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Abstract. We propose a new method that always fits an ellipse to a
point sequence extracted from images. The currently known best ellipse
fitting method is hyper-renormalization of Kanatani et al., but it may
return a hyperbola when the noise in the data is very large. Our proposed
method returns an ellipse close to the point sequence by random sampling
of data points. Doing simulation, we show that our method has higher
accuracy than the method of Fitzgibbon et al. and the method of Szpak
et al., the two methods so far proposed to always return an ellipse.
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1 Introduction

Detecting circles and ellipses in images is the first step of many computer vision
applications including industrial robotic operations and autonomous navigation
[4, 6, 8]. To this end, point sequences constituting elliptic arcs are detected by
image processing operations [5, 11, 20–22], and then an ellipse equation is fitted
to them. The simplest technique for the latter is to minimize the algebraic dis-
tance, i.e., the sum of squares of the ellipse equation. The solution is obtained
analytically. Since the algebraic distance is 0 if all coefficients are 0, we need
to impose some constraint on them, and the solution depends on it. Methods
of this type are called algebraic. The oldest and best known algebraic method
is least squares (LS ), which constrains the sum of squares of the coefficients to
1. A more accurate algebraic method was proposed by Taubin [24]. The most
accurate algebraic method known is HyperLS [13, 14].

Although algebraic methods do not require iterations, we can achieve higher
accuracy by incorporating iterations. The standard procedure is maximum likeli-
hood (ML), which minimizes the reprojection error , i.e., the sum of the distances
from data points to the fitted ellipse [4]. The reprojection error is well approx-
imated by what is known as the Sampson error [4], which can be minimized
by various means including the FNS (Fundamental Numerical Scheme) of Cho-
jnatcki et al. [2], the HEIV (Heteroscedastic Errors-in-Variable) of Leedan and
Meer [18] and Matei and Leedan [19], and the projective Gauss-Newton itera-
tions of Kanatani and Sugaya [15]. The exact ML solution can be obtained by
iterating Sampson error minimization [16].

Rather than minimizing some cost function, we may directly derive equations
to solve so that the resulting solution has high accuracy. The oldest method



Fig. 1. Fit an ellipse to given points.

of this type is iterative reweight , which was improved by Kanatani [7, 8] to a
high accuracy scheme called renormalization. It was further improved by Al-
Sharadqah and Chernov [1] and Kanatani et al. [12] to hyper-renormalization.
On the other hand, one can apply what is called hyperaccurate correction to the
ML solution so as to further improve the accuracy [9, 17]. Hyper-renormalization
and hyperaccurate correction both achieve the theoretical accuracy limit called
the KCR lower bound [8, 10] up to a high degree and are regarded as the most
accurate of all currently known methods.

However, all these are methods to fit a quadratic equation in x and y, or a
conic, to a point sequence. Usually, an ellipse results if the sequence is extracted
from an elliptic arc, but a hyperbola or a parabola could result when the se-
quence is very short and the noise is very large. It is Fitzgibbon et al. [3] who
first proposed a method that only fits an ellipse. It is an algebraic method, and
the computation is very easy, but the accuracy is low. Recently, Szpak et al. [23]
introduced a high accuracy ellipse-specific method based on Sampson error min-
imization. In this paper, we incorporate to hyper-renormalization a procedure
for avoiding non-ellipses and demonstrate by experiments that our technique
outperforms the method of Szpak et al. [23].

2 Ellipse fitting

Curves represented by a quadratic equations in x and y in the form

Ax2 + 2Bxy + Cy2 + 2f0(Dx+ Ey) + f2
0F = 0, (1)

are called conics, which include ellipses, parabolas, hyperbolas, and their de-
generacies such as two lines [6]. The condition that Eq. (1) represents an ellipse
is

AC −B2 > 0. (2)

Our task is to compute the coefficients A, ..., F so that the ellipse of Eq. (1)
passes through given points (xα, yα), α = 1, ..., N , as closely possible (Fig. 1). In
Eq. (1), f0 is a constant that has the order of the image size for stabilizing finite
length numerical computation (we set f0 = 600 in our experiments). For a point
sequence (xα, yα), α = 1, ..., N , we define 6-D vectors

ξα=(x2
α, 2xαyα, y

2
α, 2f0xα, 2f0yα, f

2
0 )>,

θ=(A, B, C, D, E, F )>. (3)
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The condition that (xα, yα) satisfies Eq. (1) is written as

(ξα,θ) = 0, (4)

where (a, b) denotes the inner product of vectors a and b. Since vector θ has
scale indeterminacy, we normalize it to unit norm: ‖θ‖ = 1.

Since Eq. (4) is not exactly satisfied in the presence of noise, we compute a
θ such that (ξα,θ) ≈ 0, α = 1, ..., N . For computing a θ that is close to its true
value, we need to consider the statistical properties of noise. The standard model
is to regard the noise in (xα, yα) as independent Gaussian random variable of
mean 0 and standard deviation σ. Then, the covariance matrix of the vector ξα
has the form σ2V0[ξα], where

V0[ξα] = 4


x2α xαyα 0 f0xα 0 0
xαyα x

2
α + y2α xαyα f0yα f0xα 0

0 xαyα y2α 0 f0yα 0
f0xα f0yα 0 f2

0 0 0
0 f0xα f0yα 0 f2

0 0
0 0 0 0 0 0

 , (5)

which we call the normalized covariance matrix [8, 10, 15].

3 Hyper-renormalization

The hyper-renormalization of Kanatani et al. [12] can be described as follows:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M=
1

N

N∑
α=1

Wαξαξ
>
α ,

N=
1

N

N∑
α=1

Wα

(
V0[ξα] + 2S[ξαe

>]
)

− 1

N2

N∑
α=1

W 2
α

(
(ξα,M

−
5 ξα)V0[ξα] + 2S[V0[ξα]M−

5 ξαξ
>
α ]
)
, (6)

where S[ · ] denotes symmetrization (S[A] = (A+A>)/2) and the vector e
is defined to be

e = (1, 0, 1, 0, 0, 0)>. (7)

The symbolM−
5 denotes the pseudoinverse ofM with truncated rank 5, i.e.,

with the smallest eigenvalue replaced by 0 in the spectral decomposition.
3. Solve the generalized eigenvalue problem

Nθ = µMθ, (8)

and compute the unit eigenvector θ for the largest eigenvalue µ.
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4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ, (9)

and go back to Step 2.

Hyper-renormalization is regarded as achieving practically the highest accuracy
among existing methods, but it returns a non-ellipse, typically a hyperbola [12],
when the sequence is very short and the noise is very large, as our experiments
later show.

4 Ellipse specific methods

For fitting only an ellipse, Fitzgibbon et al. [3] proposed to minimize the algebraic
distance

JLS =

N∑
α=1

(ξα,θ)2, (10)

subject to AC −B2 = 1. This constraint is written as

(θ,NFθ) = 1, NF ≡


0 0 1 0 0 0
0 −2 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

. (11)

The solution that minimizes Eq. (10) subject to this constraint is obtained by
solving a generalized eigenvalue problem

NFθ = µMLSθ, (12)

and computing the unit eigenvector θ for the largest eigenvalue µ, where the
matrix MLS is defined by

MLS =
1

N

N∑
α=1

ξαξ
>
α . (13)

It has been widely observed, however, that the resulting ellipse is heavily biased.
This is because the algebraic distance does not take into account the statistical
properties of ξα expressed by its covariance matrix.

Recently, Szpak et al. [23] proposed a new ellipse specific method. They
minimized

J =
1

N

N∑
α=1

(ξα,θ)2

(θ, V0[ξα]θ)
+

λ‖θ‖4

(θ,Nθ)2
, (14)
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where λ is a small constant. The first term on the right is called the Sampson
error , which approximates the reprojection error up to high order noise terms.
The second term on the right diverges if (θ,NFθ) = 0, i.e., if θ represents a
parabola. Since the domain of θ is separated into the region (θ,NFθ) > 0 of
ellipses and the region (θ,NFθ) < 0 of hyperbolas, minimization search starting
from the ellipse domain does not cross the boundary (θ,NFθ) = 0, on which
J is ∞. Szpak et al. [23] used the Levenberg-Marquardt method for minimizing
Eq. (14), choosing λ as small as possible as long as an ellipse results.

5 Proposed method

It has been observed that the accuracy of hyper-renormalization is higher than
Sampson error minimization [12, 17]. Hence, it is reasonable to retain the solution
of hyper-renormalization as long as it is an ellipse. If the hyper-renormalization
iterations do not converge within a fixed limit, or if the resulting solution is not
an ellipse, we switch to random sampling: we randomly choose from the point
sequence five different points and compute the conic that passes through them.
If a non-ellipse results, we discard the five points and choose new five points. If
an ellipse results, we compute its Sampson error (the first term on the right of
Eq. (14)) and choose the solution for which the Sampson error is the smallest.
The procedure is summarized as follows:

1. Fit an ellipse to a point sequence (xα, yα), α = 1, ..., N , by hyper-
renormalization, and compute its parameter vector θ. If

(θ,NFθ) > 0, (15)

return θ and stop.
2. If the hyper-renormalization iterations do not converge within a fixed limit

(we set it to 100 times in our experiment), or if the resulting solution is not
satisfy Eq. (15), we randomly choose five different points and compute the
conic that passes through them.

3. If θ does not satisfy Eq. (15), we discard the five points and choose new five
points.

4. If the computed θ satisfies Eq. (15), compute its Sampson error.
5. Repeat the above step many times (1000 times in our experiment) and choose

the solution for which the Sampson error is the smallest.

6 Experiment

We generated four point sequences shown in Fig. 2. The points have equal arc
length separations on each ellipse. Random Gaussian noise of mean 0 and stan-
dard deviation σ is added independently to the x and y coordinates of each
point, and an ellipse is fitted. Since the computed value θ and its true value θ̄
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(a) (b) (c) (d)

Fig. 2. Point sequences for our experiment. The number of points is 30, 30, 15, and 30
and the average distance between neighboring points is 2.96, 3.31, 2.72, and 5.72 for
(a), (b), (c), and (d), respectively.

Fig. 3. The true value θ̄, the computed value θ, and its orthogonal component ∆⊥θ
to θ̄.

are both unit vectors, we measure the error ∆θ by the orthogonal component
[15]

∆⊥θ = P θ̄θ, (16)

where P θ̄(≡ I − θ̄θ̄>) is the orthogonal projection matrix along θ̄ (Fig. 3). We
evaluate the RMS error

D =

√√√√ 1

10000

10000∑
a=1

‖∆⊥θ(a)‖2, (17)

over 10000 trials using different noise each time (the superscript (a) indicates
the value for the ath trial).

Figure 4 shows the ratio of non-ellipse occurrences by hyper-renormalization
and the RMS error for the data in Fig. 2(a)∼(d). The horizontal axis indicates
the noise level σ divided by the average distance between neighboring points,
which we call the relative noise level . Interrupted plots indicate that beyond
that noise level convergence was not always reached after a specified number of
iterations. The dotted lines indicate the KCR lower bound [8, 10] given by

DKCR =
σ√
N

√
trM̄

−
5 . (18)
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(a)

(b)

(c)

(d)

Fig. 4. Left column: The ratio of non-ellipse occurrences by hyper-renormalization for
the data in Fig. 2(a) – (d). The horizontal axis is for the relative noise level ε. Right
column: The corresponding RMS fitting error: 1. The method of Fitzgibbon et al. [3].
2. hyper-renormalization. 3. The method of Szpak et al. [23]. 4. Proposed method. The
dotted lines indicate the KCR lower bound. Interrupted plots indicate that convergence
is not reached after a specified number of iterations above that noise level.
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(a) (b)

(c) (d)

Fig. 5. Fitting examples for a particular noise when hyper-renormalization returns a
hyperbola. 1. The method of Fitzgibbon et al. [3]. 2. hyper-renormalization. 3. The
method of Szpak et al. [23]. 4. Proposed method. The dotted lines indicate the true
shapes. The relative noise level ε is 0.169, 0.151, 0.092, and 0.087 for (a), (b), (c), and
(d), respectively.

As we can see, the accuracy of the method Fitzgibbon et al. [3] is generally
very low, while hyper-renormalization1 and the method of Szpak et al.2 [23]
are very accurate; they almost achieve the KCR lower bound when the noise
is very small. However, the method Fitzgibbon et al. [3] can outperform hyper-
renormalization and the method of Szpak et al. [23] when the points are chosen
from a low-curvature part as in Fig. 2(d) and the noise is very large. Since the
method of Szpak et al. [23] and the proposed method both restrict the solution
to be an ellipse, their RMS error is smaller than hyper-renormalization in all
cases, and in most cases our method is superior to that of Szpak et al. [23].

The reason that a hyperbola is fitted to an elliptic arc is, according to our
interpretation, that a few heavily deviated points “pull” the curve to be a hyper-
bola. Such “bad points” are automatically ignored in the course of our random
sampling, but all the points play the same role for the method of Szpak et al. [23].
This may be the cause of higher performance of our method. However, we ob-

1 We used the code at: http://www.iim.cs.tut.ac.jp/˜sugaya/
2 We used the code at: https://sites.google.com/site/szpakz/
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Fig. 6. Left: Edges extracted from real images. Red edge pixels (200 points above and
140 points below) are used for ellipse fitting. Right: Fitted ellipses superimposed on
the original image. 1. The method of Fitzgibbon et al. [3]. 2. hyper-renormalization. 3.
The method of Szpak et al. [23]. 4. Proposed method.

serve that the difference between the method of Szpak et al. [23] and ours is very
small for high-curvature arc as in Fig. 2(c).

Figure 5 shows fitting examples for a particular noise when hyper-
renormalization returns a hyperbola. The dotted lines indicate the true shapes.
We can observe a clear contrast: the method of Fitzgibbon et al. [3] fits a small
and flat ellipse, while the method of Szpak et al. [23] fits a large ellipse close to
the fitted hyperbola. Our method is in between, fitting an ellipse closer to the
true shape.

The left of Fig. 6 shows edge images of real scenes. We fitted an ellipse to the
edge points indicated in red (200 points above and 140 points below) by different
methods. In the right, fitted ellipses superimposed on the original images are
shown. The method of Fitzgibbon et al. [3] fits a small and flat ellipse in both
cases. In the above example, hyper-renormalization returns an ellipse (hence our
method) which is fairly accurate; the method of Szpak et al. [23] also fits an
ellipse close to it. However, hyper-renormalization returns a hyperbola in the
example below, and the method of Szpak et al. [23] fits a very large ellipse close
to that hyperbola. We can see that our ellipse is somewhat between the small
and flat ellipse of Fitzgibbon et al. [3] and the large ellipse of Szpak et al. [23].

7 Concluding remarks

We have proposed a new method that always fits an ellipse to a point sequence ex-
tracted from images. The currently known best method is hyper-renormalization
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of Kanatani et al. [12], but it may return a hyperbola when the noise in the data
is very large. Our proposed method incorporates random sampling so that an
ellipse always results. Doing simulation, we showed that our method has higher
accuracy than the method of Fitzgibbon et al. [3] and the method of Szpak et
al. [23], the two currently known ellipse-specific methods. We also observed that
when hyper-renormalization returns a hyperbola, the method of Szpak et al. [23]
tends to fit a large ellipse close to that hyperbola while the method of Fitzgibbon
et al. [3] tends to fit a small and flat ellipse. Our method fits an ellipse somewhat
in between.

According to our experiences, we have never observed hyperbolas fitted to
edge points of elliptic arcs in real applications unless artificial noise is added or
edges are artificially limited to very short segments. If a hyperbola results from
an elliptic arc, we should regard this as an indication of insufficient information
in the data so that ellipse fitting no longer has meaning. Yet, even in such an
extreme circumstance, our method can fit a tolerable ellipse.
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