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Stereological procedures are classified according to the
type of estimation, and their mutual relationships are discussed.
Then, estimation of sphere size distribution from observation of
material cross-sections is discussed from the viewpoint of
numerical analysis, i.e., discrete approximation of the basic
integral equation of Abel type. Finally, methods of estimating
structural anisotropy due to internal distribution of 1line
tissues and surfaces are considered. The anisotropy of structure
is characterized by the distribution density, which is expressed
in terms of what is called the “fabric tensors." The distribution
density is related to observed data by what is called the "Buffon
trahsform," and estimation is done by computing its inversion.
Main emphasis is placed on the role played by mathematics.

INTRODUCTION

"Stereology" can be defined as a study of methods to
estimate "geometrical characteristics" of the space (of any
dimensionality, mostly 2 and 3 dimensions) from "partial
observations” such as observations of material cross-sections or
thin slfices. Hence, definite solutions can not be obtained, and
the problem is statistical in its nature. Hence, statistical
models are employed with appropriate probabilities assigned, and
the solution has a meaning only in the statistical sense. 1In the
following, we classify and summarize various techniques obtained
so far. In view of the interdisciplinary nature of stereology,
we make clear the role played by mathematics and underlying
mathematical thinking. This may help researchers in different
areas to understand stereology from a unified rational viewpoint.

AVERAGE DENSITY ESTIMATION

Mathematical structure of stereological estimation differs
according to the object of estimation. A simplest one is the
estimation of "density" such as V, (the volume of a specific
phase per unit volume of the material), A4y (the area of a
specific surface per unit volume) and Ly (the length of specific
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(c) (d)

Fig. 1
(@) Az, (b) Ly, (c) Ny, (&) Lp,
(e) N;,. For (b), (c) and (e},

¥ (m) is observed if m is fixed.

(e)

tissues per unit volume). Observations are made on planes
cutting the material, measuring 4, (the area of a specific phase
per unit area of the cutting plane, Fig. 1(a)), L, (the length of
intersections with surfaces per unit area of the cutting plane,
Fig. 1(b)), N4 (the number of intersections with line tissues per
unit area of the cutting plane, Fig. 1l(c)) or on probe lines
piercing the material, measuring L; (the length of intercepts of a
specific phase per unit length of the probe line, Fig. 1(d)) or Wy
(the number of intersections with surfaces per unit length of the
probe line, Fig. l(e)).

Densities like Vy, Ay, Ly, Ap, Ly, Ny, Ly and Ny all have
meanings in the sense of average. This type of estimation has
been extensively studied in biology, medicine, metallurgy and
geology in order to examine the internal biological tissues,
inclusions in metals, underground minerals, etc, and mathematical
relations among those densities are listed in many books (e.g.,
DeHoff and Rhines: 1968, Underwood: 1970, Weibel: 1979, 1980).
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Fig. 2. Distribution of
spheres in the material
and their corss-sections
on a cutting plane.

SIZE DISTRIBUTION ESTIMATION

At times we want to know not only average densities but also
their “"distributions." For example, if many objects of the same
shape but of different sizes are distributed in the material, we
often need to know the size distribution. Most extensively
studied is the case of spherical inclusions. Although other
shapes such as ellipsoids and cubes are also important, the
assumption of sphere makes the theory simple and elegant.
Moreover, spherical particles often play a significant role in
biology, medicine, metallurgy and geology (e.g., DeHoff and
Rhines: 1968, Underwood: 1970, Weibel: 1979, 1980).

Let the "distribution density" F(R) be defined in such a way
that F(R)AR is the number of spheres of radii between R and R +
dR in unit volume of the material. The spheres are assumed to be
distributed randomly. Suppose we place a cutting plane randomly
in the material and observe particle cross-sections on the
cutting plane (Fig. 2). Let the observed distribution density
f(r) be defined in such a way that f(r)dr is the number of
circular cross-sections of radii between r»r and r + dr in unit
area of the cutting plane. Then, F(R) and f(r) are shown to be
related by the integral equation of the form

R
fir) = errmax7;_'_2___(£__)_d_%_2 ' (1)

where Rpsx is the maximum particle radius. A small change of
variables reduces this equation to an integral equation of Abel
type, and it can be analytically inverted to express F(R) in
terms of f(r) in the form

R
_ R ([max d(f(r)/r)

F(R) =3 jR 71% . (2)
Many numerical schemes are also proposed to compute this process
from a finite number of observed data. vVarious other effects
such as a thin slice instead of a cutting plane (the "Holmes
effect" or "overprojection"), the "resolution threshold" and the
"capping effect" are also incorporated (DeHoff and Rhines: 1968,
Underwood: 1970, Weibel: 1979, 1980, Cruz-Orive: 1983, Coleman:
1982, 1983 and many others).

Thus, the estimation problem is completely solved in
principle. However, there are several points that should be
pointed out. First, most numerical schemes were devised on the
basis of some discrete distribution models. For example, each
particle is assumed to belong to one of prefixed classes of the
particle size. The schemes are then evaluated only by the
numerical outcomes of actual or synthetic examples. However, we
should recall that exact integral equation (1) or (2) is already
obtained. Hence, every numerical scheme must be a discrete
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approximation of (1) or (2) in some sense, and it should be
evaluated from the viewpoint of how well it approximates the
exact integral equation. _

Kanatani and 1Ishikawa (1985) showed that the familiar
schemes due to Scheil, Schwartz or Saltykov (cf. DeHoff and
Rhines: 1968, Underwood: 1970, Weibel: 1979, 1980) are poor
approximations to the exact integral equation. They divided the
interval [0, Rpax] into n subintervals and formulated various
discrete approximations. Each of them was evaluated by analyzing
the discrepancy between the approximation and the original
integral equation asymptotically in terms of n. Schemes of
Scheil, Schwartz or Saltykov, for example, are shown to have
errors of 0(l/n). Such an asymptotic analysis provides not
simply a general criterion to compare different numerical schemes
but also various numerical techniques tc improve accuracy such as
the "acceleration" (cf. Kanatani and Ishikawa: 1985).

Next thing to note is the use of the (cumulative)
"distribution functions" ¢ (R), the number of spheres of radii
smaller than R in unit volume of the material, and ¢(»r), the
number of cross-sections of radii smaller than r in unit area of
the cutting plane, rather than the use of the "distribution
densities” F(R) and f(r). This is because ¢(R) and ¢(r) alone
are well defined functions both from a practical point of view
and from a mathematical point of view, while densities F(R) and
f(r) can be obtained only through "differentiation," their
definitions involving "infinitesimals" like dR and dr. Making a
discrete histogram is nothing but one process of numerical
differentiation of measured data, and this process is very
susceptible to noise.

In many books, not only F(R) and f(r) are used but also they
are used in the sense of "probability," i.e., they are normalized
so that the total becomes unity. However, there is no physical
sense to interpret them as probabilities, since they express
"geometrical" characteristics, describing distributed quantities
"per unit volume"” or "per unit area." Normalization only
complicates mathematical treatment. These facts should be well
known among mathematicians and engineers, but it seems that many
researchers of biology and medicine may not be aware of this.

In terms of distribution functions ¢(R) and ¢(r), equations
(1) and (2) are integrated into the form of

= Rmax
¢ (r) = 2RN - 2fr YRZ - p2d¢(R), (3)
R
_ 1 [max__d¢(r)
o(R) =W - = IR =53 ¢ (4)

where N is the "numerical density," i.e., the number of particles
per unit volume, and R is the "mean radius" of the particles, and

the integration is in the sense of Stieltjes. The discrete
approximation is made as follows. First, we take discrete radii
(0 =) ag < ay; < «v. < ap (= PRpax)- If the integration of

equation (3) is approximated by appropriate summation, we obtain
a discrete scheme of the form

— n > -
¢(ai) = A .¢(aj), i=1, 2, ..., n. (5)

J=1"%g
Formulae of this type were called "implicit formulae" by Kanatani
and Ishikawa (1985). If we compute the inverse matrix B = (Bjj)
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(= 4°1) of 4 = (4;;), we obtain a formula of the form

¢(a;) = jleij¢(aj)’ i=1,2, ..., n. (6)
which converts observed data ¢é(a;), ¢(az), ..., ¢(ay) into
desired distribution ¢(a;), ¢(aj), ... , ®(ay). Another type of
approach is to approximate equation (4) directly by a discrete
equation in the form of (6). Formulae of this type were called
"explicit formulae" by Kanatani and Ishikawa (1985). They
analyzed various schemes and concluded that implicit formulae
give in general better approximation to the exact integral
equation.

Another thing to keep in mind is the distinction of error
sources. The accuracy of estimation increases if observations
are repeated many times and accurate measurement is done. This
is because "sampling errors" are reduced. On the other hand,
the use of accurate formulae also increases the accuracy. This
is because "computational errors" are reduced. These two error
sources are different in their nature and should not be mixed up.
So far, many estimation schemes have been tested experimentally
and evaluated according to the overall accuracy. However, good
overall accuracy does not imply that the formula is accurate.
Different error sources should be examined separately, and the
computational accuracy should be studied from the viewpoint of
numerical analysis.

Kanatani and Ishikawa (1985) pointed out that the
computational accuracy of the formulae of the form of equations
(5) and (6) depends dominantly on the treatment of
"singularities" in equations (3) and (4). The reason that
explicit formulae give poor accuracy 1is that the order of
singularity is higher for (4) than for (3). This fact 1is not
affected when other factors such as the Holmes effect, the
resolution threshold and the capping effect are taken into
account. Kanatani and Ishikawa (1985) also studied the numerical
stability in terms of the "condition number" of matrices 4 =
(4;;) and B = (Bgj).

ESTIMATION OF STRUCTURAL ANISOTROPY

Geometrical characteristics of the material in which objects
are distributed are not restricted to average densities and their
size distributions. Sometimes, the extent of "anisotropy" of the
distribution may be an important concern. If the distribution is
not isotropic, the same observation process yields different
results for different orientations of the material. Hence, there
have been proposed various observation processes which depend on
the material orientation, and many "indices of anisotropy" are
devised out of these observations (cf. DeHoff and Rhines: 1968,
Underwood: 1970, Weibel: 1979, 1980).

Although this type of approaches are often taken in biology,
medicine, metallurgy and geology, they cannot be called truly
"scientific." The rational way should be as follows. (I) We
first try to define a definite "model" of anisotropy in
mathematical terms and determine the parameters by which it is
completely specified "irrespective of whether or not there exists
a means to measure them." (II) Then, we try to devise means of
measurement. If they cannot be measured directly by any
available means, they should be "estimated" by some approximation
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schemes. The philosophy is the same as in the above case of
particle size distribution where schemes are evaluated from the
view point of how well they approximate the exact integral
equation.

Consider two cases of anisotropy due to internal structure.
One is the case where 1line tissues are distributed in the
material. The line tissues may be straight or curved. They may
be dissected into separate '"needles" or linked to form a
connected "network." Let the 1line tissues be hypothetically
dissected into infinitesimally small 1line segments. Let each
line segment be assigned an orientation by a unit vector n
randomly with a probability of 1/2 out of the two possibilities.
Let the "distribution density" f(n) be defined in such a way that
f(n)dQ(n) is the total length of those line segments, in unit
volume of the material, whose orientations are inside the
differential solid angle dQ(n) around n. By definition,
ff(n)dn(n) equals Ly, the length of the 1line tissues per unit
volume. If the distribution is isotropic, f(n) = const..

The other is the case where surfaces are distributed in the
material. The surfaces may be planar or curved. They may be
dissected into separate "disks" or linked to form a connected
"cell walls." Let the surfaces be hypothetically dissected into
infinitesimally small surface segments. Let each surface segment
be assigned a unit normal vector n randomly with a probability
1/2 out of the two possibilities. Let the "distribution
densities" f(n) be defined in such a way that f(n)dQ(n) is the
total area of those surface segments, in unit volume of the
material, whose normals are inside the differential solid angle
dQ2(n) around n. By definition, ff(n)dQ(n) equals Ay, the area of
the surface per unit volume. If the distribution is isotropic,
f(n) = const..

Our aim has been now formulated in mathematical terms in
either case as estimating the distribution density f(n). Next,
let us consider how to parameterize f(n). Since it is regarded
as a function on a unit sphere defined by the unit vector n, it
can be expressed as a ‘"spherical harmonics expansion." 1In
Cartesian tensor notation, +this become as follows (Kanatani:
1984a):

c

f(n) = s (1 + Dijninj + Dijklninjnknl
where we adopt the Einstein summation convention over repeated
indices. Terms of odd degrees do not appear because f(n) is
"symmetric" with respect to the origin, i.e., f(n) = Ff(- n).
Here, ¢ = [f(n)dR(n) (the "total density") and Dgj, Dijkir -~
are "deviator tensors," i.e., contraction of any two indices
yields 0. These tensors were called the "fabric tensors" of the
distribution. This expansion is the same as the "multiple moment
expansion" of an electric potential in electromagnetics. Since
spherical harmonics of each degree form a basis of an irreducible
representation of the three-dimensional rotation group SO0(3),
this expansion corresponds to resolution to spaces of irreducible
representation of SO(3) (cf. Kanatani: 1984a).

Suppose a cutting plane of unit normal m is placed randomly
in the material, and let ¥(m) be the number of intersections with
line tissues per unit area of the cutting plane (Fig. 1l(c)).
Then, the expectation value of ¥(m) is shown to be related to the
distribution density f(n) of line tissues in the form

+ ...1, (7)
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¥m) = [|men|F(n)an(n). (8)

This relation was first suggested by Hilliard (1967) and was
called the "Buffon transform" by Kanatani (1984b). Suppose a
probe line of orientation m is placed randomly in the material,
and let ¥(m) be the number of intersections with surfaces per
unit length of the probe line (Fig. l(e)). Then, the expectation
value of ¥(m) is also shown to be related to the distribution
density f(n) of surfaces by the Buffon transform of (8) (cf.
Kanatani: 1984b). Suppose a cutting plane of unit normal m is
placed randomly in the material, and let N(m) be the 1length of
intersections with surfaces per unit area of the cutting plane
(Fig. 1(b)). Then, the expectation value of ¥(m) is shown to be
related to the distribution density f(n) of surfaces in the form

g(m) = [fmxn|f(n)de(n), (9)

which was also called the "Buffon transform" by Kanatani (1984b).

Thus, estimation of the distribution density f(n) is reduced
to inversion of the Buffon transform of (8) or (9). Let the
right-hand side of (8) or (9) be written as Bf(m) and the
operator B be termed the "Buffon operator." Let the rotation
operator R be defined by Rf(m) = f(R !m). Then, the Buffon
operator B "commutes" with the rotation operator R and hence is
an "invariant" operator, i.e., BRf(m) = RBf(m) or B = R-IBR.
Hence, the spherical harmonics generate "eigenspaces" of the
operator B, and the inversion of (8) or (9) is computed if
observed ~N(m) is also expanded into a spherial harmonics
expansion

N(m) = i‘ (1 + Fijmimj + Fijklmimjmkml + ... (10)
Then, ¢, D;j, Djjyxys --- are given as follows (Kanatani: 1984b):
fidoeeii. = MaFi it (11)

172 n 12 n
For (8), e =c/2m, A = (DY lean e/ a2
For (9), ¢ =c/n%, A =-2""t-1/ (7)° (13)

Now, the problem is finally reduced to estimating the
expansion (10) from a finite number of observed data ~(m(1)),
¥m(2)), ..., nm¥)). A most straightforward method is the
“Monte Carlo method," choosing m{(1l), m(2), ..., m(¥) randomly on
the unit sphere defined by m (Kanatani: 1984b). To do so,
however, we must prepare a large number of material samples all
of which are supposed to have the same statistical
characteristics and cut them from various different orientations.
This is often difficult to perform in practice. On the other
hand, if the anisotropy is weak and the distribution is nearly
isotropic, higher order terms of (7) or (10) can be neglected.
Then, there exist methods using only three types of surfaces, say
planes parallel to the xy-, the yz- and the zzx-planes, and errors
involved in this approximation are also estimated (Kanatani:
1985b).

The above principle leads to a variety of applications in
many different fields. This method can be used for
characterization of particles in powder technology. For example,
the orientation of maximum alignment of the needle-like particles
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Fig. 3

The stereological principle of
estimating anisotropy has applications
in many different areas such as powder
technology, metallurgy, geology,

ax"tJ:.ficial intelligence and computer
vision.

(d)

of Fig. 3(a) is estimated to be 125° from the x-axis (Kanatani:
1985¢). In geology, the internal crack distribution in a rock
can also be estimated from observations of its surfaces
(Kanatani: 1985a). Applying this principle, we can also measure
the strain of a material by observing the structural anisotropy
if the internal structure is assumed to be isotropic in the
original state. For example, the orientations of maximum
extension and compression of the material shown in Fig. 3(b) are
estimated to be 2° and 92° from the x-axis respectively and the
shearing strain to be 0.18 in the «xy-plane (Kanatani: 1984b).
The same principle is also used in computer vision and artificial
intelligence to reconstruct three dimensional information £from
two dimensional camera images. For example, Fig. 3(c) is
estimated to be a plane with isotropic texture slanted by 49°
(Kanatani: 1984c). We can also compute the three-dimensional
motion of a moving plane which is seen as Fig. 3(d) (Kanatani
19844).

CONCLUDING REMARKS

Stereology is an interdisciplinary area, and the same
principle can be used in many different areas for many different
purposes. Hence, results in a particular area could bring about
new applications in other areas. However, this is possible only
if the results are described in precise mathematical terms. So
far, researches in a particular area seem to have been aiming
only at researchers in that area, and the same principle has been
rediscovered many times separately in different areas.
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The present article is intended to give .a unified
mathematical viewpoint that should be shared by all the areas
concerned. A basic philosophy described here is (I) first
formulating the problem exactly in purely mathematical terms and
(II) then devising necessary experimental means that are easy to
perform. We have also shown the importance of mathematical
techniques such as numerical analysis, tensor analysis and group
theory. Further advances can be expected if the v1ewp01nt stated
in this article is applied and coupled with various other
mathematical techniques.
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