes oscillates in the presence of large noise.

5. Motion interpretation experiment

Suppose a curved grid surface expands by sx, sy, and sz in the
x, y, and z directions, respectively, rotates around an axis passing
through the origin by angle Ω, and translates by t, as depicted in
Fig. 2 (above). Here, we consider the following nine different mo-
tions:

0. affinity: Ω = 10◦, t = (100, 100, 300)>, sx = 1.01, sy = 1.02,
sz = 0.99.

1. similarity: Ω = 10◦, t = (100, 100, 300)>, sx = sy = sz = 1.01.
2. rigid motion: Ω = 10◦, t = (100, 100, 300)>, sx = sy = sz = 1.
3. rotation and scale change: Ω = 10◦, t = 0, sx = sy = sz = 1.01.
4. translation and scale change: Ω = 0, t = (100, 100, 300)>, sx
= sy = sz = 1.01.

5. rotation: Ω = 10◦, t = 0, sx = sy = sz = 1.
6. translation: Ω = 0, t = (100, 100, 300)>, sx = sy = sz = 1.
7. scale change: Ω = 0, t = 0, sx = sy = sz = 1.01.
8. identity: Ω = 0, t = 0, sx = sy = sz = 1.

We measure the 3-D positions of the grid points by stereo vision
before and after each motion. The center of the grid surface is at

before the motion

after the motion

Figure 2: Above: Stereo vision of a grid surface that undergoes a similarity (rota-
tion, translation, and scale change). An uncertainty ellipsoid is illustrated. Below:
Simulated stereo image pairs before and after the motion (the motion 0).

affinity similarity
rigid motion

rotation+scale
translation+scale

rotation
translation

scale
identity

Figure 3: The inclusion relationships of the subgroups of the 3-D affinity.

the coordinate origin O before the motion, and the two cameras
are positioned so that the disparity angle of the origin O is 10◦.
The simulated stereo images for the motion 0 are shown in Fig. 2
(below). The image size is set to 500 × 800 pixels and the fo-
cal length to 600 pixels. We added independent Gaussian noise of
mean 0 and standard deviation σ pixels to the x and y coordinates
of the grid points in the images and reconstructed their 3-D posi-
tions r̂α and r̂′α by the method of Kanatani et al. [16]. Although
the noise in 2-D is homogeneous and isotropic, the induced noise
in 3-D is inhomogeneous and anisotropic; an uncertainty ellipsoid
is illustrated in Fig. 2 (above). The normalized covariance matri-
ces V0[r̂α] and V0[r̂′α] of the reconstructed points r̂α and r̂′α can be
evaluated by the method of Kanatani and Niitsuma [13]. To the
thus generated r̂α and r̂′α, we fitted the following nine models:

0. affinity: no internal constraints.
1. similarity: φ1(u), ..., φ5(u).
2. rigid motion: φ1(u), ..., φ6(u).
3. rotation and scale change: φ1(u), ..., φ5(u), φ16(u), φ17(u),
φ18(u).

4. translation and scale change: φ7(u), ..., φ14(u).
5. rotation: φ1(u), ..., φ6(u), φ16(u), φ17(u), φ18(u).
6. translation: φ7(u), ..., φ15(u).
7. scale change: φ7(u), ..., φ14(u), φ16(u), φ17(u), φ18(u).
8. identity: φ7(u), ..., φ18(u).

The inclusion relationships among these models is shown in
Fig. 3. We fitted each of the nine models to all the nine motions by
our EFNS procedure. We found that a good initial guess is required
to ensure convergence of the EFNS iterations. This becomes more
crucial as the number of imposed constraints increases. For this,
we used the well known least squares procedure [13], which we
found to be sufficient to ensure convergence. To be specific, the
translation t is estimated from the displacement of the centroid of
the N points before and after the motion, the scale change s (as-
suming that sx = sy = sz) is estimated from the change of the RMS
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distance of the points from their centroid, and the rotation R is es-
timated by using SVD [5]. Then, they are adjusted appropriately:
R is replaced by I if rotation is not included; t is replace by 0 if
translation is not included; s is replaced by 1 if scale change is
not included. We let the reference length to be L0 = 1000. The
EFNS converged after around 10 iterations for a moderate num-
ber of constraints and around 20 iterations for a large number of
constraints.

We also compared our method with the standard procedure:
we introduced model-specific parameters such as quaternions and
minimized the residual by the Levenberg-Marquardt method [23].
We confirmed that the same solution as our EFNS procedure is
obtained. The Levenberg-Marquardt method is unconstrained op-
timization in the parameter space, and its convergence depends on
the particular parameterization used and the initial solution to start,
but it usually converges smoothly over a relatively large domain of
the initial solution. The advantage of our EFNS method is that
we need no particular parameterization for particular modes. On
the other hand, it has the disadvantage that we need a good initial

Table 1:
The percentage of each model being chosen by the geometric AIC and the geomet-
ric BIC/MDL.

Motion 0 1 2 3 4 5 6 7 8

Geometric AIC
model 0 100 3 6 6 3 1 3 3 0
model 1 0 97 17 5 9 2 1 2 2
model 2 0 0 77 0 2 10 6 0 3
model 3 0 0 0 89 0 16 0 11 1
model 4 0 0 0 0 85 0 19 7 0
model 5 0 0 0 0 0 71 0 0 4
model 6 0 0 0 0 1 0 71 0 7
model 7 0 0 0 0 0 0 0 77 5
model 8 0 0 0 0 0 0 0 0 78

Geometric BIC/MDL
model 0 39 0 0 0 0 0 0 0 0
model 1 61 46 0 0 0 0 0 0 0
model 2 0 54 100 0 0 0 0 0 0
model 3 0 0 0 86 0 0 0 0 0
model 4 0 0 0 0 33 0 0 0 0
model 5 0 0 0 14 0 100 0 0 0
model 6 0 0 0 0 67 0 100 0 0
model 7 0 0 0 0 0 0 0 100 0
model 8 0 0 0 0 0 0 0 0 100

Table 2: The values of the G-AIC and the G-BIC (= G-MDL) for a particular noise case (×102). The underlines indicate the chosen models.

motion 0 1 2 3 4 5 6 7 8

G-AIC
model 0 6.9751 8.1379 8.6326 7.6066 9.1490 9.8183 6.9272 8.2901 7.5678
model 1 7.6925 8.1394 8.5269 7.5305 9.0370 9.7532 6.8708 8.2307 7.5128
model 2 8.2663 8.2013 8.5476 7.6065 9.2824 9.7294 6.9200 8.4536 7.4958
model 3 1204.5 1359.6 1380.3 7.4832 1407.2 9.6857 1430.5 8.1803 7.4871
model 4 143.71 141.51 137.43 130.09 9.0017 133.52 6.8647 8.1820 7.4871
model 5 1188.0 1341.4 1363.9 7.5588 1339.4 9.6620 1369.9 8.4298 7.4691
model 6 142.83 140.47 136.83 129.72 9.2480 133.13 6.9112 8.4054 7.4701
model 7 2572.9 2609.8 2632.0 1970.5 2099.5 1978.4 2140.5 8.1383 7.4544
model 8 3014.9 2943.4 2950.6 5207.0 2319.3 5230.9 2371.7 8.5386 7.4362

G-BIC/G-MDL
model 0 35.659 41.173 43.501 38.661 45.921 49.043 35.430 41.890 38.477
model 1 35.873 40.595 42.784 38.040 45.164 48.290 34.874 41.242 37.880
model 2 36.346 40.541 42.682 38.007 45.280 48.128 34.823 41.347 37.754
model 3 1232.4 1391.8 1414.2 37.666 1442.9 47.809 1458.2 40.837 37.529
model 4 171.59 173.62 171.32 160.27 44.742 171.65 34.568 40.839 37.529
model 5 1215.8 1373.3 1397.6 37.633 1375.0 47.648 1397.5 40.969 37.402
model 6 170.61 172.46 170.60 159.79 44.859 171.11 34.514 40.945 37.403
model 7 2600.5 2641.6 2665.5 2000.3 2134.9 2016.1 2167.9 40.442 37.171
model 8 3042.4 2975.0 2984.0 5236.7 2354.6 5268.4 2399.0 40.724 37.044

guess and that convergence may take time depending on the num-
ber of constraints.

Then, we did motion inference experiment, inferring the true
motion from observed noisy motion and the residual of each of
the fitted models, using the geometric AIC [9], the geometric BIC
[12], and the geometric MDL [11], which has the same form as the
geometric BIC (their meanings are given shortly). They are given
by

G-AIC = Ĵ + 2(3N + p)σ2,

G-BIC = G-MDL = Ĵ − (3N + p)σ2 log
σ2

L2
0

. (47)

The model which has the smallest value of these are chosen as most
likely. Here, Ĵ is the residual J of the fit, N is the number of points
(91 grid points in this experiment), and p is the degree of freedom
of the model: for the above models 0, 1, ..., 8, it is p = 12, 7, 6,
4, 4, 3, 3, 1, 0, respectively. Since all the models are subgroups
of the 3-D affinity (Fig. 3), the noise level σ is estimated from the
residual J0 of the most general model 0 in the following form [5]:

σ̂2 =
Ĵ0

3N − 12
. (48)

Table 1 lists for each of the nine motions (columns) the percent-
age of each of the nine models (rows) being chosen by the ge-
ometric AIC and the geometric BIC/MDL after independent 100
trials, each time using different noise of σ = 1. We can see that al-
though the correct model is not always chosen, the correct choice
is made with a large probability. We can also see that the geo-
metric BIC/MDL can make better choice for motions with small
degrees of freedom. However, they tends to choose simpler mod-
els for motions with large degrees of freedom. For example, even
though the true model is 3 (rotation and scale change), the simpler
model 5 (rotation) is more frequently chosen, meaning that the ef-
fect (i.e., the residual change) of scale is not large enough to affect
the judgment. This is because the penalty for the model complexity
is heavier for the geometric BIC/MDL than the geometric AIC. It is
widely known that the use of the geometric BIC/MDL has the ad-
vantage that the judgement is robust to insignificant disturbances,
while the geometric AIC is more faithful to the observation. The
actual values of the G-AIC, the G-BIC (= G-MDL) for a particular
noise case are listed in Table 2; the chosen models are indicated by
underlines. We can see that the differences from the second best
models are very small when the true motion is not chosen.
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The geometric AIC is based on Akaike’s AIC (Akaike Informa-
tion Criterion) [1]. It is derived from the Kullback-Leibler dis-
tance combined with bias correction. Akaike’s AIC is obtained by
asymptotic approximation for N → ∞ with a large number N of
observations, while the geometric AIC is obtained by perturbation
expansion for σ→ 0 with a small noise level σ [9]. The geometric
BIC is based on Schwarz’ BIC (Bayesian Information Criterion)
[25]. It is derived from the a posteriori probability combined with
Laplace expansion. Schwarz’s BIC is obtained by asymptotic ap-
proximation for N → ∞ with a large number N of observations,
while the geometric BIC is obtained by perturbation expansion for
σ → 0 with a small noise level σ [12]. The geometric MDL is
based on Rissanen’s MDL (Minimum Description Length) [24]. It
is derived from the minimum description length of the problem and
the data combined with optimal quantization of real numbers. Ris-
sanen’s MDL is obtained by asymptotic approximation for N→∞
with a large number N of observations, while the geometric MDL
is obtained by perturbation expansion for σ→ 0 with a small noise
level σ [11].

Geometric model selection using the geometric AIC and the ge-
ometric BIC/MDL have been done for many problems of computer
vision, including fitting lines, curves, planes, and surfaces to 2-D
and 3-D points [11], reliability evaluation of 3-D computation us-
ing a moving camera [7], detecting symmetry of 2-D shapes [6],
segmenting a curve into line segments [8], inferring object shapes
by stereo vision [17], moving object detection from optical flow
[22], camera motion estimation for virtual studio systems [20],
correspondence detection between images [19], automatic regular-
ity enforcement on 2-D figures [27], automatic image mosaicing
[18], and multibody motion segmentation [10, 26]. From these
experiences, it has been recognized that the geometric AIC has a
tendency to favor a model that has a smaller residual if the degree
of freedom of the model is not so different, while the geometric
BIC/MDL has a tendency to favor a model with a smaller degree
of freedom if the residual is not so different. We can also observe
these tendencies from our experiment.

6. Real GPS geodesic data analysis

Geodetic scientists all over the world monitor the land defor-
mation using GPS data. Table 3 shows the x, y, and z coordi-
nates (in meters) with respect to the global earth coordinate system,
called WGS84 (World Geodetic System 1984), of eight positions
in northeast Japan (Fig. 4) in January 2010, April 2011, and April
2012 provided by the Geospatial Information Authority of Japan1.
The location IDs 0036, 0172, 0175, 0549, 0550, 0914, 0916, and
0918 in Table 3 correspond to Onagawa, Kesennuma, Shizugawa,
Yamoto, Oshika, Towa, Minamikata, and Kahoku, respectively, as
indicated in Fig. 4. The covariance matrices σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33


of each measurement are listed in Table 4. We regarded
(−3899900, 3116600, 3956400) as a tentative coordinate origin
and used the reference length L0 = 1000. The optimally fitted affin-
ity of the land between April 2010 and January 2011 is x′

y′

z′

 =
 0.999971299834119 0.000022846760455

0.000032692122035 0.999974183470998
−0.000010763169341 0.000008714718681

1 http://www.gsi.go.jp/

Table 3:
The 3-D data (in meters) of eight locations in northeast Japan in April 2010, January
2011, and January 2012.

ID x y z

April 2010
0036 −3911124.6109 3117611.8596 3944663.0892
0172 −3893613.1472 3089073.9138 3983982.4425
0175 −3898936.7310 3106983.5744 3964933.7807
0549 −3899954.0638 3134197.0846 3942545.9721
0550 −3922366.9569 3119914.9630 3931806.3441
0914 −3888499.5166 3113285.6200 3970160.1127
0916 −3884406.9622 3127530.4255 3963000.4271
0918 −3900409.6500 3124326.0455 3949941.0937

January 2011
0036 −3911124.6161 3117611.8674 3944663.0891
0172 −3893613.1407 3089073.9247 3983982.4331
0175 −3898936.7224 3106983.5798 3964933.7745
0549 −3899954.0672 3134197.0985 3942545.9686
0550 −3922366.9488 3119914.9518 3931806.3269
0914 −3888499.5075 3113285.6240 3970160.1054
0916 −3884406.9628 3127530.4296 3963000.4215
0918 −3900409.6423 3124326.0532 3949941.0840

January 2012
0036 −3911128.3589 3117608.0272 3944661.2547
0172 −3893616.5621 3089070.9017 3983980.4920
0175 −3898940.3307 3106980.2371 3964931.9731
0549 −3899957.3856 3134193.9276 3942544.6596
0550 −3922370.7681 3119910.6783 3931804.3063
0914 −3888502.8233 3113282.7641 3970158.5816
0916 −3884410.1104 3127527.7274 3962999.1209
0918 −3900413.1310 3124322.7276 3949939.5679

141˚12' 141˚36' 142˚00' 142˚24' 142˚48'
38˚00'

38˚12'

38˚24'

38˚36'

38˚48'

39˚00'
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km

Onagawa 0036

Kesennuma 0172

Shizugawa 0175

Yamoto 0549

Oshika 0550

Towa 0914

Minamikata 0916

Kahoku 0918

2011/3/11 M9.0

Figure 4: Eight locations (black circles) in northeast Japan and the epicenter (the
star mark) of the earthquake on 11 March 2011.

0.000029511830098
−0.000033202523519

1.000011020834165


 x

y
z


+

 −299.8902360559441
339.3263535494916
−112.7441873988137

 (49)

with respect to the original coordinate system. Although in theory
any nonlinear deformation can be possible, yearly land deforma-
tion is usually so small that affinity is regarded as the most general
motion for geodetic analysis.

Figure 5(a) shows the land movement (1000 times magni-
fied) after converting the global earth coordinates to the local
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Table 4: Covariance matrices (×10−8) of the GPS measurements in Table 3.

ID 0036 0172 0175 0549 0550 0914 0916 0918

April 2010
σ11 543.81468 2600.5301 588.95526 299.42994 2298.3728 2580.3350 510.26601 2230.8269
σ22 425.88304 2395.0165 557.68621 206.77237 2204.4857 2378.9566 473.90957 2148.0015
σ33 320.91074 1180.6302 306.88459 187.97368 970.31985 1113.2217 255.43911 958.60970
σ23 204.01142 655.80839 222.80817 129.75187 555.38549 609.86213 181.32306 530.02453
σ31 −262.01505 −765.87092 −252.43021 −173.89883 −658.16237 −830.68293 −225.06877 −625.30146
σ12 −143.09649 −145.37253 −155.31865 −117.32354 −141.02400 −180.97003 −143.14545 −98.325922

January 2011
σ11 287.87533 249.12117 452.82105 247.77608 2300.5173 2509.0785 1664.8206 803.41570
σ22 208.37832 192.85786 371.08918 189.61635 1811.4054 1958.3768 1707.0988 592.74803
σ33 186.80209 161.45344 230.58634 154.45629 869.80636 978.14059 822.11796 316.10716
σ23 125.56468 110.72924 143.89346 106.81192 412.96236 417.99055 400.88891 182.73249
σ31 −170.69383 −143.73564 −198.90161 −139.79921 −627.57330 −766.42047 −523.79020 −261.03986
σ12 −112.37926 −93.520583 −101.24319 −90.106188 −71.178480 −71.479138 −43.792427 −84.101060

January 2012
σ11 305.96250 250.29374 384.59613 250.86478 273.56924 2514.4584 586.20375 274.97742
σ22 215.96414 191.07272 222.83353 182.75383 195.10014 1960.5877 568.93574 178.45872
σ33 212.30943 161.34809 219.11424 157.11409 162.31885 1000.0640 300.81322 156.79702
σ23 135.52470 108.43137 141.58703 103.04156 111.27658 42.292048 179.18146 101.31024
σ31 −190.15388 −145.39350 −211.37678 −141.09274 −154.20913 −771.60432 −299.18962 −140.78606
σ12 −122.02639 −97.485117 −130.11266 −91.186199 −103.82372 −58.595343 −101.51431 −89.699310

a b
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Figure 5: Land movement magnified 1000 times. (a) Between April 2010 and January 2011. (b) Between January 2011 and January 2012. The land appears to move
uniformly south east toward the epicenter (the star mark in Fig. 4).

coordinates. For this display, we used the GMT (Generic Map-
ping Tools) 2provided by the University of Hawaii at Manoa. This
affine transformation makes the residual the smallest: if we fit a
subgroup, e.g., a rigid motion, the residual necessarily increases,
since subgroups have smaller degrees of freedom. The use of the
geometric AIC and the geometric BIC/MDL balances this residual
increase and the model degree of model freedom. The computed
residual J, G-AIC, and G-BIC (= G-MDL) are listed in Table 5;
the chosen models are indicated by underlines. As we see, the ge-
ometric AIC judges that only a translation took place, although the
residual is very large. However, the geometric BIC/MDL, prefer-
ring simpler models, judges that the land did not move at all, even
though the residual of identity is far larger than any other motion
models. So, we conclude that the land was very stable in this pe-
riod and that a minute translation may have took place if anything.

2 http://gmt.soest.hawaii.edu/

The affine transformation that best fits the data in January 2011
and January 2012 is x′

y′

z′

 =
 1.001228379683353 −0.000959897405742

0.000950467968687 0.999279166869626
0.000338476069078 −0.000240252011947

−0.001235998473807
−0.000926414154749

0.999671735382466


 x

y
z

+
 12668.80530537805

9615.24810701143
3365.90110431844

.
(50)

Figure 5(b) shows the corresponding movement (1000 times mag-
nified). The computed residual J, G-AIC, and G-BIC (= G-MDL)
are listed in Table 6; the chosen models are indicated by under-
lines. The deformation shown in Fig. 5(b) appears to be a uni-
form translation toward the epicenter (the star mark in Fig. 4), but
the geometric AIC and the geometric BIC/BIC both choose the
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Table 5:
The residual J, G-AIC, and G-BIC (= G-MDL) of each model for the deformation
between April 2010 and January 2011. The models chosen by these criteria are
indicated by underlines.

Model J G-AIC G-BIC/MDL

0 2.7003 × 10−7 1.8902 × 10−6 2.5727 × 10−5

1 3.4728 × 10−7 1.7424 × 10−6 2.2269 × 10−5

2 3.7689 × 10−7 1.7270 × 10−6 2.1591 × 10−5

3 1.8191 × 10−6 3.0792 × 10−6 2.1619 × 10−5

4 4.6868 × 10−7 1.7288 × 10−6 2.0269 × 10−5

5 2.3356 × 10−6 3.5507 × 10−6 2.1429 × 10−5

6 5.0286 × 10−7 1.7180 × 10−6 1.9596 × 10−5

7 1.9123 × 10−6 3.0374 × 10−6 1.9591 × 10−5

8 2.4397 × 10−6 3.5198 × 10−6 1.9411 × 10−5

Table 6:
The residual J, G-AIC, and G-BIC (= G-MDL) of each model for the deformation
between January 2011 and January 2012. The models chosen by these criteria are
indicated by underlines.

Model J G-AIC G-BIC/MDL

0 4.3727 × 10−5 3.0609 × 10−4 3.4988 × 10−3

1 3.6948 × 10−3 3.9207 × 10−3 6.6700 × 10−3

2 4.5971 × 10−3 4.8157 × 10−3 7.4762 × 10−3

3 5.3537 × 10−1 5.3557 × 10−1 5.3805 × 10−1

4 4.4057 × 10−3 4.6098 × 10−3 7.0930 × 10−3

5 5.3544 × 10−1 5.3564 × 10−1 5.3816 × 10−1

6 5.4640 × 10−3 5.6608 × 10−3 8.0553 × 10−3

7 5.4541 × 10−1 5.4559 × 10−1 5.4781 × 10−1

8 5.4563 × 10−1 5.4581 × 10−1 5.4794 × 10−1

affinity: They judge that the deformation cannot be explained by
any of its subgroups. This reflects the very fact that a massive
earthquake of magnitude 9.0 took place on 11 March 2011 in this
region.

7. Concluding remarks

We proposed a new computational technique for fitting different
motion models to noisy 3-D sensor data in a unified framework; no
particular parameterization is required to particular motion models.
Our method is obtained by generalizing the EFNS of Kanatani and
Sugaya [15] to 3-D motion models with the observation that sub-
groups of 3-D affinity are defined by various internal constraints
on the parameters. We applied our method to simulated stereo vi-
sion data for motion interpretation, using the geometric AIC and
the geometric BIC/MDL. We also applied our method to the GPS
geodetic data of the land deformation in northeast Japan, where
a massive earthquake took of magnitude 9.0 place on 11 March
2011. It is expected that our EFNS technique will be widely used
for 3-D analysis involving hierarchical motion models in various
domains including computer vision, robotic navigation, and geode-
tic science.
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