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SUMMARY

In order to determine the shape and the
motion of the object from its projectiom, it
suffices to derive and solve the equation re-
lating the parameters specifying the shape
and the motion of the object with the fea-
tures measured on the image. The equation
is usually nonlinear, and is difficult to
solve in the analytic way. This paper notes
that there is no inherent coordinate system
on the image, and any two coordinate systems
are equivalent. By combining the features
of the image, coordinate-rotation-invariant
parameters (invariances) are derived. By
this scheme, the geometrical meaning of the
image characteristics is made clear, and the
analytic solution is obtained in a natural
way. The idea is demonstrated for the cases
of the optical flow analysis and the surface
recovery by texture, as examples.

1. Introduction

The goal of the area called image
understanding, image recognition and computer
vision is to recover the 3D shape and motion
of the object from the 2D projection image.
The problem can be formulated in general as
follows.*

A model is specified for the object,
assuming that its shape and motion are speci-
fied by a small number of parameters a

AT

a . If the object is a plane, for example,

n
the position is specified by the coordinate
of a point on the plane and the direction of
the normal. The motion can be represented
by the translation speed of the reference

*This is not the only possible formula-
tion. See Kanatani [4]. 1In that literature,
the formulation in this paper is called 2D
formulation."
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point and the rotational velocity around the
reference. The parameters, which specify the
shape and the motion of the object in this
way, are called the object parameters.

Let, on the other hand, the data mea-
sured on the image be Cis **s Cps which

are called the characteristics of the image.
The characteristics may directly be obtained
from the gray-level of the image such as the
reflectivity of the object surface, or can
be obtained as features after image process-
ing, such as boundary, texture and optical
flow. Depending on what characteristics are
considered, it is often written as "shape
from ...," where ... stands for shading,
texture, motion, etc.

Applying the model to the object with
assumed parameter values for the object and
specifying the camera model for the projec-
tion, the image characteristics can theo-
retically be determined. In other words,
the characteristics C1» **"» C, are deter-

mined as functions of the object parameters

.0.' o :

¢y n

ci=Filayn, =, an) i=1, =, m (1)
Consequently, applying the measured charac-

teristics Cps **ts Cps and solving Eq. (1) as
a system of equations for the unknowns as
Tty @, the object parameters are deter-

mined. In this sense, Eq. (1) is called
recovery equation.

In most cases, the recovery equation
is a system of nonlinear equations, and is
difficult to solve in an analytic way. In
the following, a powerful, although not al-
ways valid, method is proposed to determine
the analytic solution for the recovery equa-
tion. Its principle is as follows. Although
there does not exist a general method for
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solving the nonlinear equation, Eq. (1) has
a structure which is a reflection of the
geometrical property of the problem.

In the following, a property is noted
that there does not exist a particular co-
ordinate system which is inherent to the
image, and any two coordinate systems are
equivalent. From such a viewpoint, the char-
acteristics of the image are combined to com-
pose a property invariant to the rotation of
the coordinate. By representing the recov-
ery equation using such invariances, the
analytic solution may be obtained in a natu-
ral way.

It should also be noted that the in-
variance corresponds to a certain meaningful
geometrical property (Weyl's thesis, which is
discussed later). This kind of representa-
tion makes it easy to interpret the image
characteristics and the geometrical meanings
of the recovery equation. This situation is
demonstrated using the cases of optical flow
analysis and surface recovery by texture, as
examples.

2. Rotation of Coordinate and Irreducible
Representation

Assume that characteristics Cr» *° %
e, are measured in regard to the coordinate
on the image plane. It is assumed that the
origin of coordinate system is at the
same position as the center of the image,
i.e., the optical axis of the camera. In
this situation, £ and y axis do not have a
particular meaning, and any direction can be
chosen as the axis.

Let the xy-coordinate system be rotated
around the origin by angle 6 (the anti-clock-
wise direction is taken as positive) to pro-
duce x'y' coordinate system. Let the same
characteristics then be measured as ci, ey,
c;. Consider the case where the new charac-
teristics are represented as linear combina-
tions of the old characteristics Cyr °°*»

cm. In other words, let

’

C C
P l=l T(8) : )
Cm’ Cm

or abbreviated as e' = T(6)ec.

Obviously, the coefficient matrix 7(e)
is a representation of the 2D rotation group
S0(2), i.e., is a homeomorphism from S0(2) to
the group of the matrix multiplication. In
fact, consider x"y" coordinate system, which
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is obtained by further rotating x'y' coordi-
nate system by angle 8'. Then c¢" = T(6')c'.
Consequently, ¢" = T(0')T(6)¢. On the

other hand, z"y" coordinate system is noth-
ing but the one obtained by rotating xy co-
ordinate system by the angle 6' + 6. Con-
sequently, ¢" = T(8' + 6)C and T(6')T(6)

= T(8' + 9).

The individual characteristics of the
image are obtained, depending on the measure-
ment method, and they do not always have an
essential meaning. Instead of the charac-
teristics C1» Cps for example, one may use

C1 = + e, and C2 =ec - e, The charac-
teristics {cl, cz} are equivalent to the
characteristics {Cl, 02}. and describe the
same property.

Based on such an idea, assume that a

new characteristics cl, LRI cm are formed

by linear combinations of characteristics
Cl’ seey, qm.* Let the coordinate system be

rotated by angle 6. Then, assume that

ol 11 a7
!' * 0 .
el 1" || & o
Cl+l O * Cl+l
L cr ]| J L cal

The above relation indicates that the char-
acteristics {Cl, LN Cl} and the character-

istics {Cl+1, cee, Ch} are transformed inde-
pendently.

This can be interpreted that the char-
acteristics {Cl, cee, CZ} and the character-

istics {Cl+1, cee, Ch} describe independent

properties of the image. In mathematical
terminology, this is a reduction of the rep-
resentation T(6) of the 2D rotating group
S0(2) into a direct sum of two representa-
tions. Consequently, the characteristics
with representation which is reducible, i.e.,
reducible representation, are describing

*At the first step, the characteristics
are assumed as real, but complex coefficients
are permitted in the linear combination.
Consequently, €y» *°*» C, may be complex.

It is assumed that two characteristics are
equivalent, i.e., the coefficient matrix of
the transformation is regular.



simultaneously independent properties of the
image.

A similar procedure may be applied to
{Cl’ ces, CZ} and {CZ+1’ cee, Cﬁ} to reduce

the representations successively. Let the

final form be

o0y * G

C'l' ..' (‘n

where the small sections form a representa-
tion which cannot further be reduced, i.e.,
irreducible representation. A representa-
tion, which is reduced to the direct sum of
irreducible representations, is called com-
pletely reducible.

The characteristics composing an irre-
ducible representation cannot be separated,
since they remain mixed by any transforma-
tion. Consequently, they can be interpreted
as describing essentially a single property.
In contrast, characteristics composing a
reducible representation are considered as
describing more than one property simul-
taneously. By this idea, the intuitive and
ambiguous notion that a property can be sepa-
rated into several component properties, is
placed in correspondence to the mathematic-
ally well-established notion that a represen-
tation can be reduced. This is the reason-
ing presented by Weyl [14].

He presented an assertiom that, in
order for an observed variable to be called
a physical property, it must correspond to
an irreducible representation of a group of
transformations which does not affect the
essence of the phenomenon. Based on such an
idea, he introduced the theory of groups into
the quantum mechanics [15]. Such an idea is
called in the following Weyl's thesis.

3. Invariance and Weight

As is well-known, any representation
for the 2D rotatiom group SO0(2) is completely
reducible, and any irreducible representa-
tions is one-dimensional. Consequently,

given characteristics el, cee, cm composing

the representation of SO(2), new independ-
oo e ! =

ent characteristics Cl, s Ch, Ci T%(e)

C%, 2=1, *++, m can be formed by a certain

linear transformation. Since each Ti(e) is a
1D representation, it must satisfy Ti(e')Ti(e)
= Ti(e’ + 8). It must also be a periodic

function of period 2w, satisfying Ti(O) =1
and Ti(e + 27n) = Ti(e).

It is seen immediately from the above
property that there is an integer 7 such that

T,(8) = oo (¢ is the imaginary unit).

The integer 7 is called the weight of the
characteristic.* The characteristic of
weight 0, i.e., the identity characteris-
tic, is called the absolute invariance.

The characteristic with nonzero weight n is
called a relative invariance of weight =.
Both combined are simply called invariance.

Summarizing the above description, the
following statement is made. For the charac-
teristics Cl’ oo Cﬁ with the transforma-

tion of Eq. (2), a certain linear tranforma-
tion is applied to form new characteristics

Cl’ RN Cm as
G Cx.
N e B 5 (5)
Cm Cm

(P is a regular matrix), so that the trans-
formations for the new characteristics Cl’

LR Ch can be decomposed as follows.

oy Ci
Pl=l P 7(0) P :
Ca'] | Cn
[ gmime o
= : (6)
I e | Cn

In other words, the coefficient matrix
T(8) can simultaneously be diagonalized by a
constant matrix P, independently of the
value of 6. The reason for this is the 2D
rotation group SO(2) is compact and is com-
pletely reducible as well as commutative.
By Schur's lemma, a reducible representation
is always one-dimensional [1, 8]. Since each
invariance corresponds to an irreducible

*By writing et ynstead of ™, n is
sometimes called weight. When the rotation
of the object is considered, this notation
is more convenient. Since, however, the co-
ordinate system‘is rotated in the following,

iné

the notation e is more convenient.



" representation, it represents a certain geo-
metrical property.*

4., Scalar, Vector and Tensor

A characteristic, which is invariant
by the rotation of the coordinate system:
c’=c @)
is called scalar. Equation (7) defines a
trivial representation, i.e., the identity

representation. A scalar is itself an ab-
solute invariance.

When characteristics a and b are trans-
formed by the rotation 6 of the coordinate as

[ (1’] _[ cosl sin()] [ al
b —sind cos0) | b.
a and b are called vector. Equation (8) de-
fines a faithful representation of S0(2),
i.e., vector representation. This represen-
tation is not irreducible. The reason for

this is that when linear combinations a
+ 2b and a - 7b are formed, it follows that**

a—ib e
Thus, 2 = a + ib and 2* = ¢ - 7b (the aster-
isk indicates the complex conjugate) are rel-

ative invariances of weights 1 and -1, re-
spectively:

(8)

+i
a Ib] 9)

a—ib

z:=(,.|'az. Z.':’("“S' (10)

When characteristics 4, B, C and D are
transformed by the rotation of coordinate by
angle 0 as

[ A’ B'] _[ cos0 sin()] [
c D —sind cos6
. [ —sin()]

cosf

*1f there exist two or more invariances
with the same weight, there is left a freedom
for their linear combination. Then, the re-
duction 18 not unique (called degenerate).
In this case, another group may be operated
on to determine the reduction (perturbation
in quantum mechanics).

**It is irreducible in the range of
real numbers. Schur's lemma, however, does
not apply unless complex numbers are consid-
ered. The 1D property of the irreducible
representation for the commutative group is
a direct consequence of Schur's lemma [1l, 8].

A BJ
c D

cosfl an

sind
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A, B, C and D are called (second-order)
tensor. Equation (11) defines the following
linear mapping from 4, B, C and DtoA', B',
C' and D':

A
B
c
D

cos’d  cosOsind cosOsind  sin’f A

_| —coslsind cos’0  -sin’0 cosfsind| | B

| -costsind -sin'0  cos'0  cosOsind| | C

sintd  =cosOsin® - cosOsind  cos n

(12)

The above relation defines the (second-
order) tensor representation of S0(2).
Neither this representation is irreducible.
As the first step, the matrix formed by 4,

B, C and D can uniquely be decomposed as
follows for the symmetrical and antisymmetrical
parts:

[A B] _[ A (B+C)/2]
¢ bl Lw+cy2 b

0 —(C-B)2
+[(c-13)/z 0 ]“3)

This decomposition can be verified as invari-
ant. In other words, the symmetrical and
antisymmetrical parts of the result of trans-
formation of the left-hand side by Eq. (10)
are the same as those, respectively, of the
result of separate transformations of the
symmetrical and the antisymmetrical parts of
the right-hand side. (Those properties apply
to tensor of any order.) Since the anti-
symmetrical part of Eq. (13) contains only one
independent element, 4 - B must be an abso-
lute invariance.

The symmetrical part can further be de-
composed uniquely as follows into the scalar
part (constant multiple of unit matrix) and
the deviation part (symmetrical matrix with
zero trace).

[ A (B+C)/2]
(B+C)2 D

__/_11-_12[1 o] +[ (A-D)/2 (B+C)/2]
2 o1 (B+CY2 —(A=-D)/2,
(14)

It is again verified that this decom-
position is invariant. In other words, the
scalar and deviation parts of the result of
the transformation of the left-hand side are



the same as the results, respectively, of the
separate transformations of the scalar and
the deviation parts of the right-hand side.
(This property applies to a tensor of any
order.) Since the scalar part contains

only one independent element, 4 + D must be
an absolute invariance.

The deviation part contains two inde-
pendent elements. Forming (4 - D) + #(B + C)
and (A - D) - i(B + C) it is verified that
they are relative invariances with weight 2
and -2, respectively.* Thus, Eq. (12) can
be rewritten as follows:**

A+
B—-C
(A'=D)+i(B'+C)
(A'=D)-i(B'+C')

1 A+B
1o B-C
B e (A=D)+i(B+C)
e | | (A= -iB1C)
(15)
In other words, letting
T=A+D, R=B-C } (16)
S=(A-D)+i(B+C)

T and R are absolute invariances, and S is a
relative invariance of weight 1. They are
transformed by the coordinate rotation of
angle 6 as

T'=T, R'=R, S'=e™*S a7n
They have particular geometrical meanings
according to Weyl's thesis (see next section).

5. Analysis of Optical Flow

Let xy coordinate system be fixed in
the space, and regard xy plane as the image
plane. Let the point (0, 0, -f) be the view-
point, which is at the distance f along z

*If the original characteristics are
real, the relative invariances appear in a
pair with positive and negative values.

**In general, the representation of
order r for the n~dimensional rotation group
S0(n) can systematically be reduced to ir-
reducible representations based only on the
symmetry of (the index of) tensor and the
trace (of the index) (Weyl's theorem) [1, 4].
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z (wl :w2:w3)

z=pzt+qy-tr

K

Fig. 1. A plane having equation z = px + qy
+ r is moving with translation velocity (a,
b, e) at (0, 0, r) and rotation velocity (wl,

Wy s ws) around it. An optical flow is in-

duced on the xy-plane by perspective projec~
tion, (0, 0, -f) being the viewpoint.

axis in the negative direction. The object

in the space is perspectively projected on

xy plane (Fig. 1). In the actual camera,

one can consider that a perspective projec-
tion is made, where the viewpoint is the
center of the lens and f is the focal length.*
A point (X, Y, 2) in the space 1is projected
on the point of intersection between the
straight-line connecting that point and the
viewpoint with xy plane,

Letting the xy coordinate of the pro-
jected point be (x, y),
r=/XNI{f+2Z), yv=rYI(f+2) (18)

The limit of making f + « is the parallel
projection.

Consider the case where a plane z
= px + qy + r is performing a rigid motion
in the space; p and g represent the gradient
of the plane, and »r represents the distance
to the plane along 2 axis (absolute distance).
The rigid motion can be specified by the
speed (a, b, ¢) of the reference point
(translation), and the rotation (ml, Wys w3)
around the reference point (i.e., clockwise

*More strictly, a correction must be
made using the lens formula l/a + 1/b = 1/f
(where a is the distance from the center of
the lens to the object, b 1s the distance
from the center to the film plane, and f is
the focal length. If q >> f, however, one
can assume that b = f.



rotation with angular velocity ¢w2 + m2 + wz

1 2 3
(rad/s) around the axis (wl, Wys m3).

In the following, the intersection of
2z axis with the plane, (0, 0, r) is used as
the reference point. Then, the object
parameter is 9, which are p, q, r, a, b, ¢,
wl, wz and w3.

For such a motion in the space, the
motion of the image observed on the image
plane Z = u(z, y), y = v(x, y) is repre-
sented as follows:

u(x, y)=uct+Ar+By+(Ex+Fy)x

ol ¢t
Wx, y)=vo+Cx+Dy+(Ex+Lyy

where the coefficients uo, vo, 4, B, C and

D are given as follows:

Uo= /j-;(-zr' Vo= fﬁ-br l
A"I)wz—--p;?-_p;c

B=qui= o= f(fr

C=—pw+ws— fl-)fr (20)
D=—qw;—%

E=if( fifr)

F=_l7( Ay f‘fr) :

Assume that the coefficients Uy vo, A,

B, C, D and F are estimated, by applying the
least-square method to approximate the ob-
served speed on the image by Eq. (19), for
example.* In this case, the coefficients are
the characteristics of the image, and Eq.
(20) is the recovery equation to determine
the object parameters p, q, r, a, b, ¢, W)

w, and Wge The solution to this equation is
given by Longuet-Higgins [10] and Subbarao
and Waxman [12]. The following analysis is

made by Kanatani [6].

*Kanatani [3] has shown a method,
which calculates the coefficient only by
measuring the image characteristics, vithout
calculating the optical flow.

Applying the coordinate rotation to
Eq. (19), it is seen that uys Vg form a

vector; 4, B, C, D form a tensor; and E, F
form a vector [8]. Consequently, the in-
variances are constructed as follows:

Uo= uo+ ive
T=A+D, R=C—B
=(A-M+iBLC) K-

(21)
Evik

T, R are absolute invariances;Uo,K are rel-

ative invariances of weight 1; and S is a
relative invariance of weight 2.

According to Weyl's thesis, they
should represent particular geometrical
meanings. As is seen by illustrating the
corresponding flows, Uo represents the

translation, T the divergence, R the rota-
tion, S the shear and X the fanning (Fig. 2).
Similarly, by applying the coordinate rota-
tion, the following properties are seen for
the object parameters: p, q; a, b; Wy, Wy

form vectors; and r, ¢, wy are scalars [8].

Consequently, the following relative invari-
ances of weight 1 can be constructed:
P=p+iq, V=a+tib, W=wi+iw: (22)
Using the above invariances, the re-
covery Eq. (20) can be written as follows:

__f
Uo= f+r

PW"=Q2ws~—

PW’'=iS

cP—iW'=L
vhere ¢' = ¢/(f + r), W' =W - ilUy/f and
L= fK - Uy/f.

the equation thus takes a very simple form.
Assume that it is verified that ¢ ¢ 0 [6].
The following result is then obtained. For
the case of ¢ = 0, see Kanatani [6].

R)—i(2c’'+T) (23)

By using the invariances,

Theorem 1. The third-order equation

X+ TX’+%( T'—|SP= L)X

+4(RelL?S]- T'| L [)=0 (26

has three real roots. Let the root with the
middle value be e¢'. Then, the solution of
the recovery Eq. (23) is given as follows:

_S+r
V=77

Voo c=(f+7r)C ]

92. A



1.

{uawo) '“ o6 i
............. J f’
) (b)

Fig. 2. (a) Translation by (uo, vo).

(b) Divergence by 7.

(c) Rotation by R.

(d) Shearing with Ql and Q2 as the axes of maximum extension and maximum compres-

sion.

: X (25)
1 = f12. 40 1
W=, (L7 VLB A4S ) j.u..

w;=-;—Ri-lm[L‘/Z.—’—4c'§]

In above, Re and Im represent, respectively,
the real and imaginary parts, and the aster-
isk represents the complex conjugate. Thus,
the following properties are obtained.

(1) The absolute distance r is indefi-
nite.

(11) a/(f + r), b/(f + r) and c/(f
+ r) are uniquely determined.

(11i) There can be two sets of solu-
tions for the gradient p, ¢ and the rota-
tional velocity @, 0, and wge

By definition, L is a relative invari-
ance of weight 1. The product of invariances
is an invariance with the weight which is the
sum of the weights of the original invari-
ances. By forming the complex conjugate, the
weight changes its sign. In the expression
represented by invariances, such as Eqs. (23)
to (25), the right- and left-hand sides have
the same weight. The addition or subtraction
can be performed only for the invariances .
with the same weight. This is very conven-
ient in checking the validity. Or, by util-
izing the property, the form of the solution
may be predicted. This is a great merit in
introducing the invariance.

In addition to the above, Kanatani [6]
has presented applications and numerical ex-
amples, such as the interpretation of geo-
metrical solution and the connection condi-
tion between surfaces. S

(e) Fanning along (F, F).

Taking the limit of f + =, the follow-
ing recovery equation is obtained for trans-
lation:

Uo=a, vo==b

A=pw: B=qw:—ws (26)

C==pwuntw, D=-—quw
The first two equations determine a and b.
The rest is represented as follows using the
invariances:

PW*=2ws—(R+iT), PW=iS (27)

The solution is given as follows [5].

Theorem 2.

w;=—;-(Ri\/S —T7)

W=kexp i(%l+~;—arg(8)-%arg(Zw;-(R+iT))) b (28)
P=%°x" "('?" %""“(5’ ' ;arg(’.’w,—(m iT)))

where k is an undetermined shape factor.
There are two sets of solutions according
to the value of k.

For the above solution also, Kanatani
[5]) has given the connection condition for
the surface and numerical examples. He also
compared the solution with that of Sugtihara
and Sugie [13], which is obtained without
using the invariance for essentially the same
problem. In the latter method, the solution
is not obtained in an analytic form, and it
is impossible to eliminate completely the
physically impossible solution.

Deleting only the term of O(1/f2)
from the recovery equation, leaving the term
of 0(1/f), the expressions for E and F are
obtained as .



E=wlf, F=—wlf (29)

Kanatani [6] called this pseudo-parallel pro-
jection. The solution then is given as fol-
lows.

Theorem 3.
f'/’ Va

P=S/L, W=ifK

(30)
w;=.l(R+Im[Sc"‘“]) ‘

c=tu— /+’ <L —(T—Re[Sc"*?))

where a = arg(L). From above expression, the
following properties are seen.

(1) The absolute distance r is inde-
terminate.

(11) a/(f +r), b/(f + r) and e/(f

+ r) are uniquely determined.
(11i) The gradients p and q and rota-
tion velocity Wy Wy and wy are uniquely de-

termined. Consequently, there does not exist
a pseudo-solution. The geometrical meaning
of the above solution is discussed by Kana-
tani [6].

Up to this point, the motion of a plane
has been considered. For the case of general
curved surface, the optical flow is repre-
sented as follows, instead of Eq. (19) Sub-
barao [11]:

u(x, y)=uo+Axr+By+ Ex*+2Fry+Gy’+--
Wz, y)= vot+ Cx+Dy+Kx*+2Lxy+My*+--
(31)
where ... jindicates higher terms of x and y.
In this case also, the invariances are con-
structed as follows [8]:
U=wotive, T=A+D
R=C-B, S=(A-D)+i(B+C()
H=(E+2L-G)+i(M+2F-K) r (32)
I=(E-2L+3G)+i(M—-2F+3K)
J=(E-2L-G)-i(M—-2F—-K)

T, R are absolute invariances; Uo, H and I

are relative invariances of weight 1; and S
is a relative invariance of weight 2, and J
is a relative invariance of weight 3. In
the case of the second-order surface, the
recovery equation can be represented by

invariances, and the solution can be deter-
mined in an analytic form Subbarao [11].

6. Recovery of Surface by Texture

Consider the case where a surface z
= z(x, y) with a texture is parallel-pro-
jected along 2 axis on Iy plane (Fig. 3).
It is assumed that the texture is uniformly
distributed on the surface.* Assume that
the density I'(x, y¥) of the texture on the
projected image is measured.** It is seen
from Fig. 3 that, if the true texture dens-
ity is p, the texture density on each point
on the image is given as follows:

. 32) (95,)' (33)
I'(x, y)=p (ax + »
Consider the second-order surface
2=r+pr+qutari+2bxy+cy? (34)

The object parameters are then p, ¢, r, a,

b, ¢ and p. Substituting Eq. (34) into (33),
r'(x, y)
=AW 1+ A 4 Aay + Asr? 24y + Asy? (35)
The coefficients are given as follows:
Av=o/TFp 40, a,=fidbrha)
nettnre) g were |
- a2

Consider the estimation of the coeffi-
cients AO ~ AS by applying the expression of

the form of Eq. (35), for example, to the
observed texture density (Kanatani and Chou
[9] used a more elaborate technique). Then,
Ao - As are the image characteristics, and

Eq. (35) is the recovery equation to deter-
mine the object parameters p, q, r, a, b, ¢
and p.

*The uniformity should more strictly
be defined, which, however, is omitted. For
the details, see Kanatani and Chou [9].

**The density of the discrete texture
must be defined, together with the measure-
ment procedure, which, however, is omitted.
Kanatani and Chou [9] defined those from the
viewpoint of the distribution theory of and
presented a measurement procedure based om
that definition.



By applying the coordinate transforma-
tion to Eq. (34), it is seen that Ao is a

scalar; Al’ Az form a vector and A3, Aa. A4,
AS form a tensor [8]. Consequently, the
following invariances are constructed:

_AiAr Lo AyE AL
v ey
(37)
~As—As, A
S= 8 +:4

Ao and T are absolute invariances, V is a

relative invariance of weight 1, and S is a
relative invariance of weight 2.

Similarly, by applying the coordinate
rotation to Eq. (34), it is seen that r is a
scalar, p, q form a vector, and a, b, b, e
form a tensor. Consequently, the following
invariances are constructed:

k=J/1+p*+q2, u=--’";+'q

(38)
—a-c..b
ok STty

p and k, t are absolute invariances, v is a
relative invariance of weight 1, and 8 is a
relative invariance of weight 2.

l=a+c

Using those invariances, the recovery
Eq. (36) can be written as follows:

(39)

ok=ANo, lo+sv*=V
*+ss*=T, I1s=5/2

When t # 0 and % - aat # 0, the solution is
given as follows [8]:

Theorem 4.

_ T+/T*-SS* __S

tV=sv . 1 - o (40)
1’—ss* 1-o*

p=Aolk

The original object parameters are given as
follows:

0= Aolk, D=kRé[U]
g=kIm[v], a=k(1+Re[s])
b=klm[s], c=k(t—Re[s])

(41)

As is seen from the first of Eq. (40),
there are four sets of solutions. Since the
projection is parallel, the mirror image in
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n=(n;,ny,n3)

)
(z,¥)

(2+d5y) ZZ2> (s 14y)

(z+dz,y+dy)

Fig. 3. Under the orthographic projection
along the z-axis, the area of the region on
the surface which corresponds to the infi-
nitesimal square on the xy-plane defined by
four points (z, y), (x +dzx, y), (x + dr, y
+ dy), (x, y + dy) is dxdy/cos y, where y is
the angle made by the unit normal 7 to the
surface and the z-axis.

regard to Xy plane cannot be discriminated.
Except for the mirror image relation, there
are two sets of solutions. The two solu-
tions exist because the rate of texture
density change is determined only by the
slant of the surface, independently of the
tile.

t = 0 applies when the two major curva-
tures have the same absolute value. It is
impossible in this case to discriminate
whether the surface is elliptic (with posi-
tive Gaussian curvature) or hyperbolic (with

negative Gaussian curvature) [8]; tz - sg*%
= 0 applies when the surface is hyperbolic
(with zero Gaussian curvature). In this
case, the asymptotic direction (direction of
the peak) is determined, but the gradient
along that direction is indeterminate.

7. Conclusions

This paper considered the 3D recovery
problem, which is important in the computer
vision, and proposed a method utilizing the
invariance providing an irreducible repre—
sentation of the 2D rotation group S0(2),
which corresponds to the rotation of the co-
ordinate system on the image plane. By this
method, the recovery equation is simplified.
Not only the analytic solution is easily de-
rived, but also the geometrical interpreta-
tions of the equation as well as the vari-
ables are made clear (Weyl's thesis), making
it easy to transform the equations. This-



situation is demonstrated for the case of the
analysis of the optical flow and the recovery
of a surface by texture.

When Weyl's thesis is to be used for
3D recovery problem, there can be various
groups of transformations, other than the
coordinate transformation on the image plane,
that do not affect the essential aspect of
the phenomenon. When, for example, the cam-
era is rotated around the lens axis, essen-
tially the same information is observed,
since the ray is kept as the same. From such
a viewpoint, the invariance composing the
irreducible representation for the 3D rota-
tion group S0(3), corresponding to the rota-
tion of the camera, can be constructed.

Since SO(3) is not commutative, the irreduc-
ible representation is not in general one-
dimensional. By forming not only the linear
combinations of the observed characteristics,
but also using an algebraic nonlinear trans-
formation, the problem can be reduced to 1D
invariances (for details, see [2], [7], and

(8h.

This kind of reasoning can be applied
to various problems, and is one of the indis-
pensable techniques in the computer vision.
It is expected that this paper will provide
a basis for such an idea.
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