最新の自己校正法の性能評価

森 昭延 * 金谷 健一 * 菅谷 保之 †

* 岡山大学大学院自然科学研究科 *** 豊橋技術科学大学情報工学系

本論文では,前報に示した画像列上の特徴点の追跡から3次元形状を計算する最新の自己校正法の精度と効率を向上させる方法を検討する.まず,射影復元のための反復を特徴点間で行う基本法とフレーム間で行う双対法の収束の効率を比較し,次にTomasi-Kanadeの因子分解法の解を用いて射影復元の解を改良する方法を示す.最後に,3次元復元の性能をシミュレーションおよび実ビデオ画像を用いて実験的に評価し,実際的な応用においても十分に実用的であることを示す.

Performance Evaluation of Latest Self-calibration

Akinobu Mori,^{*} Kenichi Kanatani,^{*} and Yasuyuki Sugaya[†]

*Department of Computer Science, Okayama University, Okayama 700-8530 Japan [†]Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 Japan

The performance of the latest self-calibration method for computing 3-D shapes from feature point tracking over an image sequence described in our previous paper is experimentally evaluated using simulation and real video images, and various techniques for improving its accuracy and efficiency are discussed. First, we compare the convergence performance of two methods for projective reconstruction: the primal method based on feature point and the dual method based on frames. Then, we show how the projective reconstruction solution can be improved by using the Tomasi-Kanade factorization solution. It is shown that our method is sufficiently effective in many practical applications.

1. まえがき

前報 [13] では未校正カメラで撮影した画像列上の 特徴点の追跡から3次元形状を計算する最新の自己 校正法の計算手順を示した.本稿ではシミュレーショ ンおよび実ビデオ画像を用いてその性能評価を行う.

自己校正はシーンやカメラに対して何ら特別な知 識を必要としないという長所があるが,その代償と して,計算される3次元形状が入力データの誤差に 敏感であるという欠点が知られている.

このため多くの文献では,自己校正のみでは実用 的に不十分であり,自己校正の解を初期値としてより 密な特徴点対応を生成し,復元した3次元形状を推 定したカメラモデルで画像面上に投影した結果が観 測画像に最も近くなるように全変数の反復修正を行 う必要があることを述べている(例えば文献[3,21] 参照).

密な特徴点対応を生成するには,画像間の基礎行 列を推定し,画像に「平行化」と呼ばれる処理を施 して平行移動させたカメラによるステレオ視の対応 探索に帰着させればよい(詳細は文献[3,24]参照). 全変数の反復修正は「バンドル(光束)調整」と呼 ばれ,非線形関数の最小化に帰着する(詳細は文献 [15,16,28]参照).

しかし,そのような後処理を効果的に行うには,出 発点となる自己校正の解がよい精度でなければなら ない.本稿では上述のような後処理を行わず,自己 校正の解のみを用いた場合にどの程度の精度が達成 できるかを実験的に検討する.

従来,そのような検討がほとんどなされなかった のは,研究者の動機が最終的な結果のよさを印象づ けることにあったためと思われる.しかし,後処理 によって見栄えのよい結果にしてしまえば,自己校 正の性能がどうであったかという評価が見えなくな る.たとえ不十分な精度であっても,その限界を明 らかにすることが公正な評価として不可欠である.

現在,自己校正法の著しい進歩にもかかわらず,そ れが広く利用されていないのは,自己校正自体は単 純な線形計算のみで実行されるにもかかわらず,そ の後処理の複雑な非線形計算が多くの研究者を遠ざ

^{*700-8530} 岡山市津島中 3-1-1, (086)251-8173

[{]mori,kanatani}@suri.it.okayama-u.ac.jp

[†]441-8580 豊橋市天伯町雲雀ヶ丘 1–1

sugaya@iim.ics.tut.ac.jp

けているためと思われる.

本論文では自己校正として前報 [13] に述べた最新 の方法を用いれば,科学計測のような高精度を必要 としない視覚的な表示の応用では,特徴点データに ある程度の精度があれば,後処理なしに自己校正の みで十分実用的であることを示す.そして,実際面 での精度や効率を向上させる工夫を述べる.

2. 射影復元の計算の効率化

自己校正で最も計算時間を要するのは,後に実例 で示すように,射影復元の反復である.これは EM アルゴリズムの一種であり,収束は保証されるが収 束が遅い.そこで本稿では別の方法と比較する.

前報 [13] で採用したのは Mahamud ら [14] の方法 であり,個々の特徴点のフレーム間に渡る位置をベ クトルで表し, N 本の 3M 次元ベクトルに 4 次元部 分空間を反復的に当てはめるものである(N は特徴 点の個数, M はフレーム数). それに対して Heyden ら [4] は個々のフレーム内の特徴点位置をベクトルで 表し, 3M 本の N 次元ベクトルに 4 次元部分空間を 反復的に当てはめる方法を示した.

両者は互いに双対な関係にあり,便宜上,Mahamudら[14]の方法を基本法,Heydenら[4]の方法 を双対法と呼ぶ.本稿ではまず,どちらが精度と効 率において優れているかを比較する.

Heyden ら [4] の考え方を前報 [13] の記述に対応さ せて再定式化すると次のようになる¹.

2.1 双対部分空間

射影復元の基本は前報 [13] に示した次式である.

$$z_{\kappa\alpha} \boldsymbol{x}_{\kappa\alpha} = \boldsymbol{\Pi}_{\kappa} \boldsymbol{X}_{\alpha}, \quad \boldsymbol{x}_{\alpha} = \begin{pmatrix} x_{\kappa}/f_0 \\ y_{\kappa}/f_0 \\ 1 \end{pmatrix}$$
 (1)

ここに, $x_{\kappa\alpha}$ は第 κ フレームの第 α 特徴点の座標 ($x_{\kappa\alpha}, y_{\kappa\alpha}$)のベクトル表示であり, f_0 はある固定し た定数である. $z_{\kappa\alpha}$ は射影的奥行きと呼ばれる定数, Π_{κ} は第 κ フレームの 3×4 投影行列, X_{α} は第 α 特 徴点の 3 次元位置を同次座標で表す 4 次元ベクトル である.これら $z_{\kappa\alpha}$, Π_{κ} , X_{α} はすべては未知である.

基本法では $z_{1\alpha}x_{1\alpha}, z_{2\alpha}x_{2\alpha}, ..., z_{M\alpha}x_{M\alpha}$ を縦に 並べた 3M次元ベクトル p_{α} を考えたが,双対法で は次の 3M本の N次元ベクトルを考える.

$$m{q}_{\kappa}^{1} = (z_{\kappa 1} x_{\kappa 1}/f_{0}, \ z_{\kappa 2} x_{\kappa 2}/f_{0}, \ ..., \ z_{\kappa 1} x_{\kappa 1}/f_{0})^{\top}$$

「原論文 [4] とは見かけがかなり異なっている.

図 1: ベクトル q^i_{κ} を 4 次元部分空間 \mathcal{L}^* に射影する.

$$\begin{aligned} \boldsymbol{q}_{\kappa}^{2} &= (z_{\kappa 1}y_{\kappa 1}/f_{0}, \ z_{\kappa 2}y_{\kappa 2}/f_{0}, \ \dots, \ z_{\kappa 1}y_{\kappa 1}/f_{0})^{\top} \\ \boldsymbol{q}_{\kappa}^{3} &= (z_{\kappa 1}, \ z_{\kappa 2}, \ \dots, \ z_{\kappa 1})^{\top} \end{aligned}$$
(2)

式 (1) の第 1 式の第 i 成分のみを取り出して $\alpha = 1$, ..., N と縦に並べると次の関係を得る .

$$\boldsymbol{q}_{\kappa}^{i} = \Pi_{\kappa(i1)}\boldsymbol{X}^{1} + \Pi_{\kappa(i2)}\boldsymbol{X}^{2} + \Pi_{\kappa(i3)}\boldsymbol{X}^{3} + \Pi_{\kappa(i4)}\boldsymbol{X}^{4}$$
(3)

ただし, $\Pi_{\kappa(ij)}$ は投影行列 Π_{κ} の (ij)要素, X^{k} は $X^{k}_{\alpha} (= X_{\alpha} \text{ の第 } k \text{ 成分})$ を $\alpha = 1, ..., N$ と縦に並べ た N次元ベクトルである.式 (3)は 3M本のベクト $\mathcal{U} \{q^{i}_{\kappa}\}$ が $X^{1}, X^{2}, X^{3}, X^{4}$ の張る 4 次元部分空間 \mathcal{L}^{*} に含まれることを意味する.これは基本法の部分 空間 \mathcal{L} と双対な空間である². $N \times N$ モーメント行 列を

$$\boldsymbol{N} = \sum_{\kappa=1}^{M} \sum_{i=1}^{3} \boldsymbol{q}_{\kappa}^{i} \boldsymbol{q}_{\kappa}^{i\top}$$
(4)

と定義すれば,Nの大きい4個の固有値に対する単位固有ベクトル v_1, v_2, v_3, v_4 が \mathcal{L}^* の正規直交基底となる.

2.2 双対部分空間の反復的当てはめ

基本法と同様に,射影的奥行き $z_{\kappa\alpha}$ を $\{q_{\kappa}^{i}\}$ が 4 次元部分空間 \mathcal{L}^{*} に含まれるように反復的に補正する.ベクトル q_{κ}^{i} を \mathcal{L}^{*} に射影したものは次のようになる³(図 1).

$$\hat{\boldsymbol{q}}_{\kappa}^{i} = \sum_{k=1}^{4} (\boldsymbol{q}_{\kappa}^{i}, \boldsymbol{v}_{k}) \boldsymbol{v}_{k}$$
(5)

そこで $\boldsymbol{q}^i_{\kappa}$ から $\hat{\boldsymbol{q}}^i_{\kappa}$ までの距離の二乗和を $i=1,\,2,\,3$ に渡って加えた

$$\sum_{i=1}^{3} \left(\|\boldsymbol{q}_{\kappa}^{i}\|^{2} - \|\hat{\boldsymbol{q}}_{\kappa}^{i}\|^{2} \right) = \sum_{i=1}^{3} \|\boldsymbol{q}_{\kappa}^{i}\|^{2} - \sum_{i=1}^{3} \sum_{k=1}^{4} (\boldsymbol{q}_{\kappa}^{i}, \boldsymbol{v}_{k})^{2}$$
(6)

²基本法の 3*M* 次元ベクトル p_{α} を $\alpha = 1, ..., N$ と並べた 3*M* × *N* 行列 *P* を考えると,その列の張る 4 次元空間が \mathcal{L} であり,行の張る 4 次元空間が \mathcal{L}^* である.

 $^{^3}$ 前報 [13] と同様に、ベクトルa, bの内積を(a, b)と書く、

を最小にするように $\{z_{\kappa\alpha}\}$ を更新する.このとき,前 報 [13] でも述べたように $\{z_{\kappa\alpha}\}$ には定数倍の不定性 があるので⁴,

$$\sum_{i=1}^{3} \|\boldsymbol{q}_{\kappa}^{i}\|^{2} = \sum_{\alpha=1}^{N} z_{\kappa\alpha}^{2} \|\boldsymbol{x}_{\kappa}\|^{2} = 1$$
(7)

と正規化する.新しい変数を

$$\xi_{\kappa\alpha} = \|\boldsymbol{x}_{\kappa\alpha}\|_{\mathcal{Z}_{\kappa\alpha}} \tag{8}$$

と置き, $\xi_{\kappa 1}$,..., $\xi_{\kappa N}$ を成分とする N次元ベクトル を $\boldsymbol{\xi}_{\kappa}$ と置けば,式 (7)は単に $\|\boldsymbol{\xi}_{\kappa}\| = 1$ と書ける.

正規化 (7) より,式(6) 最小にするには次式を最大 にすればよい.

$$J_{\kappa}^{*} = \sum_{i=1}^{3} \sum_{k=1}^{4} (\boldsymbol{q}_{\kappa}^{i}, \boldsymbol{v}_{k})^{2} = (\boldsymbol{\xi}_{\kappa}, \boldsymbol{B}^{\kappa} \boldsymbol{\xi}_{\kappa}) \qquad (9)$$

ただし,行列 $B^{\kappa} = (B^{\kappa}_{\alpha\beta})$ を次のように置いた.

$$B_{\alpha\beta}^{\kappa} = \frac{(\boldsymbol{v}_{\alpha}, \boldsymbol{v}_{\beta})(\boldsymbol{x}_{\kappa\alpha}, \boldsymbol{x}_{\kappa\beta})}{\|\boldsymbol{x}_{\kappa\alpha}\| \cdot \|\boldsymbol{x}_{\kappa\beta}\|}$$
(10)

ここに v_{α} は基底ベクトル v_1, v_2, v_3, v_4 のそれぞれ の第 α 成分を取り出して縦に並べた4次元ベクトル である.式(9)を最大にする単位ベクトル ξ_{κ} は行列 B^{κ} の最大固有値に対する単位固有ベクトルである. 符号は便宜上次のように選ぶ.

$$\sum_{\alpha=1}^{N} \xi_{\kappa\alpha} \ge 0 \tag{11}$$

射影的奥行き $z_{\kappa\alpha}$ は式 (8) から求まる.

2.3 双対法の手順

以上より,次の双対法の手順が得られる.

入力: $x_{\kappa\alpha}$, $\kappa = 1$, ..., M, $\alpha = 1$, ..., N. 出力: Π_{κ} , $\kappa = 1$, ..., M, X_{α} , $\alpha = 1$, ..., N. 計算:

- 1. 射影的奥行きを $z_{\kappa\alpha} = 1$ と初期化する⁵.
- 2. 式 (2) のベクトル q_{κ}^{i} を計算する.
- 3. 各 κ ごとに qⁱ_κ, i = 1, 2, 3 を式 (7) のように正 規化する.
- ゴ (4) の行列 N の大きい4 個の固有値に対する
 単位固有ベクトル v₁, v₂, v₃, v₄ を計算する⁶.

図 2:3 次元空間の射影変換により,閉曲面も無限遠に開いた二つの曲面になることがある.

5. 次の計算を $\kappa = 1, ..., M$ に渡って計算する.

- (a) 式 (9) の行列 B^κ の最大固有値に対する単
 位ベクトル ξ_κ を求め,符号を式 (11)のように選ぶ.
- (b) 得られた ξ_κ から式 (8) により射影的奥行
 き z_{κα} を計算する.
- (c) 得られた $z_{\kappa\alpha}$ を用いてベクトル q^i_{κ} を再計 算する.
- 6. ステップ4に戻り,これを収束するまで反復する.
- 7. 収束したら, X_{lpha} を次のように計算する.

$$X^i_{\alpha} = (v_i \, \mathcal{O} \, \hat{\mathbf{n}} \, \alpha \, \hat{\mathbf{n}} \, \hat{\mathbf{n}})$$
 (12)

8. 投影行列 **Π**_κ を次のように計算する.

$$\Pi_{\kappa(ij)} = (\boldsymbol{q}^i_{\kappa}, \boldsymbol{v}_k) \tag{13}$$

基本法と同様に理論的に収束が保証されるが,実際 に計算では有限長演算の誤差によってついには振動状 態に陥るので,式(9)の全フレームに渡る和 $\sum_{\kappa=1}^{N} J_{\kappa}^{*}$ が変化しないか,わずかでも減少するまで反復する.

3. アフィン復元を用いた射影復元の改良

前報 [13] に述べたように,自己校正では射影変換の不定性のある射影復元に「ユークリッド化」を施して正しい形状 (「ユークリッド復元」)を得る.

注意すべきことは、"射影変換の不定性のある3次 元形状"は真の形状と似ているとは限らないという ことである.例えば楕円体面にその内部の点が無限 遠に写像されるような射影変換を施せば、物体は二 つの外側に開いた凸曲面が向かい合う「2葉双曲面」 となり[10],その向かい合う頂点の間に元の空間の 無限遠平面が写像される(図2).

このように射影復元は真の形状と似ても似つかぬ ことがある.データの誤差が小さければ,それに絶 対2級面束拘束条件[27]に基くユークリッド化によ り数回の反復で正しい形状が得られる.しかし,デー タの誤差が大きくなると計算が次の意味で破綻する ことがある.

 $^{{}^4}$ 式(2)中の
 $z_{\kappa 1},...,z_{\kappa M}$ を
 c倍することは式(3)中の
 $\Pi_{\kappa(ij)}$ を
 c倍することと等価である .

⁵前報 [13] に述べたように,これはアフィンカメラを初期状態 とすることを意味する.

 $^{^6}$ 実際の計算では前報 [13] の 3M 次元ベクトル p_α を $\alpha=1,$..., N とならべた 3M × N 行列 P の特異値分解を計算するほう が効率がよい.

ユークリッド化では前報 [13] に示したようにラン ク3の4×4半正値対称行列⁷ Ω を計算する.数値的 に計算される Ω の固有値の3個が正の場合は最小固 有値を0に置き換える.3個が負の場合は Ω の符号 を換えて同様にする.しかし, Ω が2個の正の固有 値と2個の負の固有値を持てば,これをランク3か つ半正値に直すことが困難であり,計算を中断する. このようなことは通常は起きないが,データの誤差 が非常に大きいときに生じることがある.

そのような場合に,射影復元が真の形状に近い形状 になるようにあらかじめ射影変換を施し,それをユー クリッド化すると破綻が避けられることが実験的に 確認された.その具体的な方法は,Tomasi-Kanade の因子分解法 [8, 20, 26]を用い,射影復元を因子分 解法の解に近づける射影変換を最小二乗法で求める ことである.その手順は次のようになる.

射影復元で得られた N 個の特徴点の 3 次元位置の 4 次元同次座標ベクトルを $X_{\alpha} = (X_{\alpha}^{i})$ とし,因子分 解法で計算したものを $\hat{X}_{\alpha} = (\hat{X}_{\alpha}^{i})$ とする. X_{α} を \hat{X}_{α} に近づける射影変換を求めることは次式が成り 立つような行列 $H = (H_{ij})$ を求めることである.

$$\hat{X}_{\alpha} \approx \frac{H_{11}X_{\alpha}^{1} + H_{12}X_{\alpha}^{2} + H_{13}X_{\alpha}^{3} + H_{14}X_{\alpha}^{4}}{H_{41}X_{\alpha}^{1} + H_{42}X_{\alpha}^{2} + H_{43}X_{\alpha}^{3} + H_{44}X_{\alpha}^{4}}
\hat{Y}_{\alpha} \approx \frac{H_{21}X_{\alpha}^{1} + H_{22}X_{\alpha}^{2} + H_{23}X_{\alpha}^{3} + H_{24}X_{\alpha}^{4}}{H_{41}X_{\alpha}^{1} + H_{42}X_{\alpha}^{2} + H_{43}X_{\alpha}^{3} + H_{44}X_{\alpha}^{4}}
\hat{Z}_{\alpha} \approx \frac{H_{31}X_{\alpha}^{1} + H_{32}X_{\alpha}^{2} + H_{33}X_{\alpha}^{3} + H_{34}X_{\alpha}^{4}}{H_{41}X_{\alpha}^{1} + H_{42}X_{\alpha}^{2} + H_{43}X_{\alpha}^{3} + H_{44}X_{\alpha}^{4}}$$
(14)

行列 $H = (H_{ij})$ には分子分母で打ち消される定数倍の不定性がある.そこで $\sum_{i,j=1}^{4} H_{ij}^2 = 1$ に正規化する.同次座標 $X_{\alpha} = (X_{\alpha}^i)$ にも定数倍の不定性があるので、それらも単位ベクトルに正規化する.

式 (14) の各々の分母を払って整理すると次のよう に書ける.

$$\boldsymbol{T}_{\alpha}\boldsymbol{h}\approx\boldsymbol{0}\tag{15}$$

ただし, hは H_{11} , H_{12} , H_{13} , H_{21} , ..., H_{44} を成分と する 16 次元ベクトルであり, Tは次の 3×16 行列 である.

$$\begin{aligned} \boldsymbol{T}_{\alpha} &= \\ \begin{pmatrix} X_{\alpha}^{1} \; X_{\alpha}^{2} \; X_{\alpha}^{3} \; X_{\alpha}^{4} \\ & X_{\alpha}^{1} \; X_{\alpha}^{2} \; X_{\alpha}^{3} \; X_{\alpha}^{4} \\ & X_{\alpha}^{1} \; X_{\alpha}^{2} \; X_{\alpha}^{3} \; X_{\alpha}^{4} \end{aligned}$$

$$-X_{\alpha}^{1}\hat{X}_{\alpha} - X_{\alpha}^{2}\hat{X}_{\alpha} - X_{\alpha}^{3}\hat{X}_{\alpha} - X_{\alpha}^{4}\hat{X}_{\alpha} -X_{\alpha}^{1}\hat{Y}_{\alpha} - X_{\alpha}^{2}\hat{Y}_{\alpha} - X_{\alpha}^{3}\hat{Y}_{\alpha} - X_{\alpha}^{4}\hat{Y}_{\alpha} -X_{\alpha}^{1}\hat{Z}_{\alpha} - X_{\alpha}^{2}\hat{Z}_{\alpha} - X_{\alpha}^{3}\hat{Z}_{\alpha} - X_{\alpha}^{4}\hat{Z}_{\alpha}$$

$$(16)$$

式(15)より,次式を最小にする最小二乗法を用いる.

$$J = \frac{1}{2} \sum_{\alpha=1}^{N} \|\boldsymbol{T}_{\alpha}\boldsymbol{h}\|^{2} = \frac{1}{2} (\boldsymbol{h}, \left(\sum_{\alpha=1}^{N} \boldsymbol{T}_{\alpha}^{\top} \boldsymbol{T}_{\alpha}\right) \boldsymbol{h}) \quad (17)$$

正規化条件 $\sum_{i,j=1}^{4} H_{ij}^2 = 1$ は $\|h\| = 1$ と表せるか ら,式 (17) を最小にする単位ベクトル h は 16×16 行列

$$\boldsymbol{A} = \sum_{\alpha=1}^{N} \boldsymbol{T}_{\alpha}^{\top} \boldsymbol{T}_{\alpha}$$
(18)

の最小固有値に対する単位固有ベクトル $h = (h_i)$ で ある.これから射影変換行列Hが次のように定まる.

$$\boldsymbol{H} = \begin{pmatrix} h_1 & h_2 & h_3 & h_4 \\ h_5 & h_6 & h_7 & h_8 \\ h_9 & h_{10} & h_{11} & h_{12} \\ h_{13} & h_{14} & h_{15} & h_{16} \end{pmatrix}$$
(19)

射影復元による特徴点の3次元位置の同次座標 X_{α} とカメラの投影行列を Π_{κ} に上の射影変換Hを施すと,次のようになる.

$$\tilde{\boldsymbol{X}}_{\alpha} = \boldsymbol{H}\boldsymbol{X}_{\alpha}, \qquad \tilde{\boldsymbol{\Pi}}_{\kappa} = \boldsymbol{\Pi}_{\kappa}\boldsymbol{H}^{-1}$$
(20)

このように変換した \tilde{X}_{α} , Π_{κ} にユークリッド化を施 すのが破綻を避けるのに有効である.

4. シミュレーション実験

図 3 に 4 種類のシミュレーション画像を示す.こ れらは,3次元空間に特徴点をとり,視点を移動させ ながら 600×600 画素の画像面に焦点距離 f = 600(画素)の透視投影によって投影したものである.い ずれも 11 フレームの画像列であり,図には1フレー ムおきに抜き出した 6 フレームを示している⁸.ま た図説に特徴点数を示す.

4.1 射影復元の反復の比較

射影復元の基本法と双対法を比較するために,反復 回数に対する再投影誤差をプロットした.再投影誤差 とは計算した $z_{\kappa\alpha}$, Π_{κ} , X_{α} を用いて,式 (1)の $x_{\kappa\alpha}$ を未知数とみなして計算した特徴点の座標 ($\hat{x}_{\kappa\alpha}$, $\hat{y}_{\kappa\alpha}$)

⁷「絶対2級面束」または「双対絶対2次曲面」と呼ばれるが, 複素射影幾何学的な解釈は実際の計算では必要ない[13].

⁸図 3(a), (b) 中の枠は見やすくするために示したものであり, 3次元復元には用いない.

図 3:4 種類のシミュレーション画像系列(1フレームおきに抜き出したもの).特徴点数は(a)100個,(b)197個, (c) 231 個, (d) 231 個.

図 4: 図 3(a)~(d) に対する射影復元の収束の比較.実線:基本法.破線:双対法.

と観測値 $(x_{\kappa\alpha}, y_{\kappa\alpha})$ との食い違いを次のように測る ものである(単位は画素).

$$\sqrt{\frac{1}{MN} \sum_{\kappa=1}^{M} \sum_{\alpha=1}^{N} \left((\hat{x}_{\kappa\alpha} - x_{\kappa\alpha})^2 + (\hat{y}_{\kappa\alpha} - y_{\kappa\alpha})^2 \right)} \quad (21)$$

図 4(a)~(d) は図 3(a)~(d) に対する結果である.実 線は基本法,破線は双対法である.これから双対法 では基本法の1/100 あるいはそれ以下の反復回数で 同等の結果が得られていることがわかる.

この理由は,基本法ではN本のベクトルに4次元 部分空間を当てはめるのに対して,双対法では3M 本のベクトルに4次元部分空間を当てはめるというのユークリッド化の実行時間を示す.ただし,CPU

差によるものと思われる.図3のように特徴点数 N がフレーム数 M よりも多い場合は少ないベクトルを 当てはめるほうが多いベクトルの場合よりも反復回 数が少なくてよいことがわかる.

一方,基本法では各ベクトルが3M次元であるの に対して,双対法ではN次元であり,固有値問題を 含む1回の反復の計算時間が増加する.したがって, 反復回数が少なくても実行時間が高速化されるとは 限らない.

表1は図4の各画像列に対して,再投影誤差が0.1 画素になるまでの射影復元の実行時間,およびその後

図 5: 図3の画像列 (a)~(d) に対する3次元復元の精度.横軸は加えた誤差の標準偏差.実線が自己校正による解.破線は因子分解法による解.

表 1: 再投影誤差が 0.1 画素になるまでの射影復元, およびユークリッド化の実行時間(秒).

	(a)	(b)	(c)	(d)
基本法	6.228	8.938	3.336	4.383
双対法	2.015	10.877	6.850	13.717
ユークリッド化	0.006	0.015	0.008	0.017

には Pentium 4 3.2GHz, 主メモリ 2GB, OS には Linux を用いた.

これからわかるように,図 4(a) のような特徴点数 が比較的少ない場合は双対法のほうが実行時間が少 ないが,図 4(b),(c),(d)のように特徴点が増えると 双対法の時間が急速に増加する.これは反復過程で 射影的奥行き $z_{\kappa\alpha}$ を更新する固有値問題(前報[13] お よび本稿のステップ 5(a))の計算量が行列の次元の $3 \sim 4$ 乗に比例するためと思われる⁹.

以上より, 双対法は非常に少ない反復回数で収束 するが,特徴点数が少ない場合でないと実行時間が 短縮されないことがわかる.

4.2 精度の比較

次に,各特徴点の画像座標 (x, y)のそれぞれに,平 均0,標準偏差 σ 画素の正規分布に従うランダム誤 差を,特徴点ごと,フレームごとに独立に加え,そ れを入力データとして3次元復元を行った.

復元した3次元形状は絶対的なスケールが不定で あるから,文献[1,11]と同様に,特徴点の真の3次 元位置と復元した3次元位置を共に重心が座標原点 に来るように平行移動し,それぞれ原点から各特徴 点までの平方平均二乗距離が1になるようにスケー ルを調節した.そして,各特徴点の真の位置と復元 位置の間の平方平均二乗距離が最小になるように復 元形状を重心の周りに回転し¹⁰,その最小値を評価 した.

図 $5(a) \sim (d)$ は図 $3(a) \sim (d)$ の各画像列に対して,横 軸に誤差の標準偏差 σ にとり,これを実線でプロットしたものである.破線は比較のために,弱透視投影 カメラモデルによる因子分解法の解に対して同様に 評価した値である(計算手順は文献 [12] 参照).誤差 は各フレームに各点ごとにランダムに与えたが,各 σ ごとに1回の試行である.多数回の平均をとらな かったのは,誤差による変動の程度も同時に把握す るためである.

これからわかるように,自己校正は誤差が小さい ときは因子分解法に比べて非常によい精度であるが, 誤差が増えるにつれて急速に精度が悪化する.一方, 因子分解法はデータに誤差がなくても正しい3次元 形状は復元されない.これはカメラの透視投影をア フィン写像で近似しているためである.しかし,復 元精度はデータの誤差にロバストであり,誤差を大 きくしてもそれほど増加しない.

5. 実ビデオ画像実験

図6は実験に用いた実ビデオ画像列である.実験 では200フレームを用いたが,ここには抜き出した6 フレームを示している.画像中には追跡した特徴点を マークしている.この特徴点は初期フレームに手動で 指定し,以降のフレーム上をKanade-Lucus-Tomasi の方法[25]によって追跡した.ただし,追跡が途絶 えたら手動で再追跡を開始した.

図7は復元した特徴点を頂点とする三角網¹¹を定 義して得られる多面体に原画像をテクスチャマッピ ングし,それを異なる二つの方向から見たものであ る.上段が因子分解法による解,下段が自己校正法に

⁹部分空間の当てはめ(前報[13]および本稿のステップ4)で は特異値分解を用いるので,基本法と双対法とで計算量は同一で ある.

¹⁰特異値分解により容易に計算される [9].

¹¹文献 [17, 18, 19] の方法で物理的な形状に合致するように三 角網を最適化している.

図 6: 実ビデオ画像列(6フレームを抜き出したもの). 特徴点数は16個.

因子分解法による3次元復元

自己校正による 3 次元復元 図 7: 図 6 のビデオ画像列から復元した 3 次元形状.

よる解である.いずれも右側は物体を真上から見た ものであり,上部も下部も真の形状は長方形である.

これを見てもわかるように,因子分解法ではカメ ラの透視投影をアフィン写像で近似するので,カメ ラから遠い部分が小さく復元され,直角となるべき 部分が必ずしも直角にならない.それに対して自己 校正法では直角であるべき部分が直角となり,正し い3次元形状が復元されている.

この例の場合の射影復元の反復を基本法と双対法 で比較すると,再投影誤差の減少は図8のようにな る.そして,再投影誤差がほぼ2画素¹²になるまでの 射影復元の実行時間,およびユークリッド化の実行 時間は表2のようになる.この画像列のように,特 徴点数が比較的少なく,フレーム数が多い場合は双 対法のほうが圧倒的に有利になる.

この再投影誤差の評価から,図6の特徴点追跡に

図 8: 図6のビデオ画像例に対する射影復元の収束の比較. 実線:基本法.破線:双対法.

表 2: 再投影誤差がほぼ 2 画素となるまでの射影復元,お よびユークリッド化の実行時間(秒).

基本法	722.906
双対法	0.180
ユークリッド化	0.964

は平均2画素程度の誤差があるといえる.しかし,この程度の誤差であっても図7のようにほぼ満足できる3次元形状が復元されている.

ビデオ画像から3次元復元を行うときの最大の課題は、いかに特徴点追跡を正確に行うかである.追跡結果を詳細に観察すると、フレームごとに特徴点位置が微小にふらついていることがある.これはビデオ画像のインターレースも一因である.フレーム間平均とフレーム内平均を用いるインターレース除去[2]を行ってみると、定量的な評価が困難であるが、特徴追跡が多少安定になったようである.

6. まとめ

本論文では,前報[13]に示した複数の画像間の特 徴点の対応から3次元形状を計算する最新の自己校 正法の性能をシミュレーションおよび実ビデオ画像 を用いて実験的に評価した.

まず射影復元の反復において,前報[13]で採用した Mahamudら[14]の方法とそれに Heydenら[4]の 双対法を比較した.結論として,双対法は毎回の反復による精度の向上が大きいが,1回の反復に時間を要するので,必ずしも全体的な効率向上にはつながらないことがわかった.

¹²精密には 2.027 画素.この状態でほぼ収束しており,これ以 上反復してもほとんど変化しない.

次に自己校正と因子分解法の精度比較した.そして,因子分解法は精度が低いがデータの誤差にロバストであるのに対して,自己校正は誤差が小さいときに極めて精度が高いが誤差が大きくなると急速に 精度が悪化することが明らかになった.

また,自己校正の破綻を避けるのに因子分解法の 解を用いて射影復元を改良するのが有効であること を確認した¹³.

総合すると,入力に特に大きな誤差がなければ高 精度を要求しない応用,特に視覚的な表示を目的と する応用では,自己校正は非線形最適化の後処理が なくても十分に実用的であるといえる.

謝辞:本研究の一部は文部科学省科学研究費基盤研究 C (No. 17500112)の助成によった.

参考文献

- 浅原 清太郎,金谷健一,菅谷保之,ハノ・アッカーマン,未校正因子分解法による3次元復元:比較実験,情報処理学会研究報告,2005-CVIM-151-20 (2005-11), 145-152.
- [2] G. de Haan and E. B. Bellers, Deinterlacing: An overview, *Proc. IEEE*, 86-9 (1988-9), 1839–1857.
- [3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, U.K., 2000.
- [4] A. Heyden, R. Berthilsson, and G. Sparr, An iterative factorization method for projective structure and motion from image sequences, *Image Vision Comput.*, **17**-13 (1999-11), 981–991.
- [5] F. Kahl, Critical motions and ambiguous Euclidean reconstructions in auto-calibration, *Proc. 7th Int. Conf. Comput. Vision*, September 1999, Kerkyra, Greece, Vol.2, pp. 469–475.
- [6] F. Kahl and B. Triggs, Critical motions in Euclidean structure from motion, Proc. IEEE Conf. Comput. Vision Pattern Recog., June 1999, Fort Collins, CO, U.S.A., pp. 366–372.
- [7] F. Kahl, B. Triggs and K. Åström, Critical motions for auto-calibration when some intrinsic parameters can vary, J. Math. Imaging Vision, 13-2, (2000-10), 141–146.
- [8] 金出武雄、コンラッド・ポールマン、森田俊彦、因子分解 法による物体形状とカメラ運動の復元、電子情報通信 学会論文誌 D-II、J74-D-II-8 (1993-8)、1497-1505.
- [9] K. Kanatani, Geometric Computation for Machine Vision, Oxford University Press, Oxford, U.K., 1993.
- [10] 金谷健一,「形状CADと図形の数学」,共立出版, 1998.
- [11] 金谷健一,浅原清太郎,菅谷保之,ハノ・アッカーマン, 未校正因子分解法:カメラモデルを指定しないユー クリッド復元,情報処理学会研究報告,2005-CVIM-150-6 (2005-9),131-138.
- [12] 金谷健一,菅谷保之,因子分解法の完全レシピ,電子 情報通信学会技術報告,PRMU2003-118 (2003-10), 19-24.

- [13] 金谷 健一,森昭延,菅谷保之,自己校正法の最新 レシピ,情報処理学会研究報告,2006-CVIM-153-31 (2006-3),199-206.
- [14] S. Mahamud and M. Hebert, Iterative projective reconstruction from multiple views, *Proc. IEEE Conf. Comput. Vision Patt. Recog.*, June 2000, Hilton Head Island, SC, U.S.A., Vol. 2, pp. 430– 437.
- [15] 右田剛史, 天野 晃, 浅田尚紀, 3 次元形状・運動復元 のための高速非線形最適化計算法, 情報処理学会論文 誌, 44-11 (2003-11), 2864-2872.
- [16] 椋木雅之,右田剛史,青山正人,浅田尚紀,非線形最 適化による建物画像列からの全周形状一括復元のた めの初期値設定法,情報処理学会論文誌,45-SIG 13 (2004-12),64-73.
- [17] 村田 正和,中辻 敦忠,菅谷 保之,金谷 健一,画像からの形状復元に適合した三角網の生成,情報処理学会研究報告,2004-CVIM-145-2 (2004-10),9-16.
- [18] 中辻 敦忠, 菅谷 保之, 金谷 健一, ビデオ画像からの 形状復元のための三角網の最適化, 情報処理学会研究 報告, 2005-CVIM-149-2 (2005-5), 7–14.
- [19] A. Nakatsuji, Y. Sugaya, and K. Kanatani, Optimizing a triangular mesh adapted for shape reconstruction from images, *IEICE Trans. Infor. & Syst.*, E88-D-10 (2005-10), 2269–2276.
- [20] C. J. Poelman and T. Kanade, A paraperspective factorization method for shape and motion recovery, *IEEE Trans. Patt. Anal. Mach. Intell.*, **19**-3 (1997-3), 206–218.
- [21] M. Pollefeys, R. Koch, and L. Van Gool, Selfcalibration and metric reconstruction in spite of varying and unknown internal camera parameters, *Int. J. Comput. Vision*, **32**-2 (1999), 145–150.
- [22] P. Sturm, Critical motion sequences for monocular self-calibration and uncalibrated Euclidean reconstruction, Proc. IEEE Conf. Comput. Vision Pattern Recog., June 1997, San Juan, Puerto Rico, pp. 1100–1105.
- [23] P. Sturm, Critical motion sequences for the selfcalibration of cameras and stereo systems with variable focal length, *Image Vision Comput.*, 20-5/6 (2002-4), 415–426.
- [24] 菅谷保之,金澤靖,金谷健一,エピ極線幾何学による2画像間の密な点対応の生成,情報処理学会研究報告,2005-CVIM-148-19 (2005-3),145-152.
- [25] C. Tomasi and T. Kanade, Detection and Tracking of Point Features, CMU Tech. Rep. CMU-CS-91-132, Apr. 1991; http://vision.stanford.edu/~birch/klt/.
- [26] C. Tomasi and T. Kanade, Shape and motion from image streams under orthography—A factorization method, Int. J. Comput. Vision, 9-2 (1992-10), 137–154.
- [27] B. Triggs, Autocalibration and the absolute quadric, Proc. IEEE Conf. Compt. Vision Patt. Recog., June 1997, San Juan, Puerto Rico, pp. 609– 614.
- [28] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. Fitzgibbon, Bundle adjustment—A modern synthesis, in B. Triggs, A. Zisserman, and R. Szeliski (Eds.), Vision Algorithms: Theory and Practice, Lecture Notes in Computer Science, No. 1883, Springer, Berlin, 2000.

¹³その場合は因子分解法の解とほとんど同じ3次元形状が得られる.