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Reliability of Fitting a Plane to Range Data
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SUMMARY Based on a simple model for the statistical er-
ror characteristics of range sensing, a numerical scheme called
renormalization is presented for optimally fitting a planar surface
‘to data points obtained by range sensing. The renormalization
method has the advantage that not only an optimal fit is com-
puted but also its reliability is automatically evaluated in the
form of the covariance matrix. Its effectiveness is demonstrated
by numerical simulation. A scheme for visualizing the reliability
of computation by means of the primary deviation pair is also
presented.
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1. Introduction

For autonomous robot operations, robots must con-
struct a 3-D model of the environment from sensor data,
and range sensing and stereo vision are widely used
means of such 3-D sensing[6],[7]. Although the reso-
lution of range sensing is in general lower than stereo
vision, it has the advantage that it can directly measure
the distances to objects in the absence of light sources
(e.g., at night) and the correspondence detection for
stereo images is not necessary. For this reason, the use
of range sensing is rapidly expanding to many robotics
applications.

Many objects in an indoor workspace, including
walls, ceilings, and floors, have planar surfaces. Hence,
the problem of reconstructing a planar surface is very
important for many practical robotics applications. For
this purpose, a planar surface must be fitted to range
data. Since the accuracy of rage data is not so high,
we must apply a fitting technique that maximizes the
accuracy of the solution by considering the statistical
characteristics of the noise in the range data. However,
computing an optimal fit alone is not sufficient in real
applications: we must at the same time evaluate its re-
liability, because robots are unable to take appropriate
actions unless the reliability of the 3-D model of the
environment is quantitatively given.

Boyer et al. [1] proposed a robust sequential es-
timator for fitting surfaces to noisy range data that
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include outliers. In order to eliminate outliers, they
detected edges from range data, extracted smooth re-
gions, and fitted surfaces determined by the AIC cri-
terion. This method is robust to noise and outliers,
but the reliability of the resulting 3-D reconstruction
cannot be evaluated in quantitative terms. Takeda and
Latombe[9] considered a special case where the prob-
lem can reduce to a one-dimensional problem of line
fitting and computed a maximum likelihood solution.
However, they did not analyze the reliability of the re-
sulting solution. Takeda et al. [8] introduced the con-
cept of “Sensory Uncertainty Field (SUF)” for estimat-
ing the reliability of the position of the robot computed
from range data when a 3-D map of the environment is
given in advance. Adopting a non-statistical approach,
they first approximated the noise distribution by a fixed
uncertainty region and then propagated it to 3-D com-
putation by using empirical approximations.

In this paper, we adopt a statistical approach. As-
suming a simple model for the error characteristics of
range sensing, we present a numerical scheme called
renormalization[2],[4],[6] for optimally fitting a pla-
nar surface to data points obtained by range sensing.
The advantage of renormalization is that not only an
optimal fit is computed but also its reliability is auto-
matically evaluated in the form of the covariance ma-
trix. We demonstrate its effectiveness by doing numeri-
cal simulation. We also present a scheme for visualizing
the reliability of the computation by means of the pri-
mary deviation pair[6],[7].

2. Optimal Planar Surface Fitting

Suppose we are observing a planar surface. Let n be its
(outward) unit normal to it, and d its distance from the
coordinate origin (Fig.1). The equation of the surface
is written in the form

(naT) =d, (1

where 7 is a three-dimensional position vector. In this
paper, we denote the inner product of vectors @ and b
by (a,b). Let us call {n,d} the surface parameters. We
want to fit a planar surface to data positions {r,}, o =
I, ..., N, measured by a range finder. Let {7,} be their
true positions. We write

To =Taq+ Arg, (2)
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Fig. 1  Representation of a planar surface and error of range
sensing.

and regard the noise Ar, as a Gaussian random vari-
able of mean 0 and the covariance matrix
Vlra] = E[AroAr], 3)

where E[-] denotes expectation and the superscript T
denotes transpose.
Define four-dimensional vectors

(1) ()

where N[-]| denotes normalization into a unit vector.
Then, the surface equation (1) is written as
(v,p) =0. )

Let p, be the four-dimensional representation of point
T«, and p,, its true value. The covariance matrix of Po,
is given by

Vi = (VT ). ©

The problem of plane fitting is stated as follows:
Problem 1: Estimate a four-dimensional unit vector v
such that

(v,py) =0, a=1,..,N, (7)
from the data {p,}, o =1, ..., N.

It can be shown [5] that an optimal estimator & is
given as the solution of the optimization

=3 ®)
= T — min
= W Vipav)
under the constraint ||v|| = 1. Let & be the true value
of v, and write
D=0+ AD. : ®

~ The reliability of the estimator # is measured by its co-
variance matrix

VD] = E[APADT), (10)

which gives a theoretical bound on attainable accuracy.
It can be shown [5] that this bound is given in the form

N ~ T -

where the superscript “—” denotes the (Moore-Penrose)
generalized inverse.
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3. Error Model of Range Data

Range sensing means measuring the distances to ob-
jects from a fixed position without approaching them.
A typical method is to emit a sound or radio wave and
observe the phase shift between the emitted and reflected
waves. The error behavior of range data depends on not
only the mechanical characteristics of the range finder
and the accuracy of the electronic data processing in-
volved but also the shape and position of the object to
be measured. Hence, it is very difficult to give a pre-
cise error model. If the error behavior is known for a
particular range finder, we can introduce an optimiza-
tion technique based on it, and the general theory in the
preceding section can be applied. If the error behavior
is not known, we must assume an appropriate model.
Typical models are: (i) errors do not depend on the po-
sition of the object; (ii) errors increase as the distance
to the object increases. The latter case is of theoreti-
cal interest, because the usual least-squares method is
not optimal, as we will show shortly. In this paper, we
adopt the linear model used by Takeda et al. [8] and
Takeda and Latombe[9]: we assume that to a first ap-
proximation the error is proportional to the distance to
the object. We also assume that the orientation in which
the distance is measured can be controlled accurately.

According to this model, the error Ar, in Eq.(2)
occurs in the direction of 7,,, and the covariance matrix
of r, is modeled in the form

Vire] = €7ty (12)

where € is a constant, which we call the noise level.
Since it is very difficult to predict the value of € a priori,
we treat the noise level € as unknown in the subsequent
computation.

The four-dimensional covariance matrix V[p,] can
be decomposed into the noise level € and the normalized
covariance matrix Vy[p,] as follows:

o Pl
Vip.] = €Volp,], Vo[pa]:< e o)‘ (13)

Since (n,7,) = d, we see from Egs. (4) that the opti-
mization (8) can be written in the following form:

N
Tln, d] = ﬁ S (nyre) —d)? —min.  (14)
a=1

If the factor 1/e2d? is ignored, this optimization reduces
to the well known least-squares method, minimizing the
sum of the squared perpendicular distances from the
data positions to the surface. However, this approxima-
tion is too crude, and the resulting solution is biased.
In fact, Eq. (14) implies that an optimal solution should
have a larger value of d than the least-squares solution.
So, we try to solve the original minimization (8) by an
indirect method.
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4. Removing Statistical Bias

Since multiplication of J[v] by a positive constant does
not affect the solution of the optimization (8), the co-
variance matrix V[p,] in the denominator can be re-
placed by the normalized covariance Vo[p,]. If the de-
nominator in Eq.(8) is replaced by a constant, the op-
timization has the form

Jlv] = (v, Mv) — min, (15)

where M is the moment matrix defined by

N
1 T
M=o E WapaPa, (16)

a=1
v
(v, Volpalv*)

Here, v* is an appropriate estimate of . The solution
of the optimization (15) is given by the unit eigenvector
for the smallest eigenvalue of the moment matrix M.
Hence, it appears that the solution can be obtained by
guessing the initial value of v, substituting it into v*,
updating v* by the resulting solution, and iterating this
process. However, the solution thus obtained is statisti-
cally biased. This is shown as follows.
Taking the expectation of M, we obtain

Wy = (17)

E[M]

N
% S WaBl(o + 200) (P + 50a) "]

a=1

— 62 N

= M+ N;Wavo[pa], (18)
where M is the unperturbed moment matrix of M ob-
tained by replacmg P, by p, in Eq.(16). We see that
My = 0, i.e, v is the unit eigenvector of the M for
eigenvalue 0. Since E[M] is perturbed from M by
O(€?), the expectation of the computed eigenvector v
of M is also perturbed from its true value by O(€?)
according to the well known perturbation theorem3].
However, if we define the unbiased moment matrix M
oy

M =M — €N, (19)
1Y |
= N Z Wa%[pa]a (20)

we have E[M] = M. Hence, an unbiased estimator
of v is obtained as the unit eigenvector of M for the
smallest eigenvalue.

5. Renormalization

In order to compute the unbiased moment matrix M
by Eq.(19), we need to know the noise level €, but
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this is very difficult in practice. If we overestimate
or underestimate it, the resulting solution is still bi-
ased. Also, the normalized covariance matrix Vo[p,]
in Eg.(20) involves the true values #,, which are un-
known (see Eqgs.(13)). If ¥, is approximated by the
data value 7, the error magnitude is underestimated at
those points detected at shorter distances than their true
positions and overestimated at those points detected at
longer distances.

In order to avoid these difficulties, we apply an
iterative scheme called renormalization, which automat-
ically adjusts to unknown noise: the value of € is es-
timated a posteriori. In the iterations, the normalized
covariance matrix Vp[p,] is updated by approximating
7o by the projection of r, onto the fitted plane. The
procedure is described as follows[2],[4]-[6]:

1. Compute the matrices

-

V, = ( Tala 0 > a=1,..,N, 1)
and let ¢ = 0, Volp,] = Va, and W, = 1, @ = 1,
vy N

2. Compute the matrices M and N defined by
Egs. (16) and (20).

3. Compute the smallest eigenvalue A of the matrix
M = M — ¢N, ' (22)
and the corresponding unit eigenvector v.

4. If A = 0, return v = (1/1,:/2,1/3,1/4)T, ¢, and M.
Else, update ¢, Vo[p,], and W, as follows:

C<_C+(V,NV)7 (23)

v vy, 24)
0[pa] — ((V, pa) _ i/4)2 [a3) (

W L (25)
“ (v, Volpalv)

5. Go back to Step 2.

After renormalization, an unbiased estimator of the
squared noise level €? is obtained in the form

S — 26
©T1-3/N (26)
Its expectation and variance are evaluated in the form

2¢?

B =¢&, V[E] =1

27
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This is a consequence of the fact that Nc¢/e? is to a
first approximation a x? variable with N — 3 degrees of
freedom (we omit the details).
The covariance matrix of the resulting estimator 1
is obtained in the form
2

vie) = S ()5, (%)

where ()3 denotes the generalized inverse computed
after projecting the matrix onto a matrix of rank 3 by ig-
noring the smallest eigenvalue [5],[6]. Equation (28) is
an a posteriori approximation to the theoretical bound
given by Eq.(11).

6. Reliability of 3-D Reconstruction

From the computed estimate £, the surface parameters
{n,d} of the plane (, p) = 0 are computed in the fol-
lowing form:

! o |, de__ (29)
Vi—bz |\ o) T— 052

3

n=

Once the plane is estimated, the data positions {r,} are
back projected onto the estimated plane (72,7) = d as
follows:
. drg
()

(30)

From the covariance matrix V[] given by Eq. (28),
we can compute the covariance matrix V[f], the cor-

relation vector V[f,d], and the variance V[d] as fol-
lows [5], [6]:

=(1+d
(Vf/ 19112 VD)3
VIdln Vples ViPls | Py,
Viplsy Viplss V[i]ss
. . VD)
Vin,dl=—(1+d*)?Pgs, [ V[D]aa |,
VD)sa
VId = (1 + d?)PV[D]a. (31)

Here, we put P, = I — ﬁﬁT, which is the orthogonal
projection matrix onto the plane perpendicular to 7.

Since £ is a unit vector, errors in & cannot occur in
the direction &. This means that V] has the following
spectral decomposition [3]:

VI =MEET +amm’, M 2A>0. (32)

Here, A1 and ), are the eigenvalues of V[#]; € and 5
are the corresponding unit eigenvectors. The vector &
indicates the orientation of the most likely deviation:
A1 is the variance in that direction. Hence, the reliabil-
ity of & can be visualized by d1sp1ay1ng the two planes
represented by

1633

Fig. 2 Primary deviation pair.

Fig. 3  Planar surface patch in the scene.

=NE+vVME, v =Np—/xgl (33)

We call the two planes represented by v+ and v~ the
primary deviation pair [6],[7] (Fig. 2).

7. Numerical Simulation

Figure 3 shows a planar surface patch placed in the
scene and viewed from the coordinate origin, at which
we assume a range finder is fixed. The dots indicate the
orientations in which the distance is measured. We as-
sume that the measurement in orientations outside the
patch (indicated by small dots in Fig. 3) return the value
oo, which is ignored in the subsequent computation. We
simulate the measurement process by adding Gaussian
random noise to the exact distance to the surface in
each orientation independently according to the statis-
tical model given by Eq. (12), where we let ¢ = 0.1.

Let {7, d} and {n, d} be the true and the computed
surface parameters, respectively. Since the deviation of
7 from 7 is orthogonal to 7 to a first approximation,
the error in 7 can be represented by the following vec-
tor[6]:

d—d

Au= Pp(h — )—i—Tn (34)

From the covariance matrix V[n], the correlation vector
V[#,d], and the variance V[d| computed by Egs. (31),
we can compute the covariance matrix of the vector Aw
in the following form:

Vidu] = VIa] + < (VIa, diaT

a

Vi
K2

+ an'. (35)
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Fig. 4 Error distribution: (a) least-squares method; (b) renormalization with covariance
matrix update; (c) a side view of (b); (d) renormalization without covariance matrix update

(a side view).

If the distribution of Aw is regarded as Gaussian,
the surface of equal probability in the parameter space
for Aw is given by (Au, V[A#@] 'Au) = constant. We
call the region inside the ellipsoid

(Au, VA% TAu) =1 (36)

the standard confidence region. In Fig. 4, the vector Au
is plotted in three dimensions for 100 trials, each time
using different noise. Figure 4 (a) is for the least-squares
method described at the end of Sect.3. Figures 4(b)
and 4(c) are for renormalization with covariance ma-
trix update; Figure 4 (d) is for renormalization without
covariance matrix update. The ellipses drawn in solid
lines indicate the standard confidence regions computed
from the theoretical expression for the covariance ma-
trix V[] given by Eq. (11), while the ellipses drawn in
dashed lines indicate the corresponding regions com-
puted from the sample covariance matrices and centered
at the sample means. We can observe that statistical bias
exists in the least-squares solution and that the bias is
removed by renormalization. We can also see that the
covariance matrix update further increases the accuracy
of the fit and the theoretical bound is almost attained.

Figure 5(a) shows a grid pattern back projected
onto a typical surface fitted by renormalization; the true
position is drawn in dashed lines. Figure 5(b) shows
the primary deviation pair for the fit of Fig. 5 (a), where
the a posteriori expression of Eq.(28) is used for com-
puting the covariance matrix V[].

8. Further Applications
8.1 Hypothesis Test for Planarity

So far, we have regarded the noise level ¢ as unknown.
If the accuracy of the range finder is evaluated by prior
calibration, the noise level € can be estimated. At the
same time, its estimate € is given by Eq.(26). If the es-
timate € is very large as compared with the value ¢, we
can judge that the surface is not planar, i.e., the true
positions of the measured points are not coplanar. This

Fig. 5 (a) An example of a fit computed by renormalization.
(b) Its primary deviation pair.

process can be formulated as a x? fest if we note the fact
that N¢/e? is approximately a x? variable with N — 3
degrees of freedom [5]. Namely, the hypothesis that the
surface is planar is rejected with significance level a% if
&2 X?v_s
— > Lo 37
€2 N-3 37)

where x% 5, is the upper a% percent point of the x?
distribution with N — 3 degrees of freedom.

8.2 Line Fitting to Range Data

As discussed by Takeda et al. [8] and Takeda and
Latombe[9], the range finder is often kept horizontal
and rotated in a horizontal plane. In this case, range
sensing for a planar surface reduces to line fitting in
the horizontal plane, and the computational procedure
described above can also be applied to line fitting.
Figure 6 (a) shows an example of numerical sim-
ulation. The range finder is set at the origin O, and
the measured locations are indicated by dots. The solid
line is an optimal fit computed by renormalization, and
the dashed line is a least-squares fit. The chained line
indicates the line that passes through the true positions
of the data points. Figure 6 (b) shows the correspond-
ing primary deviation pair, indicating the reliability of
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0

(a) : (b)
Fig. 6  (a) An example of a fit: renormalization (solid line);

least-squares solution (dashed line); the true position of line
(chained line). (b) Primary deviation pair. .

the fit given in Fig. 6 (a).
9. Concluding Remarks

In this paper, we have assumed an idealized noise model
for a range finder. As we pointed out in Sect. 3, how-
ever, range finders have different noise characteristics
from device to device, so probably no real range finder
exactly has the linear noise characteristics we have as-
sumed here. The aim of this paper is (i) to point out
the importance of guaranteeing optimality of 3-D re-
construction and evaluating its reliability in robotics
applications, (ii) to show that for any noise model we
can compute an optimal fit and evaluate its reliability
at the same time by the renormalization technique, and
(iii) to present the scheme for visualizing the reliability
of 3-D reconstruction by means of the “primary devi-
ation pair”. The linear noise model was chosen as a
typical example for this analysis, and the effectiveness
of our approach was demonstrated by numerical simu-
lation.
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