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Abstract
We investigate the meaning of “statistical methods” for

geometric inference based on image feature points. Trac-
ing back the origin of feature uncertainty to image process-
ing operations, we discuss the implications of asymptotic
analysis in reference to “geometric fitting” and “geomet-
ric model selection”. We point out that a correspondence
exists between the standard statistical analysis and the ge-
ometric inference problem. We also compare the capabil-
ity of the “geometric AIC” and the “geometric MDL” in
detecting degeneracy.

1. Introduction

Statistical inference from images is one of the key
components of computer vision research today. Tradi-
tionally, statistical methods have been used for recog-
nition and classification purposes. Recently, however,
there are many studies of statistical analysis for geo-
metric inference based on geometric primitives such
as points and lines extracted by image processing op-
erations.

However, the term “statistical” has somewhat a
different meaning for such geometric inference prob-
lems than for the traditional recognition and classifi-
cation purposes. This difference has often been over-
looked, causing controversies over the validity of the
statistical approach to geometric problems in general.
In Sec. 2, we take a close look at this problem, tracing
back the origin of feature uncertainty to image pro-
cessing operations. In Sec. 3, we discuss the implica-
tions of asymptotic analysis in reference to “geometric
fitting” and “geometric model selection”. In Sec. 4,
we point out that a correspondence exists between
the standard statistical analysis and the geometric
inference problem. We also compare the capability
of the “geometric AIC” and the “geometric MDL” in
detecting degeneracy. Sec. 5 presents our concluding
remarks.

2. What is Geometric Inference?

2.1 Ensembles for geometric inference

The goal of statistical methods is not to study the
properties of observed data themselves but to infer
the properties of the ensemble from which we regard
the observed data as sampled. The ensemble may be a

collection of existing entities (e.g., the entire popula-
tion), but often it is a hypothetical set of conceivable
possibilities. When a statistical method is employed,
the underlying ensemble is often taken for granted.
However, this issue is very crucial for geometric infer-
ence based on feature points.

Suppose, for example, we extract feature points,
such as corners of walls and windows, from an image
of a building and want to test if they are collinear.
The reason why we need a statistical method is that
the extracted feature positions have uncertainty. So,
we have to judge the extracted feature points as
collinear if they are sufficiently aligned. We can also
evaluate the degree of uncertainty of the fitted line by
propagating the uncertainty of the individual points.
What is the ensemble that underlies this type of in-
ference?

This question reduces to the question of why the
uncertainty of the feature points occurs at all. After
all, statistical methods are not necessary if the data
are exact. Using a statistical method means regarding
the current feature position as sampled from a set of
its possible positions. But where else could it be if
not in the current position?

2.2 Uncertainty of feature extraction

Many algorithms have been proposed for extract-
ing feature points including the Harris operator [7]
and SUSAN [33], and their performance has been ex-
tensively compared [3, 28, 32]. However, if we use, for
example, the Harris operator to extract a particular
corner of a particular building image, the output is
unique (Fig. 1). No matter how many times we repeat
the extraction, we obtain the same point because no
external disturbances exist and the internal parame-
ters (e.g., thresholds for judgment) are unchanged. It
follows that the current position is the sole possibility.
How can we find it elsewhere?

If we closely examine the situation, we are com-
pelled to conclude that other possibilities should ex-
ist because the extracted position is not necessarily
correct. But if it is not correct, why did we extract
it? Why didn’t we extract the correct position in the
first place? The answer is: we cannot .
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Figure 1: (a) A feature point in an image of a building.
(b) Its enlargement and the uncertainty of the feature
location

2.3 Image processing for computer vision

The reason why there exist so many feature extrac-
tion algorithms, none of them being definitive, is that
they are aiming at an intrinsically impossible task. If
we were to extract a point around which, say, the in-
tensity varies to the largest degree in such and such
a measure, the algorithm would be unique; variations
may exist in intermediate steps, but the final output
should be the same.

However, what we want is not “image properties”
but “3-D properties” such as corners of a building,
but the way a 3-D property is translated into an im-
age property is intrinsically heuristic. As a result, as
many algorithms can exist as the number of heuristics
for its 2-D interpretation. If we specify a particular
3-D feature to extract, say a corner of a window, its
appearance in the image is not unique. It is affected
by many properties of the scene including the details
of its 3-D shape, the viewing orientation, the illumi-
nation condition, and the light reflectance properties
of the material. A slight variation of any of them can
result in a substantial difference in the image.

Theoretically, exact extraction would be possible if
all the properties of the scene were exactly known, but
to infer them from images is the very task of computer
vision. It follows that we must make a guess in the
image processing stage. For the current image, some
guesses may be correct, but others may be wrong.
The exact feature position could be found only by
an (non-existing) “ideal” algorithm that could guess
everything correctly.

This observation allows us to interpret the “possi-
ble feature positions” to be the positions that would
be located by different (non-ideal) algorithms based on
different guesses. It follows that the set of hypo-
thetical positions should be associated with the set
of hypothetical algorithms. The current position is
regarded as produced by an algorithm sampled from
it. This explains why one always obtains the same
position no matter how many times one repeats ex-
traction using that algorithm. To obtain a different
position, one has to sample another algorithm.
Remark 1 We may view the statistical ensemble in
the following way. If we repeat the same experiment,

the result should always be the same. But if we de-
clare that the experiment is the “same” if such and
such are the same while other things can vary; those
variable conditions define the ensemble. The conven-
tional view is to regard the experiment as the same
if the 3-D scene we are viewing is the same while
other properties, such as the lighting condition, can
vary. Then, the resulting image would be different for
each (hypothetical) experiment, so one would obtain
a different output each time, using the same image
processing algorithm. The expected spread of the
outputs measures the robustness of that algorithm.
Here, however, we are viewing the experiment as the
same if the image is the same. Then, we could obtain
different results only by sampling other algorithms.
The expected spread of the outputs measures the un-
certainty of feature detection from that image. We
take this view, because we are analyzing the relia-
bility of geometric inference from a particular image,
while the conventional view is suitable for assessing
the robustness of a particular algorithm.

2.4 Covariance matrix of a feature point

The performance of feature point extraction de-
pends on the image properties around that point. If,
for example, we want to extract a point in a region
with an almost homogeneous intensity, the result-
ing position may be ambiguous whatever algorithm is
used. In other words, the positions that potential al-
gorithms would extract should have a large spread. If,
on the other hand, the intensity greatly varies around
that point, any algorithm could easily locate it accu-
rately, meaning that the positions that the hypothet-
ical algorithms would extract should have a strong
peak. It follows that we may introduce for each fea-
ture point its covariance matrix that measures the
spread of its potential positions.

Let V [pα] be the covariance matrix of the αth fea-
ture point pα. The above argument implies that we
can estimate the qualitative characteristics of uncer-
tainty but not its absolute magnitude. So, we write
the covariance matrix V [pα] in the form

V [pα] = ε2V0[pα], (1)

where ε is an unknown magnitude of uncertainty,
which we call the noise level . The matrix V0[pα],
which we call the (scale) normalized covariance ma-
trix , describes the relative magnitude and the depen-
dence on orientations.

Remark 2 The decomposition of V [pα] into ε2 and
V0[pα] involves scale ambiguity. We assume that the
decomposition is made unique by an appropriate scale
normalization such as trV0[pα] = 2. However, the
subsequent analysis does not depend on particular
normalizations, so we do not explicitly specify it ex-
cept that it should be done in such a way that ε is
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much smaller than the data themselves. Note that
mathematically, modeling the covariance matrix by
a common scale factor ε2 and the individual matrix
part V0[pα] is rather restrictive. However, this model
is sufficient for most practical applications, as we de-
scribe in the following.

2.5 Covariance matrix estimation

If the intensity variations around pα are almost the
same in all directions, we can think of the probabil-
ity distribution as isotropic, a typical equiprobability
line, known as the uncertainty ellipses, being a circle
(Fig. 1(b)).

On the other hand, if pα is on an object bound-
ary, distinguishing it from nearby points should be
difficult whatever algorithm is used, so its covariance
matrix should have an elongated uncertainty ellipse
along that boundary.

However, existing feature extraction algorithms
are usually designed to output those points that have
large image variations around them, so points in a
region with an almost homogeneous intensity or on
object boundaries are rarely chosen. As a result,
the covariance matrix of a feature point extracted by
such an algorithm can be regarded as nearly isotropic.
This has also been confirmed by experiments [21], jus-
tifying the use of the identity as the normalized co-
variance matrix V0[pα].

Remark 3 The intensity variations around different
feature points are usually unrelated, so their uncer-
tainty can be regarded as statistically independent.
However, if we track feature points over consecutive
video frames, it has been observed that the uncer-
tainty has strong correlations over the frames [34].

Remark 4 Many interactive applications require
humans to extract feature points by manipulating a
mouse. Extraction by a human is also an “algorithm”,
and it has been shown by experiments that humans
are likely to choose “easy-to-see” points such as iso-
lated points and intersections, avoiding points in a
region with an almost homogeneous intensity or on
object boundaries [21]. In this sense, the statistical
characteristics of human extraction are very similar
to machine extraction. This is no surprise if we recall
that image processing for computer vision is essen-
tially a heuristic that simulates human perception. It
has also been reported that strong microscopic cor-
relations exist when humans manually select corre-
sponding feature points over multiple images [26].

2.6 Image quality and uncertainty

The uncertainty of feature points has often been
identified with “image noise”, giving a misleading im-
pression as if the feature locations were perturbed by

random intensity fluctuations. Of course, we may ob-
tain better results using higher-quality images what-
ever algorithm is used. However, the task of com-
puter vision is not to analyze “image properties” but
to study the “3-D properties” of the scene. As long
as the image properties and the 3-D properties do
not correspond one to one, any image processing in-
evitably entails some degree of uncertainty, however
high the image quality may be, and the result must
be interpreted statistically. The underlying ensemble
is the set of hypothetical (inherently imperfect) algo-
rithms of image processing. Yet, the performance of
image processing algorithms has often been evaluated
by adding independent Gaussian noise to individual
pixels.

Remark 5 This also applies to edge detection, whose
goal is to find the boundaries of 3-D objects in
the scene. In reality, all existing algorithms seek
edges, i.e., lines and curves across which the inten-
sity changes discontinuously. Yet, this is regarded
by many as an objective image processing task,
and the detection performance is often evaluated by
adding independent Gaussian noise to individual pix-
els. From the above considerations, we conclude that
edge detection is also a heuristic and hence no defini-
tive algorithm will ever be found.

3. Asymptotic Analysis

3.1 What is asymptotic analysis?

As stated earlier, statistical estimation refers to
estimating the properties of an ensemble from a finite
number of samples, assuming some knowledge, or a
model , about the ensemble.

If the uncertainty originates from external condi-
tions, as in experiments in physics, the estimation
accuracy can be increased by controlling the measure-
ment devices and environments. For internal uncer-
tainty, on the other hand, there is no way of increas-
ing the accuracy except by repeating the experiment
and doing statistical inference. However, repeating
experiments usually entails costs, and in practice the
number of experiments is often limited.

Taking account of this, statisticians usually eval-
uate the performance of estimation asymptotically ,
analyzing the growth in accuracy as the number n
of experiments increases. This is justified because
a method whose accuracy increases more rapidly as
n → ∞ can reach admissible accuracy with a fewer
number of experiments (Fig. 2(a)).

In contrast, the ensemble for geometric inference
is, as we have seen, the set of potential feature po-
sitions that could be located if other (hypothetical)
algorithms were used. As noted earlier, however, we
can choose only one sample from the ensemble as long
as we use a particular image processing algorithm. In
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Figure 2: (a) For the standard statistical analysis, it is desired that the accuracy increases rapidly as the number
of experiments n → ∞, because admissible accuracy can be reached with a smaller number of experiments. (b) For
geometric inference, it is desired that the accuracy increases rapidly as the noise level ε → 0, because larger data
uncertainty can be tolerated for admissible accuracy.

other words, the number n of experiments is 1. Then,
how can we evaluate the performance of statistical es-
timation?

Evidently, we want a method whose accuracy is
sufficiently high even for large data uncertainty . This
implies that we need to analyze the growth in accu-
racy as the noise level ε decreases, because a method
whose accuracy increases more rapidly as ε → 0 can
tolerate larger data uncertainty for admissible accu-
racy (Fig. 2(b)).

3.2 Geometric fitting

We now illustrate the above consideration in more
specific terms. Let {pα}, α = 1, ..., N , be the ex-
tracted feature points. Suppose each point should
satisfy a parameterized constraint

F (pα, u) = 0 (2)

when no uncertainty exists. In the presence of un-
certainty, eq. (2) may not hold exactly. Our task is
to estimate the parameter u from observed positions
{pα} in the presence of uncertainty.

A typical problem of this form is to fit a line or a
curve to given N points in the image, but this can be
straightforwardly extended to multiple images. For
example, if a point (xα, yα) in one image corresponds
to a point (x′α, y′α) in another, we can regard them as
a single point pα in a 4-dimensional joint space with
coordinates (xα, yα, x′α, y′α). If the camera imaging
geometry is modeled as perspective projection, the
constraint (2) corresponds to the epipolar equation;
the parameter u is the fundamental matrix [8].

3.2.1 General geometric fitting

The above problem can be stated in abstract terms
as geometric fitting as follows. We view a feature
point in the image plane or a set of feature points in
the joint space as an m-dimensional vector x; we call
it a “datum”. Let {xα}, α = 1, ..., N , be observed
data. Their true values {x̄α} are supposed to satisfy
r constraint equations

F (k)(x̄α,u) = 0, k = 1, ..., r, (3)

parameterized by a p-dimensional vector u. We call
eq. (3) the (geometric) model . The domain X of the
data {xα} is called the data space; the domain U of
the parameter u is called the parameter space. The
number r of the constraint equations is called the rank
of the constraint. The r equations F (k)(x, u) = 0, k
= 1, ..., r, are assumed to be mutually independent,
defining a manifold S of codimension r parameterized
by u in the data space X . Eq. (3) requires that the
true values {x̄α} be all in the manifold S. Our task
is to estimate the parameter u from the noisy data
{xα} (Fig. 3(a)).

3.2.2 Maximum likelihood estimation

Let
V [xα] = ε2V0[xα] (4)

be the covariance matrix of xα, where ε and V0[xα]
are the noise level and the normalized covariance ma-
trix, respectively. If the distribution of uncertainty is
Gaussian, which we assume hereafter, the probability
density of the data {xα} is given by

P ({xα}) = C

N∏
α=1

e−(xα−x̄α,V [xα]−1(xα−x̄α))/2, (5)

where C is a normalization constant. Throughout
this paper, we denote the inner product of vectors a
and b by (a, b).

Maximum likelihood estimation (MLE ) is to find
the values of {x̄α} and u that maximize the like-
lihood , i.e., eq. (6) into which the data {xα} are
substituted, or equivalently minimize the sum of the
squared Mahalanobis distances in the form

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)) (6)

subject to the constraint (3) (Fig. 3(b)). The solution
is called the maximum likelihood (ML) estimator . If
the uncertainty is small, which we assume hereafter,
the constraint (3) can be eliminated by introducing
Lagrange multipliers and applying first order approx-
imation. After some manipulations, we obtain the
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Figure 3: (a) Fitting a manifold S to the data {xα}. (b) Estimating {x̄α} and u by minimizing the sum of squared
Mahalanobis distance with respect to the normalized covariance matrices V0[xα].

following form [9]:

J =
N∑

α=1

r∑

k,l=1

W (kl)
α F (k)(xα,u)F (l)(xα, u). (7)

Here, W
(kl)
α is the (kl) element of the inverse

of the r × r matrix whose (kl) element is
(∇xF

(k)
α , V0[xα]∇xF

(l)
α ); we symbolically write

(
W (kl)

α

)
=

(
(∇xF (k)

α , V0[xα]∇xF (l)
α )

)−1

, (8)

where ∇xF (k) is the gradient of the function F (k)

with respect to x. The subscript α means that x =
xα is substituted.

Remark 6 The data {xα} may be subject to some
constraints. For example, each xα may be a unit
vector. The above formulation still holds if the in-
verse V0[xα]−1 in eq. (6) is replaced by the (Moore-
Penrose) generalized (or pseudo) inverse V0[xα]− [9].
Similarly, the r constraints in eq. (3) may be redun-
dant, say only r′ (< r) of them are independent. The
above formulation still holds if the inverse in eq. (8)
is replaced by the generalized inverse of rank r′ with
all but r′ largest eigenvalues are replaced by zero [9].

3.2.3 Accuracy of the ML estimator

It can be shown [9] that the covariance matrix of
the ML estimator û has the form

V [û] = ε2M(û)−1 + O(ε4), (9)

where

M(u) =
N∑

α=1

r∑

k,l=1

W (kl)
α ∇uF (k)

α ∇uF (k)>
α . (10)

Here, ∇uF (k) is the gradient of the function F (k)

with respect to u. The subscript α means that x =
xα is substituted.

Remark 7 It can be proved that no other estima-
tors could reduce the covariance matrix further than
eq. (9) except for the higher order term O(ε4) [9, 12].

The ML estimator is optimal in this sense. Recall
that we are focusing on the asymptotic analysis for ε
→ 0. Thus, what we call the “ML estimator” should
be understood to be a first approximation to the true
ML estimator for small ε.

Remark 8 The p-dimensional parameter vector u
may be constrained. For example, it may be a unit
vector. If it has only p′ (< p) degrees of freedom,
the parameter space U is a p′-dimensional manifold
in Rp. In this case, the matrix M(u) in eq. (9) is
replaced by PuM(u)Pu, where Pu is the projec-
tion matrix onto the tangent space to the parameter
space U at u [9]. The inverse M(û)−1 in eq. (9) is
replaced by the generalized inverse M(û)−1 of rank
p′ [9].

3.3 Geometric model selection

Geometric fitting is to estimate the parameter u
of a a given model. If we have multiple candidate
models

F
(k)
1 (x̄α, u1) = 0, F

(k)
2 (x̄α, u2) = 0, ..., (11)

from which we are to select an appropriate one for
the observed data {xα}, the problem is (geometric)
model selection [9, 11, 13].

Suppose, for example, we want to fit a curve to
given points in two dimensions. If they are almost
collinear, a straight line may fit fairly well, but a
quadratic curve may fit better, and a cubic curve even
better. Which curve should we fit? A naive idea is to
compare the residual (sum of squares), i.e., the min-
imum value Ĵ of J in eq. (6); we select the one that
has the smallest residual Ĵ . This does not work, how-
ever, because the ML estimator û is so determined as
to minimize the residual Ĵ , and the residual Ĵ can be
made arbitrarily smaller if the model is equipped with
more parameters to adjust. So, the only conclusion
would be to fit a curve of a sufficiently high degree
passing through all the points.

3.3.1 Geometric AIC

The above observation leads to the idea of com-
pensating for the negative bias of the residual caused
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by substituting the ML estimator. This is the prin-
ciple of Akaike’s AIC (Akaike information criterion)
[1], which is derived from the asymptotic behavior of
the Kullback-Leibler information (or divergence) as
the number n of experiments goes to infinity. Do-
ing a similar analysis to Akaike’s and examining the
asymptotic behavior as the noise level ε goes to zero,
we can obtain the following geometric AIC [9, 10]:

G-AIC = Ĵ + 2(Nd + p)ε2 + O(ε4). (12)

Here, d is the dimension of the manifold S defined by
the constraint (3) in the data space X , and p is the
dimension of u (i.e., the number of unknowns). The
model for which eq. (12) is the smallest is regarded as
the best. The derivation of eq. (12) is based on the
following facts [9, 10]:
• The ML estimator û converges to its true value

as ε → 0.
• The ML estimator û obeys a Gaussian distribu-

tion under linear constraints, because the noise
is assumed to be Gaussian. For nonlinear con-
straints, linear approximation can be justified
in the neighborhood of the solution if ε is suf-
ficiently small.

• A quadratic form in standardized Gaussian ran-
dom variables is subject to a χ2 distribution,
whose expectation is equal to its degree of free-
dom.

3.3.2 Geometric MDL

Another well known criterion for model selection is
Rissanen’s MDL (Minimum description length) [29,
30, 31], which measures the goodness of a model by
the minimum information theoretic code length of the
data and the model. The basic idea is simple, but the
following difficulties must be resolved for applying it
in practice:
• Encoding a problem involving real numbers re-

quires an infinitely long code length.
• The probability density, from which a minimum

length code can be obtained, involves unknown
parameters.

• The exact form of the minimum code length is
very difficult to compute.

Rissanen [29, 30, 31] avoided these difficulties by
quantizing the real numbers in a way that does not de-
pend on individual models and substituting the ML
estimators for the parameters. They, too, are real
numbers, so they are also quantized. The quanti-
zation width is so chosen as to minimize the total
description length (the two-stage encoding). The re-
sulting code length is evaluated asymptotically as the
data length n goes to infinity. If we analyzes the
asymptotic behavior of encoding the geometric fitting
problem as the noise level ε goes to zero, we obtain

the following geometric MDL [15]:

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2

+ O(ε2). (13)

Here, L is a reference length chosen so that its ratio
to the magnitude of data is O(1), e.g., L can be taken
to be the image size for feature point data. Its exact
determination requires an a priori distribution that
specifies where the data are likely to appear (we will
discuss this more in Sec. 4.1), but it has been observed
that the model selection is not very much affected by
L as long as it is within the same order of magnitude
[15].

4. Statistical vs. Geometric Inference

We now point out that a correspondence exists be-
tween the standard statistical analysis and the geo-
metric inference problem. We also compare the capa-
bility of the geometric AIC and the geometric MDL
in detecting degeneracy.

4.1 Standard statistical analysis

The asymptotic analysis in Sec. 3 bears a strong re-
semblance to the standard statistical estimation prob-
lem: after observing n data x1, x2, ..., xn, we want
to estimate the parameter θ of the probability den-
sity P (x|θ) called the (stochastic) model , according
to which each datum is assumed to be sampled inde-
pendently.

Maximum likelihood estimation (MLE ) is to
find the value θ that maximizes

∏n
i=1 P (xi|θ),

or equivalently minimizes its negative logarithm
−∑n

i=1 log P (xi|θ). It can be shown that the co-
variance matrix V [θ̂] of the resulting ML estimator θ̂
converges, under a mild condition, to O as the num-
ber n of experiments goes to infinity (consistency) in
the form

V [θ̂] = I(θ)−1 + O
( 1

n2

)
, (14)

where we define the Fisher information matrix I(θ)
by

I(θ) = nE[(∇θ log P (x|θ))(∇θ log P (x|θ))>]. (15)

The operation E[ · ] denotes expectation with respect
to the density P (x|θ). The first term in the right-
hand side of eq. (14) is called the Cramer-Rao lower
bound , describing the minimum degree of fluctuations
in all estimators. Thus, the ML estimator is optimal
if n is sufficiently large (asymptotic efficiency).

If we have multiple candidate models

P1(x|θ1), P2(x|θ2), P3(x|θ3), ..., (16)

from which we are to select an appropriate one for the
observations x1, x2, ..., xn, the problem is (stochas-
tic) model selection. Akaike’s AIC has the following
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form:

AIC = −2
n∑

i=1

log P (xi|θ̂) + 2k + O
( 1

n

)
. (17)

The model for which this quantity is the smallest is
regarded as the best. The derivation of eq. (17) is
based on the following facts [1]:
• The maximum likelihood estimator θ̂ converges

to its true value as n → ∞ (the law of large
numbers).

• The maximum likelihood estimator θ̂ asymptot-
ically obeys a Gaussian distribution as n → ∞
(the central limit theorem).

• A quadratic form in standardized Gaussian ran-
dom variables is subject to a χ2 distribution,
whose expectation is equal to its degree of free-
dom.

The Rissanen’s MDL has the following form [30,
31]:

MDL = −
n∑

i=1

log P (xi|θ̂) +
k

2
log

n

2π

+ log
∫

T

√
|I(θ)|dθ + O(1). (18)

Here, θ̂ is the ML estimator; the symbol O(1) denotes
terms of order 0 in n in the limit n → ∞.

In order that the integration in the right-hand side
of eq. (18) exists, the domain T of the parameter θ
must be compact. In other words, we must specify
in the k-dimensional space of θ a finite region T in
which the true value of θ is likely to exist. This is
nothing but the Bayesian standpoint that requires a
prior distribution for the parameter to estimate. If
it is not known, we must introduce an appropriate
expedient to suppress an explicit dependence on the
prior. Such an expedient is also necessary for the
geometric MDL, i.e., the introduction of the reference
length L in eq. (18).

4.2 Dual interpretations

Thus, we have seen that the limit n → ∞ for the
standard statistical analysis corresponds to the limit
ε → 0 for geometric inference. For example, the co-
variance matrix of the ML estimator agrees with the
Cramer-Rao lower bound up to O(1/n2) for n → ∞
(see eq. (14)), while for geometric inference it agrees
with the lower bound bound up to O(ε4) for ε → 0
(see eq. (9)). If follows that 1/

√
n for the standard

statistical analysis plays the same role as ε for geo-
metric inference.

The same correspondence exists for model selec-
tion, too. The unknowns for geometric inference
are the p parameters of the constraint plus the N
true positions specified by the d coordinates of the

d-dimensional manifold S defined by the constraint.
If eq. (12) is divided by ε2, we have Ĵ/ε2 + 2(Nd +
p) + O(ε2), which is (−2 times the logarithmic likeli-
hood)+2(the number of unknowns), the same form as
Akaike’s AIC (17). The same holds for eq. (13), which
corresponds to Rissanen’s MDL (18) if ε is replaced
by 1/

√
n [15].

This correspondence can be interpreted as follows.
Since the underlying ensemble is hypothetical, we can
actually observe only one sample as long as a partic-
ular algorithm is used. Suppose we hypothetically
sample n different algorithms to find n different po-
sitions. The optimal estimate of the true position
under the Gaussian model is their sample mean. The
covariance matrix of the sample mean is 1/n times
that of the individual samples. Hence, this hypothet-
ical estimation is equivalent to dividing the noise level
ε in eq. (4) by

√
n.

In fact, there were attempts to generate a hypo-
thetical ensemble of algorithms by randomly varying
the internal parameters (e.g., the thresholds for judg-
ments), not adding random noise to the image [4, 5].
Then, one can compute their means and covariance
matrix. Such a process as a whole can be regarded
as one operation that effectively achieves higher ac-
curacy.

Thus, the asymptotic analysis for ε → 0 is equiv-
alent to the asymptotic analysis for n → ∞, where
n is the number of hypothetical observations. As a
result, the expression · · ·+O(1/

√
nk) in the standard

statistical analysis turns into · · ·+O(εk) in geometric
inference.

4.3 Noise level estimation

In order to use the geometric AIC or the geomet-
ric MDL, we need to know the noise level ε. If not
known, it must be estimated. Here arises a sharp
contrast between the standard statistical analysis and
our geometric inference.

For the standard statistical analysis, the noise
magnitude is a model parameter , because “noise” is
defined to be the random effects that cannot be ac-
counted for by the assumed model . Hence, the noise
magnitude should be estimated, if not known, accord-
ing to the assumed model . For geometric inference,
on the other hand, the noise level ε is a constant that
reflects the uncertainty of feature detection. So, it
should be estimated independently of individual mod-
els.

If we know the true model, it can be estimated
from the residual Ĵ using the knowledge that Ĵ/ε2 is
subject to a χ2 distribution with rN − p degrees of
freedom in the first order [9]. Specifically, we obtain
an unbiased estimator of ε2 in the form

ε̂2 =
Ĵ

rN − p
. (19)
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The validity of this formula has been confirmed by
many simulations.

One may wonder if model selection is necessary
at all when the true model is known. In practice,
however, a typical situation where model selection
is called for is degeneracy detection. In 3-D analy-
sis from images, for example, the constraint (3) cor-
responds to our knowledge about the scene such as
rigidity of motion. However, the computation fails
if degeneracy occurs (e.g., the motion is zero). Even
if exact degeneracy does not occur, the computation
may become numerically unstable in near degeneracy
conditions. In such a case, the computation can be
stabilized by switching to a model that describes the
degeneracy [11, 16, 19, 20, 23, 27, 40].

Degeneracy means addition of new constraints,
such as some quantity being zero. It follows that the
manifold S degenerates into a submanifold S ′ of it.
Since the general model still holds irrespective of the
degeneracy, i.e. S ′ ⊂ S, we can estimate the noise
level ε from the residual Ĵ of the general model S
using eq. (19).

Remark 9 Eq. (19) can be intuitively understood
as follows. Recall that Ĵ is the sum of the square
distances from {xα} to the manifold Ŝ defined by
the constraint F (k)(x, u) = 0, k = 1, ..., r. Since Ŝ
has codimension r (the dimension of the orthogonal
directions to it), the residual Ĵ should have expec-
tation rNε2. However, Ŝ is fitted by adjusting its
p-dimensional parameter u, so the expectation of Ĵ
reduces to (rN − p)ε2.

Remark 10 It may appear that the residual Ĵ of
the general model cannot be stably computed in the
presence of degeneracy. However, what is unstable is
model specification, not the residual. For example, if
we fit a planar surface to almost collinear points in
3-D, it is difficult to specify the fitted plane stably;
the solution is very susceptible to noise. Yet, the
residual is stably computed, since unique specification
of the fit is difficult because all the candidates have
almost the same residual .

Remark 11 Note that the noise level estimation
from the general model S by eq. (19) is still valid
even if degeneracy occurs, because degeneracy means
shrinkage of the model manifold S ′ within S, which
does not affect the data deviations in the “orthogo-
nal” directions (in the Mahalanobis sense) to S that
account for the residual Ĵ .

4.4 Geometric AIC vs. geometric MDL

We now illustrate the different characteristics of
the geometric AIC and the geometric MDL in de-
tecting degeneracy. Consider a rectangular region
[0, 10] × [−1, 1] on the xy plane in the xyz space.

2A

z

x
y

O

Figure 4: Fitting a space line and a plane to points in
space.

We randomly take eleven points in it and magnify
the region A times in the y direction. Adding Gaus-
sian noise of mean 0 and variance ε2 to the x, y, and
z coordinates of each point independently, we fit a
space line and a plane in a statistically optimal man-
ner (Fig. 4). The rectangular region degenerates into
a line segment as A → 0.

A space line is a one-dimensional model with four
degrees of freedom; a plane is a two-dimensional
model with three degrees of freedom. Their geometric
AIC and geometric MDL are

G-AICl = Ĵl+2(N+4)ε2,

G-AICp = Ĵp+2(2N+3)ε2,

G-MDLl = Ĵl−(N+4)ε2 log
( ε

L

)2

,

G-MDLp = Ĵp−(2N+3)ε2 log
( ε

L

)2

, (20)

where the subscripts l and p refer to lines and planes,
respectively. For each A, we compare the geometric
AIC and the geometric MDL of the fitted line and
plane and choose the one that has the smaller value.
We used the reference length L = 1.

Fig. 5(a) shows the percentage of choosing a line
for ε = 0.01 after 1000 independent trials for each A.
If there were no noise, it should be 0% for A 6= 0 and
100% for A = 0. In the presence of noise, the geomet-
ric AIC has a high capability of distinguishing a line
from a plane, but it judges a line to be a plane with
some probability. In contrast, the geometric MDL
judges a line to be a line almost 100%, but it judges
a plane to be a line over a wide range of A.

In Fig. 5(a), we used the true value of ε2. Fig. 5(b)
shows the corresponding result using its estimate ob-
tained from the general plane model by eq. (19). We
observe somewhat degraded but similar performance
characteristics.

Thus, we can observe that the geometric AIC has
a higher capability for detecting degeneracy than the
geometric MDL, but the general model is chosen with
some probability when the true model is degener-
ate. In contrast, the percentage for the geometric
MDL to detect degeneracy when the true model is
really degenerate approaches 100% as the noise de-
creases. This is exactly the dual statement to the
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Figure 5: The rate (%) of detecting a space line by the geometric AIC (solid lines) and the geometric MDL (dashed
lines) with (a) the true noise level and (b) the estimated noise level.

well known fact, called the consistency of the MDL,
that the percentage for Rissanen’s MDL to identify
the true model converges to 100% in the limit of an
infinite number of observations. Rissanen’s MDL is
regarded by many as superior to Akaike’s AIC be-
cause the latter lacks this property.

At the cost of this consistency, however, the geo-
metric MDL regards a wide range of nondegenerate
models as degenerate. This is no surprise, since the
penalty−(Nd+p)ε2 log(ε/L)2 for the geometric MDL
in eq. (13) is heavier than the penalty 2(Nd + p)ε2

for the geometric AIC in eq. (12). As a result, the
geometric AIC is more faithful to the data than the
geometric MDL, which is more likely to choose a de-
generate model. This contrast has also been observed
in many applications [23, 18].

Remark 12 Despite the fundamental difference
of geometric model selection from the standard
(stochastic) model selection, many attempts have
been made in the past to apply Akaike’s AIC and
their variants to computer vision problems based on
the asymptotic analysis of n → ∞, where the inter-
pretation of n is different from problem to problem
[35, 36, 37, 38, 39]. Rissanen’s MDL is also used in
computer vision applications. Its use may be jus-
tified if the problem has the standard form of lin-
ear/nonlinear regression [2, 24]. Often, however, the
solution having a shorter description length was cho-
sen with a rather arbitrary definition of the complex-
ity [6, 22, 25].

Remark 13 Note that one cannot compare differ-
ent model selection criteria in general terms, be-
cause each is based on its own logic. Not only
that, one cannot prove that a particular criterion
works at all. In fact, although Akaike’s AIC and
Rissanen’s MDL are based on rigorous mathematics,
there is no guarantee that they work well in practice.
The mathematical rigor is in their reduction from
their starting principles (the Kullback-Leibler infor-
mation and the minimum description length princi-
ple), which are beyond proof. What one can tell
is which criterion is more suitable for a particular

application when used in a particular manner. The
geometric AIC and the geometric MDL have shown
to be effective in many computer vision applications
[14, 17, 18, 19, 20, 23, 27, 40], but other criteria may
be better in other applications. The important thing
is, however, to understand the underlying logic of
each criterion.

5. Conclusions

We have investigated the meaning of “statistical
methods” for geometric inference based on image fea-
ture points. Tracing back the origin of feature uncer-
tainty to image processing operations, we discussed
the implications of asymptotic analysis in reference to
“geometric fitting” and “geometric model selection”.
We also compared the capability of the “geometric
AIC” and the “geometric MDL” in detecting degen-
eracy.

The main emphasis of this paper is on the corre-
spondence between the asymptotic analysis for ε →
0 for geometric inference and the asymptotic analysis
for n →∞ for the standard statistical analysis, based
on our interpretation of the uncertainty of feature de-
tection.
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