
Uncertainty Modelingfor Optimal Structure from MotionDaniel D. Morris1, Kenichi Kanatani2, and Takeo Kanade11 Robotics Institute, Carnegie Mellon University,Pittsburgh, PA 15213, USAfddmorris, tkg@ri.cmu.edu2 Department of Computer Science, Gunma University,Kiryu, Gunma 376-8515, Japankanatani@cs.gunma-u.ac.jpAbstract. The parameters estimated by Structure from Motion (SFM)contain inherent indeterminacies which we call gauge freedoms. Undera perspective camera, shape and motion parameters are only recoveredup to an unknown similarity transformation. In this paper we investi-gate how covariance-based uncertainty can be represented under thesegauge freedoms. Past work on uncertainty modeling has implicitly im-posed gauge constraints on the solution before considering covarianceestimation. Here we examine the e�ect of selecting a particular gauge onthe uncertainty of parameters. We show potentially dramatic e�ects ofgauge choice on parameter uncertainties. However the inherent geomet-ric uncertainty remains the same irrespective of gauge choice. We derivea Geometric Equivalence Relationship with which covariances under dif-ferent parametrizations and gauges can be compared, based on their truegeometric uncertainty. We show that the uncertainty of gauge invariantsexactly captures the geometric uncertainty of the solution, and henceprovides useful measures for evaluating the uncertainty of the solution.Finally we propose a fast method for covariance estimation and show itscorrectness using the Geometric Equivalence Relationship.1 IntroductionIt is well known that, for accurate 3D reconstruction from image sequences,statistically optimal results are obtained by bundle adjustment [2,3, 5, 6, 13, 16].This is just Maximum Likelihood estimation for independent, isotropic Gaus-sian noise, and is also used by photogrammetrists. Current research generallyfocuses on two areas: (1) simplicity of solution, which includes �nding a closedform approximate solutions such as the Factorization method [4, 8{12], and (2)e�ciency, which includes �nding fast or robust numerical schemes [1,2].An important third area to address is the quantitative assessment of the re-liability of the solution. While some work has incorporated uncertainty analyzesof the results [9, 14{16], none has investigated the e�ect of parameter indetermi-nacies on the uncertainty modeling. These indeterminacies are inherent to SFM



and have a signi�cant e�ect on parameter uncertainties. Our goal is to createa framework for describing the uncertainties and indeterminacies of parametersused in Structure from Motion (SFM). We can then determine how both theseuncertainties and indeterminacies a�ect the real geometric measurements recov-ered by SFM.The standard measure for uncertainty is the covariance matrix. Howeverin SFM there is a uniqueness problem for the solution and its variance due toinherent indeterminacies: the estimated object feature positions and motions areonly determined up to a overall translation, rotation and scaling. Constrainingthese global quantities we call choosing a gauge. Typically a covariance matrixdescribes the second order moments of a perturbation around a unique solution.In past work [9, 15, 16] indeterminacies are removed by choosing an arbitrarygauge, and then the optimization is performed under these gauge constraintsand the recovered shape and motion parameters along with their variances areexpressed in this gauge.In this paper we provide an analysis of the e�ects of indeterminacies andgauges on covariance-based uncertainty models. While the choice of gauge candramatically a�ect the magnitude and values in a covariance matrix, we showthat these e�ects are super�cial and the underlying geometric uncertainty isuna�ected. To show this we derive a Geometric Equivalence Relationship be-tween the covariance matrices of the parameters that depends only on the es-sential geometric component in the covariances. Hence we are able to proposea covariance-based description of parameter uncertainties that does not requiregauge constraints. Furthermore we show how this parametric uncertainty modelcan be then used to obtain an uncertainty model for actual geometric propertiesof the shape and motion which are gauge-invariant. Optimization is achievedin an e�cient free-gauge manner and we propose a fast method for obtainingcovariance estimates when there are indeterminacies.2 Geometric Modeling2.1 Camera EquationsHere we describe an object and camera system in a camera{centered coordinatesystem. Analogous equations could be derived in other coordinate systems. Sup-pose we track N rigidly moving feature points p�, � = 1; : : : ; N , in M images.Let p�� be the 2{element image coordinates of p� in the �th image. We iden-tify the camera coordinate system with the XY Z world coordinate system, andchoose an object coordinate system in the object. Let t� be the origin of theobject coordinate system in the �'th image,R� be a 3�3 rotation matrix whichspeci�es its orientation and s� be the coordinates of the feature point, p�, in theobject coordinate system. Thus the position of feature point p� with respect tothe camera coordinate system in the �th image is R�s� + t�.Assume we have a projection operator � : R3 ! R2 which projects a pointin 3D to the 2D image plane. We can then express the image coordinates, of



feature p� as: p�� = �[K�(R�s� + t�)] (1)where K� is a 3� 3 internal camera parameter matrix [2] containing quantitiessuch as focal length for each image. While these parameters can be estimatedalong with shape and motion parameters, for simplicity we ignore them in therest of the paper and assume K� is just the identity matrix for orthographyand diag([f; f; 1]) for perspective projection with focal length f . Various cameramodels can be de�ned by specifying the action of this projection operator on avector (X;Y; Z)>. For example we de�ne the projection operators for orthogra-phy and perspective projection respectively in the following way:�o[0@XYZ 1A] = �XY � ; �p[0@XYZ 1A] = �X=ZY=Z � ; (2)Equation (1) can be applied to all features in all images, and then combined inthe form: p = �(�) (3)where p = (p>11;p>12;p>13; : : : ;p>MN)> is a vector containing all the image featurecoordinates in all images, and � is a vector containing the shape and motionparameters, R�, s�, t�, and possibly unknown internal camera parameters, forall object features and images, and � is the appropriate combination of theprojection matrices. More details can be found in [7].2.2 Parameter ConstraintsNot all of the parameters in � are independent and some need to be constrained.In particular the columns of each rotation matrix,R�, must remain unit orthog-onal vectors. Small perturbations of rotations are parametrized by a 3-vector:�
� which to �rst order maintain the rotation properties [3]. Let T be the man-ifold of valid vectors � such that all solutions for � lie in T . T will be a manifoldof dimension n, where n is the number of parameters needed to locally specifythe shape and motion, 3 for each rotation, 3 for each translation, and 3 for each3D feature point, plus any internal camera parameters that must be estimated.So in general for just motion and shape, the number of unknown parameters is:n = 3N + 6M .2.3 IndeterminaciesThe camera equations (1) and (3) contain a number of indeterminacies. Thereare two reasons for these indeterminacies: �rst the object coordinate system canbe selected arbitrarily, and second the projection model maps many 3D pointsto a single 2D point. These are speci�ed as follows:Coordinate System Indeterminacies



If we rotate and then translate the coordinate system byR and t respectively,we obtain the following transformed shape and motion parameters:s0� = R>(s� � t); R0� = R�R; t0� = R�t+ t�: (4)We note that R0�s0� + t0� = R�s� + t�, and hence irrespective of the projectionmodel, equations (1) and (3) must be ambiguous to changes in coordinates.Projection IndeterminaciesMany di�erent geometric solutions project onto the same points in the image.In orthography the depth or Z component does not a�ect the image, and hencethe projection is invariant to the transformation:t0� = t� + d�k (5)for any value d�. Orthography has a discrete reection ambiguity, but sinceit is not di�erential we do not consider it. Perspective projection has a scaleambiguity such that if we transform the shape and translation by a scale s:s0� = ss�; and t0� = st�; (6)we �nd that �p[K�(R�s0� + t0�)] = �p[K�(R�s� + t�)].2.4 Solution ManifoldSince the camera equations contain these indeterminacies, then given the mea-surement data, p, there is not a unique shape and motion parameter set, �, thatmaps to this. Rather equation (3) is satis�ed by a manifold,M, of valid solutionswithin T which are all mapped to the same p. This manifold has dimension, r,given by the number of in�nitesimal degrees of freedom at a given point. Fromthe ambiguity equations (4-6) we obtain r = 7 for perspective projection andr = M + 6 under orthography. Figure 1 illustrates a solution � 2M.
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2.5 Gauge ConstraintsIn order to remove the ambiguity of the solution we can de�ne a gauge or man-ifold of points: C. Let C contain all those points in T that satisfy a set of rconstraint equations: ci(�) = 0 for 1 � i � r: (7)The gauge C will thus have dimension n � r. We require that C intersect Mtransversally and at most at one point per connected component of M. Theintersection of C andM thus provides unique solution within a connected com-ponent of M, as illustrated in Figure 1. However there may be ambiguitiesbetween components of M, such as the reection ambiguity in orthography.For example, we could de�ne an arbitrary gauge with the following con-straints: NX�=1 s� = 0; R1 = I; NX�=1 s>� s� = 1: (8)This �xes the origin of the object coordinate system in its centroid, aligns theobject coordinate system with the �rst image, and �xes the scale. In orthographythe scale constraint is omitted, but we add the constraint set: tz� = 0 on the Zcomponent of translation.We note that this, or any other choice of gauge is arbitrary, and does not a�ectthe geometry. It does a�ect our parameter estimates and their uncertainties, butin ways that do not a�ect the geometric meaning of the results.3 Uncertainty in Data FittingWhen there is noise in the measured data, there will be a resulting uncertaintyin the recovered parameters, which we would like to represent by a covariancematrix. However, when indeterminacies exist, the solution will be a manifoldrather than a point, and standard perturbation analysis cannot be performed.The usual approach, in dealing with this, is to choose a gauge and constrainthe solution to lie in this gauge. While this approach is a valid, it introducesadditional constraints into the estimation process, and the resulting uncertaintyvalues are strongly dependent on the choice of gauge. In this section we ask thequestion: How can we estimate the geometric uncertainty without depending onan arbitrary selection of a gauge? To answer this we introduce gauge invariantswhose uncertainty does not depend on gauge choice. We also derive a GeometricEquivalence Relationship that considers only this \true" geometric uncertainty.Along the way we derive the normal form for the covariance which gives us aconvenient way to calculate uncertainty without having to explicitly specify agauge.



3.1 Perturbation AnalysisFirst we derive an uncertainty measure in an arbitrary gauge. We assume thatthe noise is small, and thus that the �rst order terms dominate. When the noiseis Gaussian the �rst order terms exactly describe the noise. The measured data,p is a result of the true feature positions, �p, corrupted by noise, �p:p = �p+�p: (9)The noise �p is a random variable of the most general type, not necessarilyindependent for di�erent points, but it is assumed to have zero mean and knownvariance1: Vp[p] = Ef�p�p>g: (10)We note that in the special case when feature points are independent, V [p] willbe block diagonal with the 2�2 block diagonal elements giving the independentfeature covariances.Given this uncertainty in the measured data, let �̂ be our estimator of theshape and motion parameters. There is no unique true solution unless we restrictour estimation to a particular gauge. If we choose gauge C our estimator can bewritten as: �̂C = ��C + ��C, for true solution ��C and perturbation ��C . Theperturbation ��C and its variance, V [��C], both lie in the tangent plane to thegauge manifold, T��C [C].We expand equation (3) around ��C and get to �rst order:rT��(��C)��C = �p (11)where rT� is the gradient with respect to � in the manifold T . We then split theperturbations,��C into two components, those in T�C [M] and those in T�C [M]?as shown in Figure 2: ��C = ��CkM +��C?M: (12)The gradient rT��(��) is orthogonal to the tangent plane of M and has rankn� r. We can thus solve for the orthogonal perturbations:��C?M = (rT��(��C))�n�r�p; (13)where \�" denotes the Moore-Penrose generalized inverse2 constrained to haverank n � r. We call the covariance of this orthogonal component the normalcovariance: V?M[�] = (rT��(��))�n�rVp(rT��(��))�>n�r: (14)The normal covariance is expressed at a particular solution, �, and depends onour choice of parametrization and implicitly assumes a metric over parameter1 We can extend this to the case when variance is known only up to a scale factor2 The Moore-Penrose generalized inverse is de�ned such that if A = U�V > by SVD,then A�N = V ��NU>, where ��N has the �rst N singular values inverted on thediagonal, and the rest zeroed.



space. But it does not require explicit gauge constraints, (rather implicitly as-sumes a gauge normal to the manifold), and as we shall see, it incorporates allof the essential geometric uncertainty in the solution.When the indeterminacies are removed by adding constraints the normalcovariance must be obliquely projected onto the appropriate constraint surface.The uncertainty in the gauge will be in its tangent plane: ��C 2 T [C]. Wealready know the perturbation, ��C?M, orthogonal to T [M], and so it onlyremains to derive the component parallel to T [M] as illustrated in Figure 2.
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∆θ  MFig. 2. An illustration of the oblique projection of perturbations along the solu-tion tangent space, T [M], and onto the gauge manifold tangent space T [C]: ��C =��C?M +��CkM. This projection transforms the normal covariance matrix into thelocal gauge covariance.Let U be a matrix with r columns spanning T [M] at �C , and let V be amatrix with r columns spanning the space orthogonal to T [C] at �C . Then wecan express equation (12) as:��C = ��C?M + Ux: (15)for some unknown coe�cients x. The fact that this perturbation is in the con-straint tangent plane, implies that V >��C = 0. Applying this to (15) and elim-inating x we obtain: ��C = QC��C?M (16)where QC = I � U (V >U )�1V > is our oblique projection operator along T [M].The covariance of � in this gauge is then given by:VC [�C ] = QCV?M[�C]QC>: (17)3.2 Inherent Geometric UncertaintyThe camera equations provide geometric constraints on the measurements. Pa-rameters containing indeterminacies correspond to entities not fully constrained



by the camera equations, whereas parameters which have a unique value overthe solution manifold are fully constrained. These fully constrained parametersdescribe the \true" geometric entities. They can be uniquely recovered, (up topossibly a discrete ambiguity), from the camera equations. Having a uniquevalue on the solution manifold means that the parameter is invariant to gaugetransformations on the solution. We call these gauge invariants.Not only are the values of gauge invariants unique, but given the covarianceof the measured data, the covariance of the invariant is uniquely obtainable.However, the covariance of parameters containing indeterminacies will not beuniquely speci�ed and many possible \geometrically equivalent" covariances canbe obtained that correspond to the same measurement covariance. In this sectionwe derive a Geometric Equivalence Relationship for parameters that contain in-determinacies. This permits us to test whether covariances of these parametersunder di�erent gauges correspond to the same underlying measurement covari-ance or not. Finally we propose a fast method for covariance estimation andshow its correctness using the Geometric Equivalence Relationship.Let us assume that we are measuring an invariant property, I(�), of thesolution. Consider the estimators in two gauges: �C and �C0 with uncertainties:��C and ��C0 in their corresponding tangent planes. Let @�C@�C0 be the Jacobianmatrix that maps perturbations in the tangent plane of C0 to perturbations inthe tangent plane of C: ��C = @�C@�C0 ��C0 : (18)The invariant property will have the same value for both solutions: I(�C) =I(�C0 ). Moreover, since I is invariant to all points inM, it must also be invariantto in�nitesimal perturbations in M, and hence its gradient must be orthogonalto the tangent plane of M: rT� I 2 T [M]?: (19)A perturbation of the invariant at �C can be written:�I(�C) = rT� I��C = rT� I @�C@�C0 ��C0 : (20)The variance of the invariant can be calculated using both components of thisequation: V [I] = rT� IV [�C ]rT� I> = rT� I @�C@�C0 V [�C0 ] @�C@�C0 >rT� I>: (21)The covariances of parameters with indeterminacies may have \non-geometric"components along the tangent plane of the solution manifold. This equationtransforms these covariances into the uniquely de�ned covariance of a gaugeinvariant.We then apply the orthogonal constraint from equation (19) to both expres-sions for V [I] and obtain the following result:u>(V [�C ]� @�C@�C0 V [�C0 ] @�C@�C0 >)u = 0; 8u 2 T�C [M]?: (22)



This means that the di�erence between the covariance and the transformed co-variance: V [�C]� @�C@�C0 V [�C0 ] @�C@�C0 > must lie in the the tangent space T�C [M]. Orequivalently we can say that these two variances have the same orthogonal com-ponent to T [M] at �C. We denote this relationship as: V [�C ] � V [�C0 ] modM.Thus we have:Geometric Equivalence Relationship The covariance matrices V [�C] andV [�C0 ] are geometrically equivalent if and only ifV [�C] � V [�C0 ] modM: (23)In essence this says that at a point � 2 M, it is only the component of thecovariance that is not in the tangent plane that contributes to the geometricuncertainty. Any matrix satisfying this equivalence relationship captures thegeometric uncertainty of the parameters. The normal form of the covariancecalculated from equation (14) is a natural choice that captures this uncertaintyfor a given parametrization, and does not require constraints to be speci�ed.From this relationship we see that the covariance in any gauge is equivalentto the normal covariance, i.e.: VC [�C ] � V?M[�] mod M. Thus the covarianceof an invariant can be calculated directly from either of these covariances bytransforming them with the invariant gradient, rT� I, as in equation (21).4 Maximum Likelihood EstimationIt is known that Maximum Likelihood (ML) estimation is unbiased and obtainsthe optimal shape and motion parameters. The ML solution is obtained byminimizing the cost: J = (p��(�))>V �1p (p��(�))): (24)where � 2 T . The minimum value of this will have the same camera indetermi-nacies described in section 2.3, and hence determine a manifold,M, of geomet-rically equivalent solutions. A unique solution can be obtained by choosing anarbitrary gauge C.4.1 Free-Gauge SolutionInstead of constraining our minimization process with our chosen gauge C, ateach step we would like to choose a gauge orthogonal to the solution manifoldM, and proceed in that direction. We expect this to give better convergence tothe manifoldM especially when our desired gauge C has a large oblique angleto M. Once any point on M is achieved, it is easy to transform this solutioninto any desired gauge.Levenberg-Marquardt (LM) minimization is a combination of Gauss-Newtonand gradient descent. The gradient of J is obtained asr�J = �2rT��(�)V �1p (p��(�)); (25)



and the Gauss-Newton approximation for the Hessian:r2�J � 12Efr�Jr�J>g = 2rT��(�)V �1p rT��(�)>: (26)Gauss-Newton proceeds iteratively by solving the linear equation:r2�J�� = �r�J: (27)However, in our case the Hessian, r2�J , is singular due to the ambiguity direc-tions with rank n� r. Hence we take steps in the direction:�� = �(r2�J)�n�rrJ; (28)which proceeds orthogonally towards the manifoldM. This is called free-gaugeminimization. To implement LM we add a gradient term.At the solution, � 2 M, the covariance of the ML estimation of shape andmotion parameters is obtained as:V [�] = Ef����>g = 2(r2�J)�n�r (29)= 12(rT��(�)V �1p rT��(�)>)�n�r (30)It can be shown that this is identical to the normal covariance expression inequation (14), V [�] � V?M[�], and not just up to a geometric equivalence, andso we use this as an alternate expression to for the normal covariance.4.2 E�cient Covariance EstimationThe calculation of the generalized inverse in equations (28) and (30) involvesuse of SVD which takes O(n3) operations, and so for many feature points orimages is slow. The Hessian often has sparse structure and when it is multipliedby the gradient, as in LM, the generalized inverse can be avoided and e�cientminimization methods for J have been proposed [1, 2]. Here, however, we notonly want a fast LM method, but also an e�cient method to estimate the fullcovariance. We propose an e�cient method in this section.Let us assume that our parameter vector is divided into a shape and a motionpart, �s and �m respectively, such that � = (�>s ; �>m)>. The Hessian is then splitinto its shape and motion components:r2�J = � r2�sJ r�smJr�msJ r2�mJ � = � U WW> V � : (31)When noise in the feature points speci�ed by Vp are independent of each other, Uand V are full rank3 and sparse with O(N ) and O(M ) non-zero elements respec-tively, where N is the number of features and M is the number of images [2].3 U is full rank for a�ne and perspective projection, but not when homogeneous coor-dinates are used as the general projective case, but then we do not obtain Euclideanshape.



The cross-term matrix W is not sparse however, and so applying a standardsparse techniques will not reduce the complexity of determining the generalizedinverse.First we de�ne the full rank matrix T as follows:T = � I 0�W>U�1 I� (32)and obtain the block diagonal matrix:Tr2�JT> = �U 00 V �W>U�1W � : (33)Then we de�ne the covariance VT [�] by:VT [�] = T>(Tr2�JT>)�n�rT (34)= T>�U�1 00 (V �W>U�1W )�m�r�T;where m = 6M is the number of motion parameters. This can be obtained inO(N2M +M3) operations which, when when the number of images is small (i.e.M � N ), is much faster than the original SVD which is O(N3 +M3).In order for VT [�] to be a valid description of the uncertainty, we must showthat it is geometrically equivalent to V?M[�]. Let A = 12r2�J be half the Hessian,and consider the equation: Ax = u (35)where u is in the column space of A. The general solution is a combinationof a unique particular solution, xp = A�u, in the column space of A, and ahomogeneous solution, xh, which is any vector in the nullspace of A, i.e.Axh = 0.We left multiply equation (35) by T and rearrange to obtain:(TAT>)T�>x = Tu: (36)Then changing variables: y = T�>x, and solving for y we obtain: y = (TAT>)�Tu+yh where (TAT>)yh = 0. Now transforming back to x we can decompose thesolution into the particular and homogeneous parts:x = T>(TAT>)�Tu+ T>yh = xp + xh; (37)where xp = A�u is the particular solution obtained in equation (35). It is easyto see that T>yh is in the nullspace of A, and hence T>(TAT>)�Tu = xp+ x0hfor some vector x0h in the nullspace of A.We now apply the geometric equivalence test to V?M[�] = A� and VT [�] =T>(TAT>)�T . The change of constraint Jacobian is the identity: @�C@�C0 = I, andthe orthogonal component to the tangent space of M, T� [M]?, is spanned bythe columns of A and so u is any vector in the column space of A. Applying theequivalence relationship we obtain:u>(A� � T>(TAT>)�T )u = u>(xp � xp � x0h) = u>(�x0h) = 0; (38)



for all u in the column and row space of A, since x0h is in the nullspace. We thusconclude that VT [�] can be e�ciently estimated and is geometrically equivalentto the normal covariance V?M[�].
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Fig. 3. Four images of an eleven image sequence with signi�cant noise added and thescaled standard deviation of each point illustrated with an ellipse. The synthetic objectis shown bottom left. The optimal reconstruction, given the noise estimates, is shownon the right with uncertainty ellipsoids. These ellipsoids, corresponding to the 3 � 3block diagonal elements of a full shape covariance, are signi�cantly correlated as shownin the full covariance matrix in Figure 5.5 ResultsWe give some sample synthetic and real results illustrating our uncertainty mod-eling. A set of features in an image sequence with known correspondences isshown in Figure 3. The synthetic object is also shown along with a sample op-timal reconstruction and ellipsoids illustrating feature-based uncertainty. Theindividual feature uncertainties are strongly correlated as illustrated in the sub-sequent Figures.The normal covariance for this shape and motion recovery is shown in Figure4. This contains all of the necessary uncertainty in the features, but to experi-mentally con�rm it using Monte Carlo simulation requires that we select a gaugesuch as that in equation (8). In Figure 5 we show the predicted covariance ob-tained by projecting the normal covariance into this gauge using equation (17).Even though the normal covariance and the predicted covariance have signi�-cantly di�erent values and correlations, they contain the same geometric uncer-tainty (as they are equivalent under the Geometric Equivalence Relationship)



and will give the same predictions for uncertainties of gauge invariants. Figure 5also contains the Monte Carlo covariance estimate in this gauge, involving 400SFM reconstruction runs. It is very similar to the predicted covariance con�rm-ing that our uncertainty model is correct. An easier way to visually compare thecovariances is to plot the square root of their diagonal elements. This gives thenet standard deviation in each parameter in this gauge as illustrated in Figure 6.
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