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Abstract—A new algorithm is presented for reconstructing the three-dimensional (3-D) road shape from
camera images for the purposes of navigating autonomous land vehicles. The approximation that the
road surface is locally flat enables us to determine a one-to-one correspondence between the two road
boundaries, which together with our knowledge about roads (the ‘model’ of roads) determines the 3-D
road shape. In order to cope with the inaccuracy of image data, a least-squares curve-fitting technique
is proposed, and the behaviours of image noise are analysed. Some examples based on real images are
given.

1. INTRODUCTION

Considerable attention has recently been paid to the research and development of
autonomous land vehicles [1-4]. The ultimate aim of the research is to construct
vehicles that navigate autonomously by taking video images of the scene ahead,
identifying the road, computing the 3-D geometry, and determining the course of
navigation. The use of some guidance system, e.g. guiding lines painted on the road
surface, makes vehicle control easier [5], but if the vehicle is to move along an
arbitrary road in an uncontrolled environment, we need several sophisticated
modules—an image analysis module, a geometric reasoning module, a path-
planning module, and a navigation control module, for example.

In the past, effort has been concentrated on the image analysis module—road
boundary detection, in particular [6,7]). The techniques developed so far include
colour analysis [3], Hough transforms ([8], model fitting [2], and high-level
reasoning [9,10]. In this paper we focus on the geometric reasoning module.
Although the necessary 3-D data could be obtained by direct measurement such as
stereo and range sensing, we propose an algorithm to reconstruct the 3-D road
shape from a single image by combining the imaging geometry of perspective
projection with an appropriate model that idealizes real roads. This approach has
the advantage of not requiring any sophisticated sensing devices. Moreover, direct
measurement such as stereo and range sensing is effective only in the vicinity of the
sensing devices, while our method of model-based image analysis, as we will show,
can reconstruct the 3-D road shape over a very long distance, for which direct
sensing is almost impossible.

Many of previously proposed methods are based on finding pairs of road
boundary segments that are supposedly parallel in the scene and then computing
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their vanishing points [4, 11]. The computation is very easy if the road is assumed
to be either horizontal (but not necessarily straight) or straight (but not necessarily
horizontal). However, it is not easy to find such locally parallel pairs. In order to
avoid this difficulty, DeMenthon [12] proposed a discrete numerical method based
on the road model proposed by Ozawa and Rosenfeld [13]. His algorithm
iteratively computes the 3-D road shape from a pair of starting points whose 3-D
positions are known. Sakurai ef al. [14] proposed a parametric fitting approach by
preparing several prototypes of the 3-D road shape. Kanatani et al. [15,16]
proposed a differential approach, describing the constraints that ideal roads should
satisfy in terms of differential equations, and reconstructing the 3-D road shape by
numerically integrating them. Their method is very robust to noise even in the
distant part of the road.

The discrete approach of DeMenthon and Davis [17] and the differential
approach of Kanatani ef al. [15, 16] both suffer the same problem: computational
error grows rapidly in the course of reconstruction due to the inaccuracy of the
original image data and approximations involved in the scheme. Later, DeMenthon
and Davis [17] proposed a new scheme based on the assumption that the road is
locally flat and showed that the solution can be determined pointwise. As a result,
one part of the solution is not affected by the error involved in other parts of the
solution. However, this very locality destroys the global consistency of the solution;
locally constructed solutions can be inconsistent with each other. DeMenthon and
Davis [17] proposed the use of dynamic programming to search for a globally
consistent solution, but there is no guarantee that such a solution exists.

In this paper, we reformulate the local flatness approximation of DeMenthon and
Davis [17] in terms of N-vectors representing points and lines in the image [18, 19].
- The use of N-vectors ensures that computation is always done in a finite domain
without the danger of computational overflow. At the same time, the 3-D
implications of vanishing points and vanishing lines are straightforwardly
understood in terms of N-vectors [18,20].

First, we determine a one-to-one correspondence between the two road
boundaries in the image by solving the equation that expresses the local flatness
approximation. We also present an approximation technique to facilitate numerical
computation. The resulting one-to-one correspondence point-wise determine the
3-D road shape independently of other points. The reconstructed 3-D shape may be
wildly distorted, since a slight error of the detected road boundary can cause a very
large deviation in the distant part. In this paper, we propose a technique to fit a
globally defined smooth curve to the computed 3-D road shape by analysing the
behaviours of image noise. In this curve fitting, estimation of the road vanishing
point plays a crucial role, and its implications to human perception will be
discussed. Examples based on real images are also given.

2. PERSPECTIVE PROJECTION AND BACK-PROJECTION OF ROADS

We use an XYZ-coordinate system fixed to the camera in such a way that the
coordinate origin O coincides with the centre of the lens, which we call the
viewpoint, and the Z-axis coincides with the optical axis of the camera. The camera
imaging can be modelled as perspective projection of the scene onto an image plane
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placed parallel to the XY-plane apart from the viewpoint O by a distance Jf, which
we call the focal length (Fig. 1). The yvalue of f (measured in image pixels) is
assumed to be calibrated beforehand [21]. A point (X, Y, Z) in the scene is
projected onto a point (x,y) on the image plane according to the following
relationship:

x=f%, y=r1. 0

Let P;:(x(/), y(1)) and P,:(x(r), y(r)) be the projections of the road boundaries,
where / and r are arbitrary parameters defined along the image curves (e.g. the arc
lengths measured on the image plane). We assume that the road boundaries are
obtained as parameterized smooth curves.

In general, 3-D geometry cannot be reconstructed directly from a single image
because depth information is completely lost. For a unique 3-D reconstruction, we
need some a priori information about the 3-D shape to be reconstructed. Following
DeMenthon and co-workers [12, 17,22] and Kanatani e? al. [15, 16, 19], we assume
that a road is generated by a line segment of known length w sweeping in the scene
in such a way that the segment is always kept horizontal and the trajectories of its
end-points meet the segment perpendicularly (Fig. 1). This means that:

@ there exists a one-to-one correspondence between the two road boundaries;

@ line segments joining the corresponding points, which we call the cross-
segments, are horizontal;

@ all cross-segments have the same length w; and

@ all cross-segments meet the road boundaries perpendicularly at their end-points.

NGRSO,
\ z

\/ Ri(XiYi,2)

Rr:(Xe¥;Z1)

Figure 1. The scene is perspectively projected onto the image plane. A road is assumed to be generated
by a horizontal cross-segment of fixed length w sweeping in the scene in such a way that the trajectories
of its end-points meet it perpendicularly.
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Let Pr:(x(!), y(1)) and P.:(x(r), y(r)) be points on the left and right road
boundaries, respectively, on the image plane. Define unit vectors

x(/) x(r)
m()=N[|{y() )], m@)=N[|») |1, ¥))]
S f

where N[ -] designates normalization into a unit vector (i.e. N[a] = af || a ||, where
|| a || is the norm of vector a). These are the unit vectors starting from the viewpoint
O and respectively pointing toward points P; and P; on the image plane Z=f
(Fig. 1). We call these vectors the N-vectors of points P; and P, [18,21]. As
- DeMenthon and Davis [17] pointed out, the 3-D road shape is reconstructed
straightforwardly once a one-to-one correspondence between the road boundaries
is established. Indeed, there exists the following explicit relationship (in this paper,
(a,b) denotes the inner product of vectors a and b):

Proposition 1. If P;and P; are the projections of two corresponding points, and
if m(r) and m(/) are their respective N-vectors, their 3-D positions are given by

R=_V.m@)| w|(V,mQ))|
D(V,m(l), m(r)) D(V, m(/), m(r))

m(/), R,= m(r), (3)
where
DV, m(!), m(r)) = J(V,m(1))* + (V,m(r))? = 2(V, m()) (V, m(r)) m (), m(r)). O]

Here, vector V is the unit vector indicating the vertical orientation and w is the
width of the road. O

Proof. If we put R, = ¢m(/) and R, = ¢;m(r), and determine the constants ¢; (>0)
and ¢,(>0) in such a way that |R,—R,||=w and (V,R,—R,)=0 are satisfied
(Fig. 1), we obtain equations (3). O

Hence, the remaining issue is how to find the correct correspondence. Note that
equations (3) become singular when the line of sight is horizontal. Namely, if
(V, m(/)) = 0, we must necessarily have (V, m(r)) = 0 for the solution to exist, but
then the right-hand sides of equations (3) become 0/0. Hence, if the road is uphill
and its projection crosses over the horizon in the image, the intersections of the
horizon with the two road boundaries must correspond to each other. Equations (3)

m(l) P R

Of(r:j\Pr !w

Figure 2. Infinitely many solutions exist if the road cross-segment lies entirely in the horizontal plane
passing through the viewpoint O.
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are indeterminate there, yielding infinitely many solutions (Fig. 2). This implies that
numerical instability occurs near the horizon. In Section 5, we propose a curve-
fitting approach to overcome this difficulty.

3. LOCAL FLATNESS APPROXIMATION

Let P; and P, be a pair of corresponding points on the road boundaries in the
image. Let m(/) and m(r) be their respective N-vectors. Consider the tangents to
the road boundaries at these points (Fig. 3). Their orientations are specified by 2-D
vectors (x(/), y(/)) and (x(r), y(r)), where the dot indicates differentiation with
respect to the parameter (e.g. X(/) =dx(/)/d/ and y(r) =dy(r)/dr). Since we are
assuming that the road boundaries are obtained as parameterized smooth curves,
their derivatives are readily available.

Consider the planes passing through the viewpoint O and intersecting the image
plane Z = f along these tangents. Let n(/) and n(r) be their respective unit surface
normals (Fig. 3). We call these vectors the N-vectors of the tangents [18, 21].

Proposition 2. The N-vectors of the tangents at points (x(), y()) and
(x(r), y(r)) are respectively given by

=Sy(\) =Sy
n(/)= N[ SxW) 1, n(r)=N[ Sx(r) 1. 06
x(Ny() - y()x() x(r)y(r) - y(r)x(r)

Proof. Vectors (x(r), y(r), f)T and (x(r), 7(r),0) both lie in the plane defined
by the viewpoint O and the tangent at P,. Hence, its unit surface normal n(r) is
obtained by normalizing their vector product (Fig. 3). The unit surface normal n(/)
is similarly obtained. ad

The correspondence between the road boundaries is easily established if we
employ the local flatness approximation of DeMenthon and Davis [17]), which
states that every cross-segment and the tangents at its end-points define a tangent

Figure 3. Vector m(r) starts from the viewpoint O and points toward P, on the right road boundary,
while vector n(r) is normal to the plane defined by the viewpoint O and the tangent to the right road
- boundary at P,. Vectors m(/) and n(/) are similarly defined for the left road boundary.
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Figure 4. The local-flatness approximation: a cross-segment and the tangents at its end-points define a
tangent plane. The moving frame (t,e,s} is defined for each cross-segment.

plane in the 3-D scene (Fig. 4). This is only an approximation because if this were
strictly true, no twist would be allowed; hence a spiral-shaped road could not be
described. However, this is a good approximation if the twist is not very wild. The
following Proposition 3 essentially states the condition originally proposed by
DeMenthon and Davis [17] but has a slightly different form (in this paper,
|abe|=(a,bx¢)=(b,cxa)=(c,axb) designates the scalar triple product of
three vectors a, b, and c):

Proposition 3. Under the local flatness approximation, corresponding points P
and P, are related by

vV, m(r) | m@OanE) | + YV, m@) | m@En@)nd@|=0. O (6)
Proof. See Fig. 5. Under the local flatness approximation, the two tangents in the

scene are parallel to each other. Hence, their vanishing point is at the intersection
P., of the projections of the tangents on the image plane. Its N-vector is given by

Po
Q& /
X
Pr
0 y

Figure 5. The vanishing point P of the tangents at the corresponding points P; and P, indicates the
local 3-D orientation of the road surface. The vanishing point Q. of the corresponding cross-segment
lies on the horizon and indicates the 3-D orientation of P;P,. The tangents at P; and P, must be
orthogonal to the cross-segment PP, in the scene.
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Nn(/) x n(r)]. Since the N-vector of the vanishing point of a line in the scene
designates its 3-D orientation, the 3-D orientation of the two tangents is given by
N[n{) xn(r)).

The horizon is a line on the image plane whose N-vector is V. Since all cross-
segments are horizontal in the scene, their vanishing points are at the intersections
of the horizon with their projections on the image plane. Since the N-vector of line
PP, is N[m(/) X m(r)], and since it is a projection of a cross-segment, the N-vector
of its vanishing point Qw is given by N[V X N[m(/) x m(r)]], which indicates the
3-D orientation of the cross-segment in the scene. -

Since the cross-segment is orthogonal to the two tangents in the scene, we have

(N[VXN[m() xm(r)]], N[n() X n(r)])) = 0. Q)

The normalization operation N[+] can be removed because it is an operation of

(c)

Figure 6. (a) The N-vector m of the intersection P of two lines / and /' is orthogonal to their N-vectors
n and n’. (b) The N-vector n of the line / passing through two points P and P’ is orthogonal to their
N-vectors m and m’. (c¢) The N-vector m of the vanishing point P of a line in the scene indicates its
3-D orientation, while the N-vector n of the vanishing line /, of a planar surface in the scene indicates
its unit surface normal.
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multiplying a constant. Using the identity a x (b X ¢) = (a, ¢)b — (a, b)c, we obtain
equation (6). 4
In the above proof, we used the following fundamental facts [18,20]:

® The N-vector m of the intersection P of two lines / and /' is obtained by
normalizing the vector product n X n’ of the N-vectors n and n’ of the two lines
/ and !’ (Fig. 6a).

©® The N-vector n of the line / passing through two points P and P’ is obtained
by normalizing the vector product m X m’ of the N-vectors m and m’ of the two
points P and P’ (Fig. 6b).

We have also used the following fundamental relationships [18,20] (Fig. 6c):

® The N-vector of the vanishing point of a line in the scene indicates its 3-D
orientation.

@ The N-vector of the vanishing line of a planar surface in the scene indicates its
unit surface normal.

4. DETERMINATION OF THE CORRESPONDENCE

Since we assume that N-vectors m(/), m(r), n(/), and n(r) have been obtained as
smooth functions of / and r, equation (6) establishes a correspondence between the
two parameters / and r. Hence, we can use Newton iterations to determine
numerically, say, the value of r for a given value of /. In order to do Newton
iterations, the derivative of the equation must be evaluated. Let F(/, r) be the left-
hand side of equation (6). If the road boundaries are straight, we have n(r) =0.
Even if the road boundaries are curved, we can expect n(r) = 0 as long as the
curvature is not very large. With this approximation, we have

Proposition 4.
% G = v Va@mE) | mOn@n() |+ (V, m@))m(),n(@)],  (8)
where »(r) = ||m(r)||. O

Proof. If ni(r) =0, the derivative d F(/, r)[ar is
V,m@) [ m@On@n(r) |+ (V,m@®) | m@)n)nd)|. )]

Since m(r) and n(r) are mutually orthogonal unit vectors, vector n(r) x m(r) is
orthogonal to both of n(r) and m(r) and has unit length. Since vector m(r) is
orthogonal to both of n(r) and m(r) (Fig. 3), we have

m@)=v(n@) X mr). (10)

From equations (5), it is easy to confirm that this gives the correct sign. Thus, we
have

(V,m(r) + »(r)(V,n(r)xm(r)) = v(r) | Va()m(r) |, (11)
| ()| = @(r) xn@),n()) = »(r)(m(), n()), (12)
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where we have used the relationship (n(r) x m(r)) X n(r) = m(r). If these are
substituted into equation (9), we obtain equation (8). O

Proposition 5. If the parameter r is taken to be the arc length along the right road
boundary on the image plane, we have

1 (m(r),k)*

S Jm@), k) + [n(ym()k | >’ (13)
where k = (0,0, 1)". o

v(r)=

Proof. From the definition of the N-vector m(r), we can see that OP, =
Jm(r) (m(r), k) (Fig. 1). Hence,

dOP: __jin(r)__f@@.k) Lo frOn@)xm) _fln@mek]| ve)
& @),k @e),ky (m(r), 1) (m (), k)’

m(r),
(14)

where equation (10) has been substituted. Since n(r) x m(r) and m(r) are mutually
orthogonal unit vectors, we have

dOP, ||? _ ( fo(r) )2 (fl n()m(r)k | »(r)\* (15)

dr m@),k)/ '\ (m(),k) '
If r is the arc length on the image plane, we have || dOP,/dr|| =1, from which we
obtain equation (13). O

Using Propositions 4 and 5, we can compute 3 F(/, r){ar from m(/), m(r), n(/),
and n(r) without taking derivatives. For a given /, the corresponding r is given by
the Newton iteration formula r « r— F(/, r){ (8F(/,r)/dr). If we want to determine

! as a function of r, we repeat the same procedure after exchanging the roles of /
and r.

5. CURVE FITTING

The point-to-point correspondence between the road boundaries is determined
point-wise as shown in the preceding section. The 3-D location of the resulting
cross-segment is determined by Proposition 1. Hence, the 3-D road shape is point-
wise reconstructed independently of other parts of the road. However, the
reconstructed shape may not be smooth. Also, numerical instability occurs, as
pointed out in Section 2, near the horizon if the road image crosses over it. In order
to force smoothness, two stages are necessary:

(1) erroneous cross-segments are removed, and
(2) a smooth curve is fitted to the centres of the remaining cross-segments.

First, we must establish a criterion which tells us to what extent a cross-segment
is erroneous. To this end, we introduce the moving frame of the cross-segment
(Fig. 4). It is a triad of mutually orthogonal unit vectors {t,s, e}:

@ vector t indicates the 3-D orientation of the road direction;
® vector e indicates the 3-D orientation of the cross-segment; and
@ vector s indicates the road surface normal.
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Proposition 6.
t=N[n({)xn(r)], e=N[Vxt], s=N[txe]. O (1e)

Proof. Since N[n(/) x n(r)] is the N-vector of the intersection of the tangents to
the road boundaries at the two end-points of the cross-segment, it indicates the 3-D
orientation of the tangents. Since the cross-segment is horizontal and perpendicular
to the tangents at its end-points in the scene, its direction e is orthogonal to both
the vertical orientation V and the road direction t. Also, the road surface normal
s is orthogonal to both the road direction t and the cross-segment orientation e.
From these, we obtain equations (6). a

Since the three vectors {t,e,s} are determined for each cross-segment
independently of others, we reject those cross-segments whose moving frames
deviate too much from a standard one. As the standard, we consider the frame af
infinity. We first estimate the vanishing point Pux:(X=, V») by extending the detected
road boundaries by straight lines (Fig. 7). Let m« be its N-vector. The frame at
infinity is given by

tw=muo, eao=N[vxmoo], S@=N[mwxeq,]. (17)
We ignore those cross-segments for which
| (t,to) | < cOs B, |(e,€x)| <cOS Be, |(S,8x)]| < cos b5, (18)

where 6,, 0., and 6; are preassigned maximum tolerable angles of deviation.
The 3-D positions of the surviving cross-segments are computed by the procedure
of Proposition 1. Let

Re () = (Xe(D), Ye (i), Zc (i) (19

be the centre of the ith cross-segment. Its image point (xc(i), yc(f)) is given by

%) =S 5D, =773 (20)
X
Ho.( Ym)
ey
li«» o
{
lia iy

Figure 7. The vanishing point P of the road is estimated by extending the road boundaries by straight
lines.
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We fit a function of the form

1 & ok
Zotw) ~ o, ke = xe) @)

to the computed pairs {(1/Zc(i), xc(i))}, where x. is the x-coordinate of the
estimated vanishing point P.. We use the following least-squares criterion:

ZW.~(

1 N 2
Wil - 25 ak(xc(i)—x.p)") - min (22)

Z(() k=1

(Fig. 8). It makes sense to set the weight W; as a constant, as we will explain shortly.
The coefficients ax, k=1, ..., N, are easily determined by solving the simultaneous
linear equations obtained by differentiating the above expression with respect to ax
and putting the results equal to zero. The corrected depth Z.(i) of the ith cross-
segment is given by

Ze(i) = ——r? : 23)
2 a(xe@) = x)"
The end-points of the ith cross-segment are given by
Z:(i) N W
—_— + — p;
Z.0) Re() £ 5 e (24)

where w is the known road width.

Note that many types of function forms are conceivable for the purpose of fitting
a curve. The most natural one may be fitting Z. = Z.(X,) to data {(Z.({), X:(i))}.
However, this choice makes it difficult to back-project the road image onto the
computed curve, since non-linear equations must be solved in order to determine
the 3-D position of R.(i) that satisfies equations (20) for given (x. (i), yc(i)). In view
of this, relating x. to Z. is the best choice.

The reason why the reciprocal 1/Z. is used instead of Z. itself is that the right-
hand side of equation (21) becomes linear if the road is flat. Indeed, if the road is
such that X. = pZ. — h, where p is the slope of the road and 4 is the vertical height
of the viewpoint O from the road, we have 1/Z; = — (xc — x»)/fh, where x. = fp.
In particular, we have 1/Z. = — x¢/fh if the road is horizontal (X = - h).

X x

Figure 8. A smooth curve is fitted to the computed 3-D positions.
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It is crucial to adopt a polynomial in x. — X instead of simply x. on the right-
hand side of equation (21) because the constraint Z.(x.)= o must be strictly
imposed. Otherwise, inconsistencies may arise near the vanishing point P.: the
road may not exist where it should, or it may exist where it should not.

The weight W; of the least-squares criterion (22) is chosen to be a constant by the
following reasoning about the behaviours of image noise. The discrepancy of fitting
for the ith cross-segment is

N

1 . k

= - ag(xe(i) = x)". 25

Z.0) ijl K (Xe (i) ) (25)

Using a constant weight means suppressing the discrepancy uniformly over all

i:Z{L1(er)* > min. Since A(1/Zc) = —AZ[Z2, the discrepancy & = A(1/Zc(i))
gives rise to the discrepancy of Z.(i) by

AZc(i) = - Ze(i) e (26)

If the ith cross-segment is placed in the depth Z.(/) from the viewpoint O, its length
measured on the image plane (i.e. the width of the road image) is approximately
i = fw|Z.(i), where w is the true length of the cross-segment. Since §; is measured
on the image plane, it may contain an error of a few pixels. The error Aé; of the
width §; and the error AZ. (i) it causes to the computed depth Z.(i) are related by

Adi = — fw AZ:(V) Z: (D). 7

From equations (26) and (27), we have Aé; = fwe;. Since the error A$; results from
image processing, it is reasonable to assume that its magnitude is approximately
uniform over the entire road image. Hence, it makes sense to minimize
Z1(A8:)® = (Swy i1 (e

&

6. EXAMPLES

We took several video images of real roads near Gunma University in Kiryu,
Gunma, Japan. The road boundaries were detected by tracing the white lines
painted on the road, and spline curves were fitted to them. The subsequent
procedures are as follows:

(1) The spline curves are extended and the road vanishing point P is estimated
(Fig. 7). The two curves are parameterized by their arc lengths; 0 < /< L,
0 < 7 < R (the lengths of the left and right boundaries to the vanishing point
P, are set to be L and R, respectively).

(2) The correspondence is sought by Newton iterations. The starting values /{? and
rf® for the ith cross-segment are chosen in such a way that '

L1 R-r?
L—li-y R-rim
(Fig. 7), where /;_; and r;-, are the parameters of the (i — 1)th cross-segment

already established in the previous step (initially we set /-; = 0 and r-; = 0). The
search is done so as to determine r; for fixed /; = /{® if

©)
r®) aF(i”,r) Y

ar r=rf

(28)

F(u©°, >0, (29)
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and £ for fixed ri=r” otherwise, where the derivative aF(l,r)fdr is

approximated by equation (8). In other words, a new cross-segment is always
sought ahead of the preceding one so that the new cross-segment never crosses
over the preceding one. If the iterations do not converge, we proceed forward
to seek a new cross-segment.

The moving frame {t,e,s] is computed for each cross-segment by equations
(16), and those cross-segments that satisfy the criterion (18) are rejected as
erroneous. Then the 3-D positions are computed for the remaining cross-
segments by the procedure of Proposition 1, and the pair (Z.(i), x.(i)) is
computed for each cross-segment by equations (19) and (20). We require that
Z.(i) be monotonically increasing with respect to x.(i). If it happens that

e L Z(T =1 < Z((M) > > Z (Y < Z(FH 1) < ey (30)

those cross-segments for which Z.(j*) — cw < Z.(i*) + cw are removed, where
w is the road width (c = 1~2).

A smooth curve is fitted to the surviving cross-segments in the form of equation
(21) by the least-squares criterion (22). The 3-D positions of the end-points of
each cross-segment are computed by equation (24).

10

0 100 e

™~

(c)

Figure 9. (a) An image of a road. (b) Spline fitting to the road boundaries and the computed
correspondence between them. (c) The reconstructed 3-D road shape (a fifth-degree polynomial curve
is fitted).
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(c)

Figure 10. (a) An image of a road. (b) Spline fitting to the road boundaries and the computed
correspondence between them. (c) The reconstructed 3-D road shape (a fifth-degree polynomial curve
is fitted).

Figure 9a is an original road image. After the spline fitting, the road boundaries
of Fig. 9b are obtained and the correspondence is established as indicated there.
Figure 9c shows the reconstructed 3-D road shape. The ‘top view’ (orthographic
projection onto the YZ-plane) is shown on the left, and the ‘side view’
(orthographic projection onto the ZX-plane) on the right. Figure 10 shows another
example; the result is similarly arranged. We can see that the 3-D road shape is
reconstructed fairly well over a long distance.

7. CONCLUDING REMARKS

We have presented a procedure to reconstruct the 3-D road shape from a single
image. We expressed the local flatness approximation, first proposed by
DeMenthon and Davis [17], in terms of N-vectors representing points and lines in
the image [18,19]. The correspondence between the two road boundaries is
determined by numerically solving the resulting equation. Once the correspondence
is established, the 3-D road shape can be reconstructed easily.

However, we must take into account the inherent i#//-posedness of the problem.
If the reconstruction is faithfully based on observed image data, the reconstructed
shape is more and more sensitively affected by the image noise as the distance from
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the viewer increases. Hence, we must give priority to our knowledge about the
object. In this paper, we adopted a curve-fitting approach. The estimate of the road
vanishing point P plays a crucial role for ensuring computational consistency.
Note that human drivers can reconstruct the 3-D road shape in a very distant part
while driving. Mathematically speaking, the road image has very little information
in the distant part because a slight perturbation can cause a very large deviation to
the reconstructed shape. It seems that humans compensate for this loss of
information with some reasoning based on the estimated location of the road
vanishing point. Our algorithm is, in a sense, simulating this human reasoning (if
this is true).

This observation implies that the accuracy of reconstruction is determined
primarily by the agreement of the ‘model’ with the road in question. If the road
does not agree with the model, say if the road does not have a constant width, the
reconstructed shape is bound to be false. On the other hand, if the model matches
the road exactly, the reconstruction has ‘super-accuracy’, since the model is given
priority over image data. In this sense, our algorithm is not precisely a ‘sensing’ or
‘measurement’ but rather a model-based prediction or hypothesis generation. The
predicted hypothesis must be tested by other means (e.g. by actually driving the
vehicle).

In our formulation, we have taken the behaviours of image noise into
consideration and devised reasonable approximation techniques to facilitate the
computation. Examples based on real images were also given. The solution is very
robust to noise and fairly accurate over a long distance. The differential approach
of Kanatani et al. [15,16] is also very robust over a long distance and
computationally very efficient, but accuracy decreases rapidly in the distant part.
The present method attempts to increase accuracy in the distant part by
constraining the solution by the estimated road vanishing point and to avoid error
accumulation by using local information at the cost of increased computation time.
For actual navigation, 3-D reconstruction of the part immediately in front of the
vehicle may be sufficient [1-3, 6, 7). For this purpose, direct measurement such as
stereo and range sensing may be effective. However, prediction of the road
geometry over a long distance, for which stereo and range sensing are not effective,
is also necessary for many types of planning. Our scheme of model-based image
analysis can serve this purpose very well.
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