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Reconstruction of 3-D Road Geometry from Images for
Autonomous Land Vehicles

KENICHI KANATANI ano KAZUNARI WATANABE

Abstract— A new algorithm for reconstructing 3-D road geometry
from images is presented for the purpose of autonomously navigating
land vehicles. The reconstruction is based on an idealized road model: A
road is assumed to be generated by a horizontal line segment of a fixed
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length sweeping in the scene. The constraints that ideal road images must
salisfy are expressed as a set of differential equations; the 3-D road
geometry is reconstructed by numerically integrating these differential
equations. In order to prevent numerical instability, a correction scheme
is proposed for stabilizing computation: At each numerical integration
step, the computed solution is modified in such a way that the required
constraint is always satisfied. Some examples based on real road images
are shown. We also discuss in detail the inkerent ill-posedness of the
problem and related technical issues.

1. INTRODUCTION

Recently. considerable attention has been paid to the research and
development of autonomous land vehicles (ALV’s) [2], [3], [10],
[13]. [23]-[25]. The ultimate aim of the research is to build vehicles
which navigate autonomously by taking video images of the scene
ahead. identifying the road, computing the 3-D geometry, and deter-
mining the course of navigation. The use of a guidance system, e.g.,
guiding lines painted on the road surface, makes the vehicle control
easier [7], [11], [16], but if the vehicle is to move along an arbitrary
road in an uncontrolled environment, we need several sophisticated
modules:

o First, an image analysis module is necessary for segmenting
input images, identifying roads and obstacles, and detecting
road boundaries.

e Second, a geometric reasoning module is necessary for inter-
preting the 3-D road geometry.

e Then, a path planning module is needed for computing the
course of the vehicle with desirable properties (shortest dis-
tance, obstacle avoidance, etc.).

o Finally, a navigation control module is required for driving
the vehicle as planned.

In the past, effort was concentrated on the image analysis module,
road boundary detection in particular. The techniques developed so
far include color analysis [24], Hough transforms [4], [25], model
fitting [23], and high-level reasoning {1], [14]. This communication
focuses on the geometric reasoning module. One way to obtain the
necessary 3-D data is direct measurement such as range sensing [8],
[9), [22]. In this communication, however, we propose an algorithm
to reconstruct the 3-D geometry from a single image by combining
the imaging geometry of perspective projection and an appropriate
model that idealizes real roads. This approach has the advantage of
not requiring any additional devices.

Many of previously proposed methods are based on finding pairs
of road boundary segments that are supposedly parallel in the scene
and then computing the vanishing points they define {15], [25]. The
computation is very easy if the road is assumed to be either hor-
izontal (but curved) or straight (but not necessarily horizontal). In
general, however, it is not easy to find such locally parallel pairs.
DeMenthon [5] proposed a discrete numerical method based on the

¥oad model proposed by Ozawa and Rosenfeld [18]. His algorithm
iteratively computes the 3-D road geometry from a pair of start-
ing points whose 3-D positions are assumed to be known. How-
ever, a cubic equation must be solved at each step, and the cor-
rect root must be chosen from among the computed three roots.
Once a wrong root is chosen, all the remaining steps become mean-
ingless. Sakurai et al. [20] proposed a parametric fitting approach
by preparing several prototypes of the 3-D road shape. Recently,
DeMenthon [6], [17] proposed a new approach based on the assump-
tion that the road is “locally flat,”” showing that the solution can be
computed locally.

The approach presented in this communication is differential as
opposed to the discrete approach of DeMenthon (5] and nonpara-
metric as opposed to the parametric approach of Sakurai et al. [21].
Cur approach is as follows:

e We first derive a set of differential equations which relate the
3-D road geometry with the projection image.
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Fig. 1. Point (X, Y, Z) in the scene is projected onto point (x, y) on the
image plane Z = f by perspective projection from the viewpoint located
at the coordinate origin O.

o Then, we compute the 3-D road shape by numerically inte-
grating these differential equations from given initial data.

Thus the solution is unique, and branching never appears.

There arise, however, two issues to be settled. First, we must deal
with computational instability. The computed solution always sat-
isfies the required constraints if the integration is exact. However, as
the numerical integration proceeds, the accumulated error can grow
very rapidly, and the computed road shape may no longer satisfy
the constrains. In order to avoid this computational instability, we
proposed a scheme of stabilizing correction: The computed solution
is modified at each numerical integration step in such a way that it
always satisfies the required constraints. Some examples based on
real road images will be shown.

The second issue is more fundamental; it is the inherent ill-
posedness of the problem. Since roads stretch away from the viewer,
the solution is more and more sensitively affected by the image data
as the distance from the viewer increases; even a perturbation of
one pixel can affect the solution by several kilometers in the distant
part of the road. This instability is inherent to the problem itself
and cannot be avoided even though the computation is exact. Thus
the 3-D road reconstruction is an extremely il/l-posed problem [19],
[20]. This point does not seem to have been given full attention in
the past [5], [6], [25]. We will discuss this issue in detail, and show
that our stabilizing correction scheme works as regularization [19],
[20].

I1. PersPECTIVE PROJECTION OF THE RoaD BouNDARY

We use a Cartesian XY Z-coordinate system fixed to the camera.
The camera imaging geometry is modeled by Fig. 1: The coordinate
origin O corresponds to the center of the camera lens, the Z axis
corresponds to the camera optical axis, and the plane Z = f is
identified as the image plane. A point in the scene is projected onto
the intersection of the image plane with the ray starting from the
origin O, which we call the viewpoint, and passing through that
point. The constant f, which we call the focal length, corresponds
to the distance between the center of the lens and the surface of the
film. We assume that its value is known. '

Take an image xy-coordinate system on the image plane so that
(0, 0, 1) is the image origin, and the x and y axes are, respectively,
parallel to the X and Y axes. Then, a point (X, Y, Z) in the scene
is projected onto the point (x, ¥) on the image plane as follows:

x=fX/Z y=fY/Z. (1)

Consider two space curves C;:(X,(), Y,(), Z,{)) and
C,:(X,(r), Y, (r), Z.(r)) in the scene. Here, / and r are arbitrary
parameterizations (not necessarily their arc lengths). Let ¢;: (x;(J),
Y1) and c,: (x.(r), y,(r)) be the plane curves on the image plane
resulting from the perspective projection of the space curves C; and
C,. In the following, we use an overdot to denote differentiation with
respect to the parameter involved in the expression. For instance, X,
and Y;, respectively, mean dx, /dl and dY,/d!, while y, and Z,,
respectively, mean dy,/dr and dZ, /dr (so, the same dot means
either d /dI or d /dr depending on the parameter involved in the ex-
pression). We also use letter s for expressions valid for both / and r.
With this convention, we have from (1)

Xs =xsZs/[f Y =yZs/f, )

s=l1,r.
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Fig. 2. A road cross segment has a fixed length and intersects with the road
boundaries perpendicularly.

Fig. 3. The vectors R, and K, are tangent to the road boundaries and also
orthogonal to both the cross-segment orientation T and the road surface
normal .

By differentiation, we have

, 1 . 5
XS = .‘;: (ng.s +X,Z;) r (Z."yS +yszs): s =1' r.

4 3

Let the two space curves C; and C, be the two boundaries of a
road of constant width, always keeping the same distance between
them. In mathematical terms, this constraint is described as follows
(Fig. 2):

o There exists a (yet unknown) one-to-one correspondence be-
tween the space curves C; and C, (i.e., a one-to-one corre-
spondence between the two parameters / and 7).

e The two corresponding points keep the same distance.

e The line segment connecting them, which we call the road cross
segment, meets both space curves perpendicularly.

Y, =

_(Tixs +Tays +Tsf)T1Xs +Tas) + (SiXs + S2ps + S/ )S1%s +S25)
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The resulting constraint is (R;,8) =0, s =/, r, or

Sle +SZY.\' +S3zs =0, (6)

Thus the tangent vectors R, s =/, r, must be orthogonal to both
T and §. Since (3) are already available, requiring both (5) and
(6) is overspecification. It seems that one of these can be chosen
arbitrarily, but this is not desirable as we can see immediately if we
substitute (3) into (5) and (6)

(T\xs +T1ys +T3f)zs = —(T1Xs +T1y5)Z;,

s=l,r.

s=I,r
¥)]

(Sixs + 8205 +SJf)zs = —(S1Xs +8295)Zs, s=l,r.

®

Note thatp . = (x5, ¥s, f) is the vector indicating the 3-D orientation
of the ray starting from the viewpoint O and passing through the point
R; on the road boundary (Fig. 1). Since the left-hand sides of (7)
and (8) are, respectively, written as (9, T)Z; and (p,, S)Z;, we see
that

e (7) is unable to determine Z, at points at which 7 happens to
be orthogonal top ; .

o (8) is unable to determine Z; at points at which § happens to
be orthogonal top, .

Moreover, when numerical computation is performed, computational
instability occurs at points at which (p,, T) =0 or (p,,S) = 0.

Here, we determine Z;, s =/, r, in such a way that both (7) and
(8) are satisfied on the average in the sense of least squares. We
choose the value of Z; by

(T1xs +T2ys + T3 f)Zs + (T1%5 +T295)Z; 1P
+[(S1x5 + S2¥s +SSf)zs + (81 x5 +Sz}"s)Zs]2 — min. (9)

The solution is

Z, =

III. DirrereNTIAL CONSTRAINTS ON THE RoAD Bounpary

Let us assume that a spline curve is fitted to each road boundary on
the image plane so that the image data x;, y,, Xs, Js, s =/, r, are
always available for arbitrary values of 5. Put R, = (X,, Y;, Z,),
Rs; = (X5, Ys,Zs), s =1, r. We want to determine the tangent
vectors R, s =/, r, assuming that the 3-D shape has already been
reconstructed up to points R, s =/, r. Since (3) give two constraints
on Xs, Ys, Zs, s = I, r, the tangent vectors R;, s = I, r, are
determined if one additional constraint is found. There exist two
alternatives: .

i) The tangent vectors R;, s = /, r, must be orthogonal to the
cross-segment vector R;-R, (Fig. 3). Hence, if we put

Rl "‘Rr - (XI _Xn YI -Yn Zl -Zr)
IR —R:\|  \ /X, =X, + (¥, =Y, )2 +(Z; - Z,7

1C))

we have a constraint (B, T) =0, s =/, r, where (¢, -) denotes inner
product. If we put T = (T'y, T,, T'3), this constraint is written as

T\Xs +T2¥s +T3Z, =0, )

ii) The tangent vectors R, s =/, r, must be orthogonal to the
surface normal to the road (Fig. 3). Let S = (S;, Sz, S3) be the
unit vector normal to the road surface. Since the 3-D road shape is
assumed to have already been reconstructed up to the present posi-
tion, the road surface normal § at the present position is also known.

T=

s=lI,r.

(S1x5 +S2y5s +83/)? + (T1xs + Tays + T3 f)?

Z;. (10)

The other components X, ¥, s = /, r, are computed from (3).
Thus we have obtained a set of differential equations which expresses
Xs,Ys,Zs,s =1,r,interms of X, Y, Z;, s =1, r, and other
known quantities.

These differential equations cannot be integrated at this stage, be-
cause we do not know the correspondence between the two param-
eters | and r; these parameters were arbitrarily assigned to the road
boundary image. Here, we simply relate / with r so that both points
R, and R, proceed by the same distance along the road boundaries
when / and r are, respectively, incremented by d/ and dr. In other

words, we require ||R,||d! = R, |dr, or

dr/dl = IR, /|R.]. 1y

If the differential relations for R; and R,, which were obtained in
the previous section; are substituted, the right-hand side is expressed
in terms of X, Y, Z;, s =1, r, and other known quantities. Thus
the above equation enables us to keep track of the correspondence
between / and r. Since X, Y,;, X,, Y, are expressed in terms of Z;
and Z, by (2), we obtain a set of three differential equations in the
form

d
d—; =F0(11 r, ZI’ Zr)
dZ
—# =Fl,r,2,2,)
% _F.r.212)). (12)
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Fig. 4. Correction of the computed road cross segment.

(The right-hand side of the third equation is Z,dr /dl.) The 3-D road
shape is determined by numerically integrating these equations with
respect to parameter / from known initial values Z;(/o), Z,(ro), ro
at! =1,.

IV. CORRECTION OF THE SOLUTION

The constraint (11) holds only approximately; it is exact only when
the road is not curved horizontally (but can be bent up and down). If
the road is curved, the point on the outer boundary must proceed by a
longer distance than the corresponding point on the inner boundary.
The reason why the approximation (11) is used is that the resulting
solution is only approximate even if the exact constraint is used. Since
the differential equations must be solved numerically, the growth of
accumulated error is inevitable. As a result, the constraints that the
exact solution should satisfy may not hold for the computed solution.

Our strategy here is as follows: At each step of the numerical in-
tegration, we correct the solution in such a way that it necessarily
satisfies the required constraints. Let R, and R, be the two corre-
sponding positions on the road boundary whose 3-D positions have
already been established by the preceding step (or given as initial
data). By the inductive hypothesis, the cross-segment vector R, —R,
is assumed to be horizontal. Apply one step of numerical integration,
and let R/, R/ be the computed positions. Compute the center points

1
Re=3® +R) RL-z®+R). (13
We correct the computed positions R/ and R} into new positions
R/ and R! in such a way that the following four conditions are all
satisfied (Fig. 4).
o The midpoint of R} and R is R

1

5 R +R;) =R.. (14)
e The cross-segment vector R}’ — R/ is horizontal

R/ -R!,N)=0. (15)

Here, N is the unit vector indicating the vertical direction.
e The cross-segment vector R/’ —R} has the same length as the
cross-segment vector R; — R,

IR, —R.[ =R/’ -R/|. (16)

e The average cross-segment vector [(R; —R) + R’ —R])1/2
is orthogonal to the center-line vector R, —R.

" "
((R, -R,)+2(R, —R) g’ —Rc) =0. an
Define
N x (R:. -R,.)
- Nx®.-R:) (18
IN xR] —Ro) !

This is the unit vector orthogonal to both N and R} —R.. Hence, it
is horizontal and orthogonal to the center-line vector. We can easily
confirm that the above conditions are all satisfied if we define

R/ =R, - R; —R.) +2R; —Rc, DT
R! =R, +® —R.) - 2R, —R., DT 19

The numerical integration requires the road surface normal S.
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(x5,ys)

Fig. 5. Correction of the road boundary parameter.

Strictly speaking, the surface normal § differs from position to po--
sition. For example, the surface normal at one endpoint R, of a road
cross segment may be different from that at the other endpoint R, .
However, since the change of the surface normal S affects the solu-
tion only mildly in the sense of least square, we fix it at the midpoint
R, for one computation step. The road surface normal S’ at R/ to
be used in the next computation step is set to

,_ _R.-R)xT
IR ~Re) x T

If the predicted position R/ is corrected into the new position R/,
the corresponding parameter value of s =/, r must also be corrected.
Let (xs, ¥s) and (x!, ¥!) be the image points corresponding to the
original positions R and R/, respectively, and let (x!’, y;’) be the
image point corresponding to the corrected position R}’. The image
point (x/, y!') may not necessarily be located on the road boundary
curve c;. We associate with this point the parameter of the closest

point on the road boundary curve as follows. For s =/, r, put

(20)

Ary = (x{ —x5, ¢ —y5) Q1)
(see Fig. 5). The length of Ar! projected onto Ar is given by

Ar, E(X; —Xs» y; —¥s)

As = |r!|| cos a = (Ar], Ar,) /| Ars|| (22)
where « is the angle made by Ar; and Ar;. Let
As' = || Arg|| - As. (23)

Let s and s’ be the respective parameter values of points (xs, ys)
and (x!, y!). We associate with the points (x', y{'), s =1, r, the
following parameter values:
n_ S'As +sAs’
As +As'

(Note that this formula works correctly even if As and/or As’ are
zero or negative.)

s=lr. (24)

V. EXxAMPLES

We took several video images of real roads near Gunma Univer-
sity in Kiryu, Gunma, Japan. The road boundaries were detected by
tracing the white lines painted on the road, and spline curves were
fitted to them. Since the techniques of road boundary detection and
spline fitting are not the issues of this communication, we omit the
details.

In order to start the numerical integration, we need initial data to
start from. The most straightforward way is the direct measurement
by range sensing or stereo. This is not difficult, since the measure-
ment need be applied to only the part of the road immediately in front
of the viewer. (Recently, DeMenthon [6), [17] proposed a simple
procedure of using a single image based on the detection of vanish-
ing points.) Once the road reconstruction process starts, the current
location is predicted from the already reconstructed road geometry
and the history of navigation.

In our experiment, we simply “‘back-projected” the road part near
the viewer onto a hypothetical horizontal ground (assuming that the
height of the viewer is known) and detected a cross segment that in-
tersects both boundaries nearly perpendicularly. We omit the details.
Then, the simultaneous differential equations (12) were numerically
integrated by the Runge-Kutta method with respect to the indepen-
dent variable /, and the correction scheme of Section IV was applied
at each step.
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Z(m)
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(c)
(a) An image of a road. (b) Spline fitting to the road boundary. (c)
The 3-D road shape reconstructed by numerical integration.

Fig. 6.

Since the integration step A/ for the Runge-Kutta method can be
arbitrarily adjusted in the course of integration, it is desirable that
the step A/ is chosen so that the corresponding interval AZ. along
the center line R, is kept nearly the same. The relation

g& - d((zn' +Zr)/2) T Fn'(lt r,Z;,Z,)-%-F,(I, r:Z!aZr)

dl di 2
(25)
suggests that a reasonable choice is
dl 2AZ
Al —— = £ A
az. “* " Fa.rnznz)+ 202y 0

Fig. 6(a) is an original road image. After the spline fitting, the road
boundaries shown in Fig. 6(b) are obtained. Fig. 6(c) indicates the 3-
D road shape reconstructed by numerical integration. The fop view
(orthographic projection onto the YZ plane) is shown above, and
the side view (orthographic projection onto the ZX plane) is shown
below. Fig. 7 shows another example, and the result is similarly
arranged. We can see that the 3-D road shape can be reconstructed
fairly well.

VI. INHERENT ILL-POSEDNESS OF THE PROBLEM

A very crucial issue has been revealed by our numerical exper-
iments. It is the inherent ill-posedness of the problem. This issue
is at the heart of the 3-D road geometry recovery problem, but due
attention does not seem to have been paid to it in the past.

In general, a straightforward way to reconstruct the 3-D geometry
of an object from its projection image is to first back-project the im-
age, i.e., construct a family of infinitely many candidate shapes that
all yield the observed image when projected. From among these can-
didates, we choose one that satisfies required constraints by invoking
a priori knowledge about the object. (Kanatani [12] called this ap-
proach the 3-D Euclidean approach and gave a general discussion
on this issue.)

The peculiarity of 3-D road reconstruction, as compared with other
types of 3-D object shape reconstruction, is the fact that road ex-
tends away from the viewer and covers a very long distance. (In
other reconstruction problems, the object is assumed to be located
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(a) An image of a road. (b) Spline fitting to the road boundary. (c)
The 3-D road shape reconstructed by numerical integration.

Fig. 7.

within a relatively narrow range of distance from the viewer.) If
the above stated approach is taken, the reconstructed shape becomes
very sensitively affected by the image data as the distance from the
viewer increases; even a perturbation of one pixel will affect the
reconstructed shape by many kilometers in the distance. This phe-
nomenon is inherent to the problem itself, and cannot be avoided
whichever scheme we use and however accurately the computation
is performed. In other words, the problem is inherently ill-posed
[19], [20].

The only possible way to cope with this inherent ill-posedness is
to give priority to the knowledge about the object, i.e., ignore
the image data if they are not compatible with the knowledge. In
the road reconstruction problem, the balance of weight between the
image data and the knowledge must be changed according to the
distance from the viewer: We should relatively faithfully follow the
image data (i.e., the spline curves of the detected road boundary) for
the part near the viewer, while we should depend on the knowledge
(i.e., the road model) more and more heavily as the distance from the
viewer increases. This strategy may be called regularization [19],
[20] but is very peculiar to the road reconstruction problem.

The scheme we have presented in this communication automatically
materializes this strategy. Consider (9), for instance. This greatly
stabilizes computation, because the second term forces the solution
to be smoothly connected to the already reconstructed part. We can
say that the solution is given inertia. Consider the correction scheme
(19). This forces the solution to satisfy the road model constraint,
but at the same time we are ignoring the image data; the projection
of the corrected road shape does not necessarily agree with the image
data (see Fig. 5). In short, the image data only exert a force. Even if
the spline curves turn abruptly, the reconstructed solution proceeds
smoothly. In the extremely long distance, the reconstruction proceeds
far and far ahead indefinitely by completely ignoring the image data.

After many experiments, we have observed that the reconstruction
goes very smoothly even if the image data are very noisy. We have
also tried various existing methods, but all failed (the reconstructed
3-D shape is extremely unrealistic, or completely wrong when the
true geometry is known, even if the computation does not break
down) when the viewpoint is very low. This vulnerability has been
little reported in the past because the road shape was reconstructed
cither over a short distance [13], [21], [23]-[25] (assuming that that
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was sufficient to navigate the vehicle) or from a very high viewpoint
looking down the road [5], [6]. The root cause of this vulnerability
is that all these methods faithfully rely on observed image data. In
contrast, our method works for a low viewpoint over a long distance.

VII. Discussions

We now discuss some other issues that may naturally be raised to
our scheme.

o Is the 3-D shape reconstructed by invoking a priori knowl-
edge accurate?

We cannot give a general answer because accuracy of the solu-
tion depends on not only accuracy of the observed image data but
also accuracy of the knowledge (e.g., if the road does not have
a constant width, the computed solution with a constant width can-
not be accurate at all). In view of the very nature of the problem,
we should rather regard the scheme as a way of guessing (or more
formally inference or hypothesis generation); its accuracy must be
tested by other means (e.g., by actually navigating the vehicle). The
same applies to human perception. (How “accurate” is the judgment
of a man driving a car about the 3-D road shape ahead?) In general,
the reconstruction is very accurate over a long distance if the road is
straight.

o Do we really need to reconstruct the 3-D road shape over a
long distance?

For actual navigation, it is probably sufficient to reconstruct the
part immediately in front of the vehicle. However, prediction of the
road geometry over a long distance is useful not only for actual
navigation but also for many other planning purposes.

o Can the reconstruction be carried out in real time as the
vehicle navigates?

We cannot answer this because it depends on actual implemen-
tation techniques. (Our experiments did not focus on speedup, so
spline fitting was recomputed every time it became necessary.) It
also depends on the interval length of numerical integration. In gen-
eral, the reconstruction stage is very simple and quick, because all
we need is computation of explicitly given algebraic expressions; no
searches and iterations are necessary. Much more time is required
for road boundary detection. If the 3-D reconstruction is intended
for planning purposes other than actual navigation, the computation
need not be done in real time.

VIII. ConcLUDING REMARKS

We have presented a scheme for recovering the 3-D road geometry
from a single image. The basic principle is to describe the relation-
ship between the 3-D road geometry and its 2-D image in terms of
differential equations and then reconstruct the 3-D road shape by
numerical integration. The process is completely automatic, and
the solution is unique; no searches or iterations are necessary.

We introduced techniques to stabilize the computation— the least
squares scheme to mix different types of constraints and the cor-
rection scheme to force the solution to satisfy required constraints.
Examples based on real road images have also been shown.

As the purpose of this work was to establish the validity of our
techniques and the experiment was performed on a small floppy-
based computer, no attempt was made to measure computation times;
we felt they would have little value considering the hardware used.

We have also given a detailed discussion on the very peculiar
nature of the 3-D road shape reconstruction problem—its inherent
ill-posedness. This is the core of the problem regardless of the so-
lution technique, but it has not been fully understood in the past.
We have pointed out that our stabilizing techniques work as regu-
larization, yielding a stable solution over a long distance. We have
also discussed some technical issues relevant to actual applications
to ALV systems.
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