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Abstract. A 360◦ panorama is generated from images freely taken by
a hand-held camera: images are pasted together and mapped onto a
cylindrical surface. First, the lack of orientation information is overcome
by invoking “oriented projective geometry”. Then, the inconsistencies
arising from a 360◦ rotation of the viewing direction are resolved by
optimizing all the homographies between images simultaneously, using
Gauss-Newton iterations based on a Lie algebra representation. The ef-
fectiveness of our method is demonstrated using real images.

1 Introduction

A panorama is an image with a large angle of view, giving viewers an impression
as if they were in front of a real scene. In this paper, we consider a panorama
that covers all 360◦ directions around the viewer. A typical approach for realiz-
ing this is to take images with a special optical system such as an fish-eye lens
camera, a mirror-based omnidirectional camera, a composite multicamera sys-
tem, or a camera rotation mechanism [16]. Such optical systems have developed
for autonomous robot navigation applications [17].

Another approach is to paste multiple images together, known as image mo-
saicing [13, 15]. This technique has been studied in relation to such video im-
age processing as image coding, image compression, background extraction, and
moving object detection [2, 3, 10, 12].

However, the aim of this paper is not such industrial or media applications.
We consider a situation where travelers take pictures around them using an
ordinary digital camera, go home, and create panoramic images for personal
entertainment. The purpose of this paper is to present a software system that
allows this without using any special device or requiring any knowledge about
the camera and the way the pictures were taken.
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The principle of image mosaicing is simple. If we find four or more correspond-
ing points between two images, we can compute the homography (or projective
transformation) that maps one image onto the other. Hence, we can warp one
image according to the computed homography and past it onto the other image.
Continuing this, we can create a panoramic image.
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However, the images to be pasted distort as we proceed and diverge to infin-
ity when the viewing direction changes by 90◦. This can be avoided if we map
the images onto a cylindrical surface and unfold it. For this, however, we need
to know the orientations of the cameras that took the individual images. That
information would be obtained if we used a special device such as an omnidi-
rectional camera or a camera rotation mechanism, but we are assuming that no
knowledge is available about camera orientations.

We resolve this difficulty by noting that even though a homography-based
panorama cannot be displayed on a planar surface beyond a ±90◦ range, it is
nevertheless mathematically defined over the entire 360◦ range. If we invoke the
formalism of oriented projective geometry [11, 14], we can consistently define the
pixel values in all directions expressed in homogeneous coordinates, which can
then be mapped onto a cylindrical surface.

However, another critical issue arises: if we warp one image and successively
paste it onto another, the final image may not agree with the initial image
due to accumulated errors. To overcome this, we present a numerical scheme
for optimizing all the homographies between images simultaneously subject to
the condition that no inconsistency arises. This can be done by using Gauss-
Newton iterations based on a Lie algebra representation. We demonstrate the
effectiveness of our method using real images.

2 Panorama Generation using Homographies

2.1 Homographies

As is well known, images taken by a camera rotating around the center of the
lens are related to each other by homographies (projective transformations). This
holds for whatever camera motion if the scene is planar or is sufficiently far away.
In whichever case, let (x, y) be a point in one image and (x′, y′) the corresponding
point in another. If we represent these by 3-D vectors

x =




x/f0

y/f0

1


 , x′ =




x′/f0

y′/f0

1


 , (1)

where f0 is an arbitrary constant, the homography relationship is written in the
form

x′ = Z[Hx]. (2)

Here, Z[ · ] denotes scale normalization to make the third component 1, and H
is a 3 × 3 nonsingular matrix determined by the relative motion of the camera
and its intrinsic parameters. For simplicity, we call the matrix H also a “homog-
raphy”. As Eq. (2) implies, the absolute magnitude and the sign of the matrix
H are indeterminate. If we replace the constant f0 in Eqs. (1) by another value
f̃0, the matrix H in Eq. (2) changes into

H̃ = diag(1, 1,
f̃0

f0
)Hdiag(1, 1,

f0

f̃0

), (3)
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where diag( · · · ) denotes the diagonal matrix with diagonal elements · · · in that
order).

2.2 Optimal Estimation of Homographies

Equation (2) states that vectors x′ and Hx are parallel to each other, so it is
equivalently rewritten as

x′ ×Hx = 0. (4)

Given N corresponding points (xα, yα) and (x′α, y′α), α = 1, ..., N , between two
images, we let xα and x′α be their vector representations in the form of Eqs. (1),
and x̄α and x̄′α their true positions in the absence of noise. If we regard the
uncertainty of the x and y coordinates of each point as random Gaussian noise
of mean 0 and a constant standard deviation, statistically optimal estimation of
the homography H reduces to the minimization of

J =
1
2

N∑
α=1

‖xα − x̄α‖2, (5)

subject to the constraint
x̄′α ×Hx̄α = 0. (6)

Eliminating the constraint by introducing Lagrange multipliers and ignoring
higher order error terms, we can rewrite Eq. (5) in the following form1 [6]:

J =
1
2

N∑
α=1

(x′α ×Hxα, W α(x′α ×Hxα)), (7)

W α =
(
x′α ×HP kH> × x′α + (Hxα)× P k × (Hxα)

)−
. (8)

Here, ( · )− denotes pseudoinverse, and P k is the following projection matrix:

P k = diag(1, 1, 0). (9)

In this paper, we denote by u × A the matrix whose columns are the vector
products of u and the columns of the matrix A, and by A×v the matrix whose
rows are the vector products of v and the rows of A.

2.3 Panorama Generation

Suppose the user holds a camera roughly horizontally and takes pictures around
him roughly at an equal angle. We assume that the scene is sufficiently far away.
Since no mechanical device is used, this is merely an approximation. We assume
that the focal length is unknown and different from picture to picture.

The user first specifies corresponding points between adjacent images. Vari-
ous automatic matching techniques have been proposed [8, 9, 18], but some mis-
matches are unavoidable using them. In our experiments, we manually selected
corresponding points.
1 The source code of the program that minimizes Eq. (7) by a technique called renor-

malization [7] is available at http://www.suri.it.okayama-u.ac.jp
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Fig. 1. Successively warping and pasting images using homographies.
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Fig. 2. The rectangular region I on the tangent plane Π to the cylinder.

Then, we compute the homography H between two neighboring images and
paste one image onto the other via Eq. (2). Figure 1 is a part of the panoramic
image thus created. We can see that images distort more as the viewing direction
moves; the distortion diverges to infinity when the viewing direction is orthogonal
to its initial orientation.

3 Cylindrical Panorama Generation

3.1 Mapping onto a Cylindrical Surface

The image divergence is avoided if we map the input images onto a cylindrical
surface around the viewpoint and unfold it. However, the camera orientation
information is missing. This is resolved by invoking oriented projective geometry
[11, 14]. First, we do the following preparation:

– Imagine a hypothetical cylinder of radius fr around the viewpoint O and
define a (θ, h) cylindrical coordinate system (θ around the circumference
and h in the axial direction). A point with cylindrical coordinates (θ, h) is
unfolded onto a point with Cartesian coordinates (frθ, h).

– Let Π be the plane tangent to the cylinder along the line θ = 0. Define an
xy coordinate system on it such that the x-axis coincides with the line h =
0.

– Define an xy coordinate system on each input image such that the origin is
at the center of the frame with the x-axis extending upward and the y-axis
rightward. We identify this xy coordinate system with the xy coordinate
system on Π and define on Π a rectangular region I of the same size as
input images centered on (θ, h) = (0,0) (Fig. 2).

– Number the input images in the order of adjacency, and compute the ho-
mography Hk(k+1) that maps the kth image onto the (k + 1)th image from
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Fig. 3. Circular panorama corresponding to Fig. 1.

the specified corresponding points, k = 1, ..., M , where we use fr in the
place of f0 in Eqs. (1) (see Eq. (3)). We choose the sign2 of Hk(k+1) so that
detHk(k+1) > 0.

Then, we compute the pixel value of each point p with (discretized) cylindrical
coordinates (θ, h) as follows (Fig. 2):

1. Compute the intersection P of the plane Π with the line passing through the
viewpoint O and the point p on the cylinder, using homogeneous coordinates.

2. If P is inside the region I and if the vectors ~Op and ~OP have the same
orientation, copy the pixel value3 of P in the first image to p.

3. Else, let p′ be the point on the cylinder such that4 ~Op′
+' H12

~Op, and
compute the intersection P ′ of Π with the line passing through O and p′.

4. If P ′ is inside the region I and if the vectors ~Op′ and ~OP ′ have the same
orientation, copy the pixel value of P in the second image to p.

5. Else, let p′′ be the point on the cylinder such that ~Op′′
+' H23

~Op′, and
compute the intersection P ′′ of Π with the line passing through O and p′′.

6. If P ′′ is inside the region I and if the vectors ~Op′′ and ~OP ′′ have the same
orientation, copy the pixel value of P in the third image to p.

7. Repeat the same process over all the images and stop. If no pixel value is
obtained, the value of p is undefined.

The radius fr of the cylinder is arbitrary in principle. However, if we require
that the viewing direction should agree with the physical direction, e.g., two
viewing directions that make 30◦ actually make 30◦ in the scene, the radius fr

should coincide with the focal length f1 for the first image. This is because the
mapping onto the cylinder starts with the first image; the subsequent images are
successively warped so as to agree with it. The computation of the focal lengths
for all the images will be described in Sec. 4. Figure 3 is a circular panorama
thus generated using the images for Fig. 1.

Since the first image is mapped onto the cylinder, next the second image onto
the rest of the cylinder, then the third, and so on, images with smaller numbers
look “above” images with larger numbers (we can reverse the order, of course).
2 In practice, it is sufficient if the (33) element is positive. If it is 0, the image origin

is mapped to infinity. This does not happen between two overlapping images.
3 The pixel value of a point with non-integer coordinates is bilinearly interpolated

from surrounding pixels.
4 The relation

+' denotes that one side is a multiple of the other side by a positive
number.
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Fig. 4. If neighboring images are successively pasted, the final image does not correctly
match the initial image.

However, this makes the last image “below” the first image. For consistency,
we place the last image above the first image where they overlap (we omit the
details).

3.2 Oriented Projective Geometry

In the above procedure, the intersection P of the tangent plane Π is computed in
homogeneous coordinates, so no computational failure occurs if P is at infinity.

In the standard projective geometry, a point P on the plane Π is identified
with the “line of sight” l passing through P and the viewpoint O (the point P is
regarded as located at infinity if the line l is parallel to Π). Since the line of sight
l is not oriented, no distinction can be made between “in front of” or “behind”
the viewpoint O. It is shown, however, that almost all properties of projective
geometry is preserved if the line of sight is oriented [14]. This “oriented projective
geometry” was found to be very useful for computer vision applications [11]. In
the preceding procedure, we utilized this framework when we signed Hk(k+1) so
that det Hk(k+1) > 0 and compared the “orientations” of the vectors ~Op and
~Op′, etc.

4 Simultaneous Homography Optimization

4.1 Discrepancies of the Circular Mapping

If we compute the homographies between two images independently for all pairs,
the final image does not necessarily match the initial image correctly, as shown
in Fig. 4. This is because due to the accumulation of numerical errors and image
distortions, the composite mapping

HM1H(M−1)MH(M−2)(M−1) · · ·H23H12 (10)

does not necessarily define the identity mapping (M is the number of images).
This is not a serious problem if the purpose of the circular panorama is simply

for displaying the unfolded image. A more important application is, however, to
let the user feel virtual reality by interactively moving the scene as the viewer
changes the viewing direction5. This can be don by remapping, each time the
5 The viewing direction is controlled by a mouse, keyboard, or a joystick. If the user

wares a head-mount display (HMD), the head orientation can be measured from the
signal it emits.
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user specifies the viewing direction, the corresponding part of the cylinder onto
its tangent plane6. For such applications, no inconsistency is allowed anywhere
around the cylinder.

To resolve this, Shum and Szeliski [13] introduced a postprocessing for dis-
tributing the inconsistency equally over all image overlaps. Here, we adopt a more
consistent approach: we optimize all the homographies simultaneously subject
to the constraint that Eq. (10) define the identity map. As a byproduct, the
orientations and the focal lengths of the cameras that took the input images are
optimally estimated.

4.2 Parameterization of Homographies

While a general homography has 8 degrees of freedom7, the homography arising
from camera rotation and focal length change has only 5 degrees of freedom8.
If we take the kth image with focal length f , rotate the camera around the lens
center by R (rotation matrix), and take the (k + 1)th image with focal length
f ′, the homography Hk(k+1) that maps the kth image onto the (k + 1)th image
has the form

Hk(k+1) = diag(1, 1,
f0

fk+1
)R>

k(k+1)diag(1, 1,
f1

f0
). (11)

Equation (10) defines the identity mapping if and only if

R12R23 · · ·R(M−1)MRM1 = I, (12)

where I is the unit matrix. So, we minimize (cf. Eq. (7))

J =
1
2

M∑

k=1

Nk(k+1)∑
α=1

(xk+1
α ×Hk(k+1)x

k
α, W k(k+1)

α (xk+1
α ×H12x

k
α)), (13)

subject to the constraint that all Hk(k+1) have the form of Eq. (11) in such a
way that Eq. (12) is satisfied. In Eq. (13), we assume that Nk(k+1) points xk

α

in the kth image correspond to the Nk(k+1) points xk+1
α in the (k + 1)th image,

and the subscript k is computed modulo M . The matrix W k(k+1)
α is the value

of W in Eq. (8) for the kth and the (k + 1)th images.
Through Eq. (11), the function J in Eq. (13) is regarded as a function of the

focal lengths f1, f2, ..., fM and the rotations R12, R23, ..., RM1; we minimize
J with respect to them subject to Eq. (12).

6 A well known such system is QuickTime VR [1], for which input images are taken
using a special camera rotation mechanism.

7 The 3× 3 matrix H has 9 elements, but there is an overall scale indeterminacy.
8 The camera rotation matrix R has 3 degrees of freedom, to which are added the

focal lengths f and f ′ before and after the camera rotation.
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4.3 Lie Algebra Approach

Each rotation Rk(k+1) is specified by three parameters, but using a specific
parameterization such as the Euler angles θ, φ, and ψ complicates the equation.
So, we adopt the well known method of Lie algebra [4, 5]. Namely, instead of
directly parameterizing Rk(k+1), we specify its “increment9” in each step. To
be specific, we exploit the fact that a small change of rotation Rk(k+1) has the
following form [4, 5]:

Rk(k+1) + ωk(k+1) ×Rk(k+1) + · · · . (14)

Here, · · · denotes terms of order 2 or higher in ωk(k+1). If we replace Rk(k+1) in
Hk(k+1) by Eq. (14), Eq. (13) can be regarded as a function of f1, ..., fM and
ω12, ..., ωM1. After minimizing it with respect to them, the rotations Rk(k+1)

are updated by
Rk(k+1) ←R(ωk(k+1))Rk(k+1), (15)

where R(ω) denotes the rotation around axis ω by angle ‖ω‖.
The derivatives of J with respect to f1, ..., fM and ω12, ..., ωM1 can be

analytically calculated (we omit the details). If we introduce the Gauss-Newton
approximation, we can also calculate the second derivatives in simple analytic
forms (we omit the details). It seems, therefore, that we can minimize J by
Gauss-Newton iterations. However, there is a serious difficulty in doing this.

4.4 Alternating Optimization Approach

We need to enforce the constraint of Eq. (12). To a first approximation, Eq. (12)
is expressed in the following form (we omit the details):

ω12 + R12ω23 + R12R23ω34 + · · ·+ R12R23 · · ·R(M−1)MωM1 = 0. (16)

A well known strategy for constrained optimization is the method of pro-
jection: the parameters are incremented without considering the constraint and
then projected onto the constraint surface in the parameter space. However, if
we try to minimize Eq. (13) without considering Eq. (16), the solution is inde-
terminate (the Hessian has determinant 0).

We resolve this difficulty by adopting the alternate optimization. Namely,
Eq. (13) is first minimized with respect to f1, ..., fM with R12, ..., RM1 fixed.
Then, the result is minimized with respect to ω12, ..., ωM1 with f1, ..., fM fixed.
This time, the solution is unique because the Hessian of J with respect to ω12,
..., ωM1 alone is nonsingular.

Next, Eq. (16) is imposed by projection in the form of

ω̂k(k+1) = ωk(k+1) −∆ωk(k+1). (17)
9 The linear space defined by such (mathematically infinitesimal) increments is called

the Lie algebra so(3) of the group of rotations SO(3) [4].
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Fig. 5. After the simultaneous optimization of homographies, the discrepancy in
Fig. 4(b) disappears.

The correction ∆ωk(k+1) is determined as follows. The condition for Eq. (17) to
satisfy Eq. (16) is written as

S∆ω̃ = e, (18)

where we define

S =
(
I R12 R12R23 · · · R12R23 · · ·R(M−1)M

)
,

∆ω̃ =
(
∆ω>12 ∆ω>23 · · · ∆ω>M1

)>
,

e = ω12 + R12ω23 + R12R23ω34 + · · ·+ R12R23 · · ·R(M−1)MωM1. (19)

Introducing Lagrange multipliers, we can obtain the solution ∆ω̃ that minimizes
‖∆ω̃‖ subject to Eq. (18) in the form

∆ω̃ = S>(SS>)−1e. (20)

From this, the correction formula of Eq. (17) reduces to the following form (we
omit the details):

ω̂12 = ω12 − 1
M

e, ω̂23 = ω23 − 1
M

R>
12e, ω̂34 = ω34 − 1

M
R>

12R
>
23e,

..., ω̂M1 = ωM1 − 1
M

R>
12R

>
23 · · ·R>

(M−1)Me. (21)

The rotations R12, ..., RM1 are updated by Eq. (15). With these fixed, Eq. (13)
is again minimized with respect to f1, ..., fM , and the same procedure is iterated.

Since Eq. (16) is a first approximation in ωk(k+1), the rotations Rk(k+1)

updated by Eq. (15) may not strictly satisfy Eq. (12). However, the discrepancy
is very small, so we randomly choose one rotation matrix and replace it by the
value that strictly satisfies Eq. (15), i.e., replace it by the inverse of the product
of the remaining rotation matrices.

Figure 5 is the result corresponding to Fig. 4. No discrepancy occurs this
time. This can be confirmed by many examples, which are not shown here due
to page limitation, though.

5 Concluding Remarks

We have shown a consistent technique for generating a 360◦ circular panorama
from images taken by freely moving a hand-held camera.
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The first issue is the lack of camera orientation information, which was re-
solved by computing the homographies between neighboring images and invoking
the framework of “oriented projective geometry”. The second issue is the discrep-
ancies between the final image and the initial image due to accumulated errors.
We resolved this by simultaneously optimizing all the homographies. To this end,
we introduced the Gauss-Newton iterations using the Lie algebra representation
and the alternating optimization scheme.

In practice, we need to add further corrections and refinements for elimi-
nating intensity discontinuities and geometric discrepancies at individual image
boundaries. This can be done easily using existing techniques (we omit the de-
tails).
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