
Compact Fundamental Matrix Computation

Kenichi Kanatani1 and Yasuyuki Sugaya2

1 Department of Computer Science, Okayama University, Okayama 700-8530 Japan
2 Department of Information and Computer Sciences,

Toyohashi University of Technology, Toyohashi, Aichi 441-8580 Japan
kanatani@suri.cs.okayama-u.ac.jp, sugaya@iim.ics.tut.ac.jp

Proc. 3rd Pacific Rim Symp. Image and Video Technology, January 2009,
Tokyo, Japan, pp. 179–190 (Best Paper Award).

Abstract. A very compact algorithm is presented for fundamental ma-
trix computation from point correspondences over two images. The com-
putation is based on the strict maximum likelihood (ML) principle, mini-
mizing the reprojection error. The rank constraint is incorporated by the
EFNS procedure. Although our algorithm produces the same solution as
all existing ML-based methods, it is probably the most practical of all,
being small and simple. By numerical experiments, we confirm that our
algorithm behaves as expected.

1 Introduction

Computing the fundamental matrix from point correspondences is the first step
of many vision applications including camera calibration, image rectification,
structure from motion, and new view generation [6, 21]. Although its robustness
is critical in practice, procedures for removing outlying matches heavily depend
on computation for assumed inliers, e.g., RANSAC-type hypothesis-based com-
putation followed by choosing the solution that has maximum support [6, 21]. In
this paper, we focus on computation assuming inliers.

Since extracted feature points have uncertainty to some degree, we need
statistical optimization, modeling the uncertainty as “noise” obeying a certain
probability distribution. The standard model is independent Gaussian noise cou-
pled with maximum likelihood (ML) estimation. This results in the minimization
of the “reprojection error”, also known as the “Gold Standard” [6].

Although all existing ML-based methods minimize the same function, vast
differences exist in their computational processes. This is mainly due to the fact
that the fundamental matrix is constrained to have rank 2. The strategies for
incorporating this constraint are roughly classified into three categories:

T. Wada, F. Huang, and S. Lin (Eds.): PSIVT 2009, LNCS 5414, pp. 179–190, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A posteriori correction. The fundamental matrix is first computed without
considering the rank constraint and is modified a posteriori so as to satisfy
it (Fig. 1(a)). If the rank constraint is not considered, the computation is
vastly simplified [6, 21]. The crudest method, yet widely used, is to mini-
mize the square sum of the epipolar equation, called least squares, algebraic
distance minimization, or 8-point algorithm [5]. The Taubin method [20] in-
corporates the data covariance matrices in the simplest way. These two yield
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Fig. 1. (a) A posteriori correction. (b) Internal access. (c) External access.

the solution with simple algebraic manipulations [12, 9]. For incorporating
the ML viewpoint, one needs iterations, for which many schemes exist in-
cluding FNS [3], HEIV [15, 16], and the projective Gauss-Newton iterations
[10]. For imposing the rank constraint, the most naive method, yet widely
used, is to compute the SVD of the computed fundamental matrix and re-
place the smallest singular value by 0 [5]. A more sophisticated method is
the optimal correction [8, 16]: the computed fundamental matrix is moved in
the statistically mostly likely direction until it satisfies the rank constraint
(Fig. 1(a)).

Internal access. The fundamental matrix is parameterized so that the rank
constraint is identically satisfied and is optimized in the (“internal”) pa-
rameter space (Fig. 1(b)). Many types of such parameterization have been
proposed including algebraic elimination of the rank constraint and the ex-
pression in terms of epipoles [21, 17, 22]. Bartoli and Sturm [1] regarded the
SVD of the fundamental matrix as its parameterization and do search in an
augmented space. Sugaya and Kanatani [18] directly searched a 7-D space
by the Levenberg-Marquardt (LM) method.

External access. We do iterations in the (“external”) 9-D space of the fun-
damental matrix in such a way that an optimal solution that satisfies the
rank constraint automatically results (Fig. 1(c)). This concept was first in-
troduced by Chojnacki et al. [4], who presented a scheme called CFNS .

In this paper, we present a new method based on the external access princi-
ple. Its description is far more compact than any of existing ML-based methods.
Although there is no accuracy gain, since all ML-based methods minimize the
same function, the compactness of the algorithm is of great advantage. In fact,
the reason why the non-optimal 8-point algorithm [5] is still in wide use is prob-
ably for fear of coding a complicated program and uneasiness at relying on
“download”. One algorithm is simple enough to code oneself1, consisting only of
vector and matrix operations in no higher than 9-D, just like the popular 8-point
algorithm, yet producing an optimal solution.

We describe our algorithm in Sec. 2 and give a derivation in Sec. 3. In Sec. 4,
we confirm its performance by numerical experiments. We conclude in Sec. 5
that our algorithm best suits practical use because of its compactness and good
performance.
1 But one can try ours if one wishes: http://www.iim.ics.tut.ac.jp/~sugaya/
public-e.html
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2 Optimal Fundamental Matrix Computation

Given two images of the same scene, suppose a point (x, y) in the first image
corresponds to (x′, y′) in the second. We represent the corresponding points by
3-D vectors

x =

x/f0

y/f0

1

 , x′ =

x′/f0

y′/f0

1

 , (1)

where f0 is a scaling constant of the order of the image size2. As is well known,
x and x′ satisfy the epipolar equation,

(x, Fx′) = 0, (2)

where and hereafter we denote the inner product of vectors a and b by (a, b).
The matrix F is of rank 2 and called the fundamental matrix . Since its scale is
indeterminate, we normalize it to unit Frobenius norm ‖F ‖ = 1.

Suppose N correspondence pairs {xα, x′
α}N

α=1 are detected. If the noise in
their x- and y-coordinates is assumed to be independent, identical, and Gaussian,
maximum likelihood (ML) is equivalent to minimizing the reprojection error

E =
N∑

α=1

(
‖xα − x̄α‖2 + ‖x′

α − x̄′
α‖2

)
, (3)

with respect to x̄α, x̄′
α, and F subject to

(x̄α,F x̄′
α) = 0, α = 1, ..., N. (4)

No simple procedure exists for minimizing (3) subject to (4) and the rank
constraint on F . Many researchers minimized the “Sampson error” (to be dis-
cussed later) that approximates (3) [6, 21]. Alternatively, the minimization is
done in an “augmented” parameter space, as done by Bartoli and Sturm [1],
computing a tentative 3-D reconstruction and adjusting the camera positions
and the intrinsic parameters so that the resulting projection images are as close
to the input images as possible. Such a strategy is called bundle adjustment .
Search in a high dimensional space, in particular if one wants a globally optimal
solution, requires a large amount of computation [7].

We now present a dramatically compact formulation: we work in 9-D through-
out . Define 9-D vectors

u =



F11

F12

F13

F21

F22

F23

F31

F32

F33


, u† ≡ N [



u5u9 − u8u6

u6u7 − u9u4

u4u8 − u7u5

u8u3 − u2u9

u9u1 − u3u7

u7u2 − u1u8

u2u6 − u5u3

u3u4 − u6u1

u1u5 − u4u2


], (5)

2 This is for stabilizing numerical computation [5]. In our experiments, we set f0 =
600 pixels.
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where N [ · ] denotes normalization to unit norm. The vector u encodes the nine
elements of the fundamental matrix F . The normalization ‖F ‖ = 1 is equivalent
to ‖u‖ = 1. The vector u† encodes the nine elements of the cofactor F † of F ,
so we call u† the “cofactor vector” of u. We denote by “det u” the determinant
of the matrix F corresponding to u.

In order to emphasize the compactness of our algorithm, we state it first and
then give its derivation, which is straightforward but rather lengthy. The main
routine of our algorithm goes as follows:

main
1. Let u0 = 0, and initialize u.
2. Let x̂α = xα, ŷα = yα, x̂′

α = x′
α, ŷ′

α = y′
α, and x̃α = ỹα = x̃′

α = ỹ′
α = 0.

3. Compute the following 9-D vectors ξα and the 9 × 9 matrices V0[ξα]:

ξα =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

f0(x̂α + x̃α)
ŷαx̂′

α + x̂′
αỹα + ŷαx̃′

α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

f0(ŷα + ỹα)
f0(x̂

′
α + x̃′

α)
f0(ŷ

′
α + ỹ′

α)
f2
0


, (6)

V0[ξα] =



x̂2
α + x̂′2

α x̂′
αŷ′

α f0x̂
′
α x̂αŷα 0 0 f0x̂α 0 0

x̂′
αŷ′

α x̂2
α + ŷ′2

α f0ŷ
′
α 0 x̂αŷα 0 0 f0x̂α 0

f0x̂
′
α f0ŷ

′
α f2

0 0 0 0 0 0 0
x̂αŷα 0 0 ŷ2

α + x̂′2
α x̂′

αŷ′
α f0x̂

′
α f0ŷα 0 0

0 x̂αŷα 0 x̂′
αŷ′

α ŷ2
α + ŷ′2

α f0ŷ
′
α 0 f0ŷα 0

0 0 0 f0x̂
′
α f0ŷ

′
α f2

0 0 0 0
f0x̂α 0 0 f0ŷα 0 0 f2

0 0 0
0 f0x̂α 0 0 f0ŷα 0 0 f2

0 0
0 0 0 0 0 0 0 0 0


. (7)

4. Call EFNS to update u.
5. If u ≈ u0 up to sign, return u and stop. Else, update x̃α, ỹα, x̃′

α, and ỹ′
α by

(
x̃α

ỹα

)
← (u, ξα)

(u, V [ξ̂α]u)

(
u1 u2 u3

u4 u5 u6

)(
x̂′

α

ŷ′
α

f0

)
,

(
x̃′

α

ỹ′
α

)
← (u, ξα)

(u, V [ξ̂α]u)

(
u1 u4 u7

u2 u5 u8

)(
x̂α

ŷα

f0

)
. (8)

6. Go back to Step 3 after updating u0 ← u, x̂α ← xα − x̃α, ŷα ← yα − ỹα, x̂′
α

← x′
α − x̃′

α, and ŷ′
α ← y′

α − ỹ′
α.
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The initialization in Step 1 can be done by the 8-point algorithm [5] or by
the Taubin method [20] (also see [12, 9]). The EFNS routine in Step 4 goes as
follows:

EFNS
1. Compute the following 9 × 9 matrices M and L:

M =
N∑

α=1

ξαξ>
α

(u, V0[ξα]u)
, L =

N∑
α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

. (9)

2. Compute the cofactor vector u† in (5) and the 9 × 9 projection matrix

P u† ≡ I − u†u†>. (10)

3. Compute the following 9 × 9 matrices:

X = M − L, Y = P u†XP u† . (11)

4. Compute the two unit eigenvectors v1 and v2 of Y for the smallest eigen-
values in absolute value, and compute

û = (u, v1)v1 + (u, v2)v2. (12)

5. Compute
u′ = N [P u†û]. (13)

6. If u′ ≈ u up to sign, return u′ and stop. Else, let u ← N [u + u′] and go
back to Step 1.

3 Derivation

3.1 Derivation of the Main Routine

First Approximation. We want to compute x̄α and x̄′
α that minimize (3)

subject to (4), but we may alternatively write

x̄α = xα − ∆xα, x̄′
α = x′

α − ∆x′
α, (14)

and compute the correction terms ∆xα and ∆x′
α. Substituting (14) into (4), we

have

E =
N∑

α=1

(
‖∆xα‖2 + ‖∆x′

α‖2
)
. (15)

The epipolar equation (4) becomes

(xα − ∆xα,F (x′
α − ∆x′

α)) = 0. (16)
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Ignoring the second order term in the correction terms, we obtain

(Fx′
α,∆xα) + (F>xα,∆x′

α) = (xα, Fx′
α). (17)

Since the correction should be done in the image plane, we have the constraints

(k, ∆xα) = 0, (k, ∆x′
α) = 0, (18)

where we define k ≡ (0, 0, 1)>. Introducing Lagrange multipliers for (17) and
(18), we obtain ∆xα and ∆x′

α that minimize (15) as follows (see [13] for the
details):

∆xα =
(xα, Fx′

α)P kFx′
α

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
,

∆x′
α =

(xα, Fx′
α)P kF>xα

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
. (19)

Here, P k is the 3 × 3 projection matrix along k:

P k ≡ I − kk>. (20)

Substituting (19) into (15), we obtain (see [13] for the details)

E =
N∑

α=1

(xα, Fx′
α)2

(Fx′
α,P kFx′

α) + (F>xα, P kF>xα)
, (21)

which is known as the Sampson error [6]. Suppose we have obtained the matrix
F that minimizes (21) subject to det F = 0. Writing it as F̂ and substituting it
into (14), we obtain

x̂α = xα − (xα, F̂ x′
α)P kF̂ x′

α

(F̂ x′
α, P kF̂ x′

α) + (F̂
>

xα, P kF̂
>

xα)
,

x̂′
α = x′

α − (xα, F̂ x′
α)P kF̂

>
xα

(F̂ x′
α, P kF̂ x′

α) + (F̂
>

xα, P kF̂
>

xα)
. (22)

Higher Order Correction. The solution (22) is only a first approximation.
So, we estimate the true solution x̄α and x̄′

α by writing, instead of (14),

x̄α = x̂α − ∆x̂α, x̄′
α = x̂′

α − ∆x̂′
α, (23)

and computing the correction terms ∆x̂α and ∆x̂′
α, which are small quantities

of higher order than ∆xα and ∆x′
α. Substitution of (23) into (3) yields

E =
N∑

α=1

(
‖x̃α + ∆x̂α‖2 + ‖x̃′

α + ∆x̂′
α‖2

)
, (24)
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where we define
x̃α = xα − x̂α, x̃′

α = x′
α − x̂′

α. (25)

The epipolar equation (4) now becomes

(x̂α − ∆x̂α,F (x̂′
α − ∆x̂′

α)) = 0. (26)

Ignoring second order term in ∆x̂α and ∆x̂′
α, we have

(F x̂′
α,∆x̂α) + (F>x̂α,∆x̂′

α) = (x̂α, F x̂′
α). (27)

This is a higher order approximation of (4) than (17). Introducing Lagrange
multipliers to (27) and the constraints

(k, ∆x̂α) = 0, (k, ∆x̂′
α) = 0, (28)

we obtain ∆x̂α and ∆x̂′
α as follows (see [13] for the details):

∆x̂α =

(
(x̂α,F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)
P kF x̂′

α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
− x̃α,

∆x̂′
α =

(
(x̂α,F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)
P kF>x̂α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
− x̃′

α. (29)

The reprojection error (24) now has the form (see [13] for the details)

E =
N∑

α=1

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)2

(F x̂′
α,P kF x̂′

α) + (F>x̂α, P kF>x̂α)
. (30)

Suppose we have obtained the matrix F that minimizes this subject to det F =
0. Writing it as F̂ and substituting it into (29), we obtain from (25) the solution

ˆ̂xα = xα −

(
(x̂α, F̂ x̂′

α) + (F̂ x̂′
α, x̃α) + (F̂>x̂α, x̃′

α)
)
P kF̂ x̂′

α

(F̂ x̂′
α, P kF̂ x̂′

α) + (F̂>x̂α, P kF̂>x̂α)
,

ˆ̂x
′
α = x′

α −

(
(x̂α, F̂ x̂′

α) + (F̂ x̂′
α, x̃α) + (F̂>x̂α, x̃′

α)
)
P kF̂>x̂α

(F̂ x̂′
α, P kF̂ x̂′

α) + (F̂>x̂α, P kF̂>x̂α)
. (31)

The resulting { ˆ̂xα, ˆ̂x
′
α} are a better approximation than {x̂α, x̂′

α}. Rewriting
{ ˆ̂xα, ˆ̂x

′
α} as {x̂α, x̂′

α}, we repeat this until the iterations converge. In the end,
∆x̂α and ∆x̂′

α in (26) become 0, and the epipolar equation is exactly satisfied.

Compact 9-D Description. The above algorithm is greatly simplified by
using the 9-D vector encoding of (5). The definition of ξα in (6) and V0[ξα] in
(7) implies the following identities:

(x̂α, F̂ x̂′
α) + (F̂ x̂′

α, x̃α) + (F̂>x̂α, x̃′
α) =

(u, ξα)
f2
0

, (32)
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(F̂ x′
α, P kF̂ x′

α) + (F̂>xα, P kF̂>xα) =
(u, V0[ξα]u)

f2
0

. (33)

Since we define x̃α and x̃′
α by (25), we obtain from (31) the update form in (8).

If we let x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α, and x̃α = ỹα = x̃′
α = ỹ′

α = 0,
as in the Step 2 of the main routine, the update form (8) is equivalent to (22).
Thus, the main routine is completed except Step 4, where we need to minimize
(21) and (30) subject to det F = 0.

3.2 Derivation of EFNS

Problem. Using the identities (32) and (33), we can rewrite (30) as

E =
1
f2
0

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
. (34)

If we let x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α, and x̃α = ỹα = x̃′
α = ỹ′

α = 0,
as in the Step 2 of the main routine, this reduces to the Sampson error in (21).
The problem is to minimize (34) subject to det u = 0.

Geometry. The necessary and sufficient condition for E to be stationary at a
point u on the 8-D unit sphere S8 in R9 is that its gradient ∇uE is orthogonal
to the hypersurface defined by detu = 0. Direct manipulation shows

u† = N [∇u det u]. (35)

In other words, u† is the unit surface normal to the hypersurface defined by
det u = 0. It follows that ∇uE should be parallel to the cofactor vector u† at
the stationary point. Differentiating (34) with respect to u, we see that

∇uE =
2
f2
0

Xu, (36)

where X is the matrix in (11). Using the projection matrix P u† in (10), we can
express the parallelism of ∇uE and u† as

P u†Xu = 0. (37)

The rank constraint detu = 0 is equivalently written as

(u†, u) = 0, (38)

which is a direct consequence of the identity F †F = (detF )I. In terms of the
projection matrix P u† , the rank constraint (38) is equivalently written as

P u†u = u. (39)

It follows that the stationarity condition (37) is written as

Y u = 0, (40)

where Y is the matrix defined in (11). Our task is to compute the solution u
that satisfies the stationarity condition (40) and the rank constraint (39).
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Justification of the Procedure. We now show that the desired solution can
be obtained by the EFNS routine in Sec. 2. To see this, we show that when the
iterations have converged, the eigenvectors v1 and v2 of Y both have eigenvalue
0. From the definition of Y in (11) and P u† in (10), the cofactor vector u† is
always an eigenvector of Y with eigenvalue 0. This means that either v1 or v2

has eigenvalue 0. Suppose one, say v1, has nonzero eigenvalue λ (6= 0). Then,
v2 = ±u†. By construction, the vector û in (12) belongs to the linear span of
v1 and v2 (= ±u†), which are mutually orthogonal, and the vector u′ in (13)
is a projection of û within that linear span onto the direction orthogonal to u†.
Hence, u′ should coincide with ±v1. After the iterations have converged, we
have u = u′ (= ±v1), so u is an eigenvector of Y with eigenvalue λ, i.e., Y u =
λu. Taking the inner product with u on both sides, we have

(u, Y u) = λ. (41)

On the other hand, u (= ±v1) is orthogonal to the cofactor vector u† (= ±v2),
so P u†u = u. Hence,

(u, Y u) = (u, P u†XP u†u) = (u, Xu) = 0, (42)

because from the definition of X in (11) we see that (u,Xu) = 0 is an identity
in u. In fact, we can confirm from the definition of M and L in (9) that (u, Mu)
= (u, Lu) holds identically in u. Since (41) and (42) contradict our assumption
that λ 6= 0, v1 is also an eigenvector of Y with eigenvalue 0. Thus, (39) and (40)
both hold, so u is the desired solution.

Observations. The EFNS was first introduced by Kanatani and Sugaya [11] as
a general constrained parameter estimation in abstract terms. It is a straightfor-
ward extension of the FNS of Chojnacki et al. [3] to include an arbitrary number
of additional constraints. In fact, if we replace P u† in (11) by the identity I, the
resulting procedure is identical to FNS. For this reason, Kanatani and Sugaya
[11] called it EFNS (Extended FNS ). They applied it to minimization of the
Sampson error (21) and pointed out that the CFNS of Chojnacki et al. [4] does
not necessarily converge to a correct solution while EFNS does. Our new finding
here is that it can also be used for strict ML (minimization of the reprojection
error) if we introduce the new intermediate variables ξα and V0[ξα] as in (6) and
(7).

The justification described earlier relies on the premise that the iterations
converge. As pointed in [11], if we let u ← u′ in the Step 6 of the EFNS routine,
the next value of u′ computed in Step 5 often reverts to the former value of u,
falling in infinite looping. So, the “midpoint” (u′ + u)/2 is normalized to a unit
vector N [u′ +u]. This greatly improves convergence. In fact, we have confirmed
that this technique also improves the convergence of FNS, which sometimes
oscillates in the presence of very large noise.

Theoretically speaking, our algorithm may not produce a global minimum
of the reprojection error (3). The problem is not the main routine, for which
one need not worry about local minima, as argued in the optimal triangulation
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case [14]. However, the EFNS routine is not theoretically guaranteed to reach
the absolute minimum of E in (34), although we have never experienced the
contrary in all our experiments.

4 Performance Confirmation

Figure 2(a) shows simulated images of two planar grid surfaces. The image size
is 600 × 600 pixels with 1200 pixel focal length. We added random Gaussian
noise of mean 0 and standard deviation σ to the x- and y-coordinates of each
grid point independently and from them computed the fundamental matrix.

Since all existing ML-based methods minimize the same reprojection error,
their mutual accuracy comparison does not make much sense. Rather, our con-
cern is if our algorithm really converges to a correct solution. To see this, we
compare our algorithm with a carefully tuned alternative method. We compute
an initial solution by least squares, from which we start the FNS of Chojnacki
et al. [3], and the resulting solution is optimally corrected to satisfy the rank
constraint. From it, we start a direct 7-D search, using the Levenberg-Marquardt
(LM) method [18].

Figure 2(b) plots, for each σ, the RMS of ‖P U û‖ for the computed solution
û over 10,000 independent trials with different noise, where P U (≡ I − uu> −
u†u†>) denotes projection onto the space of deviations from the true solution
u and the rank constraint detu = 0. Our algorithm was initialized by least
squares. As a reference, the chained line shows the corresponding result of the
8-point algorithm (least squares followed by SVD rank correction) [5], and the
dotted line indicates the theoretical accuracy limit (KCR lower bound) [2, 8].

From Fig. 2(b), we see that the solid line (our algorithm) and the dashed line
(the alternative method) completely coincide, indicating that the same solution
is reached although their paths of approach may be very different (Fig. 1). We
also see that the accuracy almost coincides with the theoretical limit, so no
further improvement is hoped for . As predicted, the 8-point algorithm performs
poorly. Doing many experiments (not all shown here), we observed the following:

 0

 0.1
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 0.3

 0  1  2  3  4σ
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Fig. 2. (a) Simulated images of planar grid surfaces. (b) The RMS error vs. noise level
σ. Solid line: our algorithm. Dashed line: the alternative method. Chained line: the
8-point algorithm. Dotted line: KCR lower bound.
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1. The main routine converges after a few (at most four) iterations.
2. If we stop at Step 4 in the initial round without doing any further iterations,

we obtain the Sampson solution. Yet, it coincides with the final (strict ML)
solution up to three to four decimal places. The high accuracy of the Sampson
solution was also noted by Zhang [21].

3. If initialized by least squares, the 7-D search does not necessarily arrive at
the true minimum of the reprojection error, being trapped to local minima,
as reported in [19]. After a careful tuning as described above, the solution
coincides with our algorithm, which directly arrives at the same solution
without any such tuning.

5 Concluding Remarks

We have presented a very compact algorithm for computing the fundamental ma-
trix from point correspondences over two images based on the strict ML principle
using the EFNS procedure. The computation consists only of vector and matrix
operations in no higher than 9-D just like the 8-point algorithm, yet producing
an optimal solution. By numerical experiments, we have confirmed that our algo-
rithm behaves satisfactorily. Because of its compactness and good performance,
we expect it to be a standard tool for fundamental matrix computation.
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