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SUMMARY

We present a scheme for reconstructing a 3D struc-
ture from optical flow observed by a camera with an un-
known focal length in a statistically optimal way as well as
evaluating the reliability of the computed shape. First, the
flow fundamental matrices are optimally computed from
the observed flow. They are then decomposed into the focal
length, its rate of change, and the motion parameters. Next,
the flow is optimally corrected so that it satisfies the epipo-
lar equation exactly. Finally, the 3D positions are computed,
and their covariance matrices are evaluated. By simulations
and real-image experiments, we test the performance of our
system and observe how the normalization (gauge) for
removing indeterminacy affects the description of uncer-
tainty. © 2002 Wiley Periodicals, Inc. Syst Comp Jpn,
33(9): 1–10, 2002; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/scj.10133

Key words: optical flow; 3D reconstruction; self-
calibration; reliability evaluation; gauge transformation.

1. Introduction

Traditionally, there exist two approaches for extract-
ing 3D information from motion images: one is based on
the “fundamental matrix” [14, 17] computed from point
correspondences over two images; the other is to regard the
displacements of points in the image as an instantaneous
velocity field (“optical flow”), on which the 3D analysis is
based. In this paper, we experimentally evaluate the per-
formance of the latter.

Optical flow is usually computed from the gray levels
of the images using the so-called gradient constraint [6,
12]. This computation is relatively easy, and the flow is
obtained at all pixels. However, the accuracy is not very
high, because derivatives are approximated by differences
and arbitrary constraints for smoothness and regularization
are imposed. The resulting flow may be useful for some
applications, such as image segmentation, that do not re-
quire high accuracy. For accurate 3D reconstruction, how-
ever, we need to limit the number of feature points and
compute their displacements with high accuracy. Here, we
assume that individual feature points are accurately tracked
using template matching or spatiotemporal filtering. Of
course, our method can be applied to optical flow computed
using the gradient constraint if high accuracy is not re-
quired.
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Considerable research has been done in the past for
3D reconstruction from optical flow [6, 11, 13]. In most
cases, however, the camera is assumed to be calibrated.
Recently, significant progress has been made in the study
of self-calibration of uncalibrated cameras using image
sequences [14, 17], and Brooks and colleagues [2] and
Viéville and Faugeras [16] presented a method for 3D
reconstruction from optical flow observed by an uncali-
brated camera.

In this paper, we follow Brooks’s method [2] with a
special emphasis on the following facts that have not re-
ceived much attention in the past:

• While Brooks and colleagues [2] simply showed
the possibility of 3D reconstruction, we give a
statistically optimal reconstruction method that
attains a theoretical accuracy by introducing a
mathematical model of noise.

• Not only do we reconstruct the 3D shape but also
evaluate the reliability of the solution to see how
accurate the reconstructed shape is.

• We study how the normalization (gauge) for re-
moving indeterminacy affects the description of
uncertainty.

Optimal 3D reconstruction from optical flow ob-
served by a calibrated camera has already been studied [13],
and extension to the uncalibrated case is straightforward.
However, the increase in the number of unknowns consid-
erably complicates the reliability evaluation. In this paper,
we introduce realistic first approximations to the reliability
evaluation while optimizing the reconstruction computa-
tion exactly. Our system consists of pairs of computation
and reliability evaluation at each stage as follows:

1. Detect optical flow at multiple (at least 8) pixels in
the image.

2. Optimally compute the flow fundamental matrices
from the detected flow, and evaluate their reliability.

3. Decompose the computed flow fundamental ma-
trices into the focal length, its rate of change, and the camera
motion parameters.

4. Optimally correct the optical flow so that it satisfies
the epipolar equation exactly, and evaluate the reliability of
the corrected flows.

5. Reconstruct the 3D positions from the corrected
flow, and evaluate their reliability.

6. Evaluate the error in the flow fundamental matri-
ces, and compute the covariance matrices of the recon-
structed points.

The component techniques used in this process have
been known in various forms [5–7, 15]. We integrate them
in the most effective way for our purpose and confirm the
effectiveness of our system by experiments using synthetic
and real images.

2. Epipolar Equation and Flow
Fundamental Matrices

Suppose the camera is translating with translation
velocity v and rotating with rotation velocity w (around axis
w with angular velocity ||w||) relative to the scene. We call
{v, w} the motion parameters. Define an arbitrary coordi-
nate system in the image, and let (u. , v. ) be the displacement
velocity (optical flow) at (u, v). We express them in vectors

where f0 is an appropriate approximation to the camera
focal length. If image noise does not exist, the following
epipolar equation holds [2, 7, 16]:

Throughout this paper, (a, b) denotes the inner prod-
uct of vectors a and b. In the above equation, W and C are
antisymmetric and symmetric matrices, respectively. Since
they correspond to the fundamental matrix [14, 17] that
determines the epipolar equation for two images, we call
{W, C} the flow fundamental matrices [7]. Define the
following vector from the elements of the antisymmetric
matrix W = (Wij):

It can be shown [7] that matrices {C, W} satisfy the decom-
posability constraint

which corresponds to the constraint that the fundamental
matrix computed from two images have determinant zero
[14, 17]. If the camera is calibrated, a stronger decompos-
ability constraint is imposed [6, 13].

3. Computing Flow Fundamental Matrices

Brooks and colleagues [2] and Viéville and Faugeras
[16] computed the flow fundamental matrices {C, W} by a
simple least-squares method, but the solution is known to
have a large statistical bias [6]. In order to remove the bias,
the authors presented an algorithm for optimally computing
the flow fundamental matrices by introducing a statistical
model of image noise and optimally fitting the epipolar
equation (2) to the flow. This algorithm computes the

(1)

(2)

(3)

(4)
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matrices {C, W} by a technique called renormalization [6]
and optimally corrects the solution so that the decompos-
ability constraint (4) is exactly satisfied. A C++ program
package of the algorithm is publicly available.*

Figure 1 shows the root-mean-square error (corre-
sponding to the standard deviation) of the flow fundamental
matrices computed from the synthetic example given in
Ref. 15. The abscissa is for the standard deviation of the
random noise added to the data points. We did 100 trials
using different noise for each standard deviation. The sym-
bol ∆ denotes solutions computed by the simple least-
squares method of  Refs.  2 and 16; A denotes
renormalization solutions; " denotes renormalization solu-
tions with optimal correction. The dotted line indicates the
theoretical lower bound, which can be estimated in the
course of computing the fundamental matrices [15]. We can
see that our solution falls in the vicinity of the lower bound.

This bound allows us to evaluate the reliability of
quantities derived from the flow fundamental matrices.
Figure 2(a) shows the optical flow computed from a real
image sequence by the method described in Ref. 12. The
covariance matrix of the detected flow can be evaluated
from the gray levels of the images in the course of detecting
the optical flow [12]. Figure 2(b) shows the reliability of
the epipole (the point in the direction of the camera motion)
estimated from the optimally computed flow fundamental
matrices; the ellipse shows the standard deviation from the
estimated epipole in each orientation.

Our method computes not only optimal estimate
{Ĉ, Ŵ} of the flow fundamental matrices but also their
primary deviation pairs {C(+), W(+)} and {C(–), W(–)}. They
are the values in the parameter space that are separated from

{Ĉ, Ŵ} by the standard deviation in the two directions
along which errors are most likely to occur; they correspond
to the theoretical accuracy bound. If C(+) and C(–) agree up
to, say, three significant digits, the solution Ĉ is guaranteed
to have accuracy up to approximately three significant
digits [6, 15]. This information can be used to evaluate the
reliability of the reconstructed 3D shape (see Section 9).

4. Optimal Correction of Optical Flow

Let V0[x] and V0[x
.] be the normalized covariance

matrices of the feature position x and the flow x.  there; they
are determined up to a scale factor, describing the qualita-
tive characteristics of their accuracy. They are computed
from the gray levels of the images if the feature points are
detected by an image processing operation [10].

If (u. , v. ) and (u, v) in Eqs. (1) are interpreted to be,
respectively, the displacement vector connecting the corre-
sponding points over the two images and their midpoint,
and if the noise is assumed independent and isotropic (i.e.,
the standard deviation is independent of orientations) at
each point, the covariance matrices of x.  and x are written,
up to a scale factor, in the form

where diag( . . . ) denotes a diagonal matrix with diagonal
elements . . . . If no particular information is available about
the accuracy of the feature points, we use these as the
default values of the covariance matrices.

Even though the flow fundamental matrices {C, W}
are optimally computed, x.  and x do not necessarily satisfy
the epipolar equation (2) exactly. So, we correct x.  and x so
that Eq. (2) is exactly satisfied. This is done as follows [6]:

Fig. 1. Root-mean-square error of flow fundamental
matrix computation. ∆: least squares; A: renormalization;
": renormalization and optimal correction. The dotted

lines indicate the theoretical lower bound.

Fig. 2. (a) Optical flow computed from road scene
images. (b) The estimated epipole and its uncertainty

evaluation.

*http://www.ail.cs.gunma-u.ac.jp/Labo/e-programs.html

(5)
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Equations (6) are iterated in the form x.  ← x.̂  and x ← x̂ until
E(x.̂ , x̂) = 0 is sufficiently satisfied. Since the convergence
is quadratic as Newton iterations, one iteration is almost
sufficient in practice.

Because the corrected values x.̂  and x̂ should satisfy
the epipolar equation, the degrees of freedom of their
(normalized) covariance matrices are constrained to lower
ranks. Thus, we replace them by the following (normalized)
a posterior covariance matrices [6]:

Although the noise in the position x and the noise in the
flow x.  are independent by assumption, the corrected values
x̂ are x.̂  are no longer independent. They have the following
(normalized) correlation matrix [6]:

The amount of the optimal correction described
above is usually subpixel, but it significantly affects the
accuracy of the reconstructed 3D points that are far from
the camera. Also, we can evaluate the reliability of the
reconstructed shape from the amount of this correction (see
Section 8).

5. Decomposition of Flow Fundamental
Matrices

The flow fundamental matrices {C, W} are defined
up to a scale factor and constrained by the decomposability
constraint (4). In addition, C is symmetric and W is anti-
symmetric. Thus, they have seven degrees of freedom. The
absolute scale of the translation velocity v is indeterminate
due to the scale indeterminacy of {C, W}. Hence, the
motion parameters {v, w} have five degrees of freedom. It
follows that at most two camera parameters can be deter-
mined if the camera motion is unconstrained.

A realistic choice for the two parameters is the focal
length f and its rate of change f

.
, because other intrinsic

parameters can be calibrated in advance. With today’s high-
quality cameras, we will not have serious problems if we
assume the standard values, that is, assume that the princi-
pal point (the point where the optical axis passes through)
is at the center of the frame, the aspect ratio (the ratio of
vertical to horizontal sizes of the pixel array) is 1, and the
skew angle (the angle made between the rows and columns
of the photo cell array) is 90°. However, the focal length
(zooming) frequently changes in the course of shooting.

Assuming the standard values for all the parameters
except the focal length f and its rate of change f

.
, Brooks and

colleagues [2] presented a complicated algebraic procedure
for computing f and f

.
. However they can be obtained by a

simple computation in terms of complex numbers based on
the group representation theory [3, 4] as follows [7]:

1. Compute the following quantities from the matrix
C = (Cij):

2. Compute the vector w = (wi) defined in Eq. (3) from
the matrix W.

3. Compute the complex numbers w~ and ω~ as follows:

4. Compute ω1
g  and ω2

g  as follows:

5. Compute ω3 and f ′ as follows:

6. Compute the complex number φ∼ as follows:

7. Compute ω3 and f
.
 ′ as follows:

8. Compute ω1 and ω2 as follows:

9. Compute the focal length f and its rate of change
f
.
 as follows:

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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10. Compute the translation velocity v as follows:

In the above equations, i denotes the imaginary unit,
and the quantities with tildes are complex numbers. The real
and imaginary parts of a complex number are denoted by
ℜ[⋅] and ℑ[⋅], respectively, and the “inner product” of
complex numbers z = x + iy and z′ = x′ + iy′ is defined to be
(z, z′) = xx′ + yy′. The operation N[⋅] designates normaliza-
tion to a unit vector (N[a] = a/||a||). Note that ω3 is obtained
in two ways by the first of Eqs. (13) and the first of Eqs.
(15). This is a consequence of the decomposability con-
straint (4): the two values do not agree if Eq. (4) is not
satisfied. This fact can be used for error checking. The
solution is uniquely determined if the camera motion is
such that the optical axis moves into a skewed position [7].

6. Changing the Focal Length

Now that the focal length f and its rate of change f
.
  are

determined, we modify x.̂  and x̂ in the form

where P = diag(1, 1, 0). The second equation is to replace
the approximate focal length f0 by the true value f. The first
equation is to subtract the apparent flow due to zoom
change from the observed flow. The modified values x̂ and
x.̂  can be respectively interpreted to be the orientation of the
line of sight starting from the center of the lens and its rate
of change. Their (normalized a posteriori) covariance ma-
trices V0[x̂] and V0[x

.̂] and (normalized) correlation matrix
V0[x̂, x.̂] are now replaced in the form

where S[⋅] designates the symmetrization operation (S[A]
= (A + A,)/2).

7. Depth Computation

The position r in the scene of the feature point corre-
sponding to the vector x is expressed in the form

where Z is the depth from the camera coordinate origin (the
center of the lens) measured along the optical axis. It is
computed as follows [6, 13]:

Here, we define Qx and Sx as follows (I denotes the unit
matrix, and we let k = (0, 0, 1),):

At this stage, we need to choose the signs of the depth.
Since the flow fundamental matrices {C, W} are deter-
mined only up to a scale factor, their signs are indetermi-
nate. This indeterminacy stems from the fact that the
perspective projection has the same mathematical form if
the scene is “behind” the camera. Thus, we compute the
depths Ẑα of the points x̂α, α = 1, . . . , N, and change the
signs of Zα and v if

where sgn[⋅] designates the sign function taking 1, 0, or –1
for x > 0, x = 0, or x < 0, respectively. This operation is
necessary because we may not select the correct solution
if we simply compute Σα=1

N  Zα; a very large positive depth
may turn out to be close to –∞ due to noise [6].

8. Reliability Evaluation of 3D
Reconstruction 1

Given the estimated depth Ẑ, the corresponding 3D
position r̂ is determined by Eq. (21). Its normalized covari-
ance matrix has the following form [6, 13]:

The (normalized a posteriori) covariance matrix
V0[x̂] in the right-hand side expression is given by the first
of Eqs. (20). The normalized variance V0[Ẑ] and the nor-
malized correlation vector V0[Ẑ, x̂] are obtained from Eq.
(22) as follows [6, 13]:

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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Here, tr designates the trace. We also define

where |k, w, x̂| denotes the scalar triple product of k, w, and
x̂.

9. Reliability Evaluation of 3D
Reconstruction 2

The reliability analysis so far has been done on the
assumption that the computed flow fundamental matrices
{C, W} are correct: we optimally corrected the flow by Eqs.
(6) using {C, W}, applied the transformation of Eqs. (19)
using the values f and f

.
 resulting from {v, w}, and computed

the depths from the motion parameters {v, w} obtained
from {C, W}. The normalized covariance matrix V0[r̂] of
Eq. (25) describes how the reconstructed position r̂ is
affected by the errors in x̂ and x.̂ .

By “normalized” we mean the use of a scale such that
the noise level ε is 1; the absolute value of the covariance
matrix V[r̂] is given by ε2V0[r̂]. The absolute magnitude of
ε is automatically estimated in the course of computing {C,
W} by the renormalization method [15].

However, the flow fundamental matrices {C, W} also
have errors because they are computed from noisy data. In
fact, we can evaluate their accuracy in terms of their covari-
ance tensor [15], from which we could, in principle, analyze
the errors in f, f

.
, and {v, w} as well as their correlations.

However, this would entail a very complicated procedure.
In order to avoid this, we adopt the following compromise.

As stated in Section 3, the renormalization computa-
tion of the flow fundamental matrices also produces their
primary deviation pairs C(±) and W(±). From them, we
compute the corresponding f 

(±), f
.

 
(±), v(±), and w(±). Let the

resulting 3D positions be r(±). We approximate the effect of
errors in the flow fundamental matrices by the line segment
connecting the two points r(+) and r(–). Since the recon-
structed position r̂ is the midpoint of it to a first approxima-
tion, we can regard (r(+) − r̂)(r(+) − r̂), as its covariance
matrix (we only need to compute r(+)).

Equation (25) describes how the reconstructed posi-
tion r̂ is affected by the errors in the corresponding point x
and the flow x.  there. This relationship is direct. In contrast,
the flow fundamental matrices {C, W} are optimized over
all the points and all the flow vectors. Since this relationship

is indirect, the correlation between {C, W} and individual
points is expected to be small. Thus, we evaluate the covari-
ance matrix of the reconstructed position, to a first approxi-
mation, as the sum of the covariance matrices obtained
separately, taking into account one effect only for each:

The omitted terms are of the order of their product or higher.
If the error distribution is approximated by a Gaussian
distribution, the deviations from the reconstructed position
r̂ by less than the standard deviation in each orientation are
inside the following ellipsoid, which we call the standard
region [6]:

It has been confirmed by simulations of many geometric
fitting problems that this type of evaluation can well ap-
proximate the underlying uncertainty [6].

10. Simulation Experiments

Figure 3 shows simulated 512 × 512-pixel images of
a 3D grid environment. We added random Gaussian noise
of mean 0 and standard deviation 0.5 (pixel) to each of the
x and y coordinates of the grid points and reconstructed the
3D shape by regarding the displacements of points as the
flow vectors at their midpoints and using the default noise
model of Eq. (5).

Figure 4(a) shows the reconstructed shape (solid
lines) superimposed on the true shape (dotted lines) re-
scaled to ||t|| = 1 viewed from an angle. Figure 4(b) shows
three times the standard regions defined by Eq. (30) cen-
tered on the reconstructed vertices. They look like thin
needles, meaning that the uncertainty is large in the depth
orientation. We also observe that the points farther from the
camera have larger uncertainty. Comparing this with Fig.

(27)

(28)

Fig. 3. Simulated images of a 3D scene.

(29)

(30)
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4(a), we see that these ellipsoids approximately describe the
magnitude of the deviations from their true positions.

However, they are an underestimation if viewed as
representing the covariance matrix of a probability distri-
bution. We repeated the experiment many times using dif-
ferent noise, and we always observed underestimation to
this degree. This is probably because we identified finite
displacements with an instantaneous velocity field, omitted
higher-order terms, and approximated the variance of the
flow fundamental matrices by their primary deviation pairs.
Rigorous error analysis is generally a very difficult prob-
lem, but this type of gross evaluation can be of sufficient
help for seeing the general tendency of the errors and
comparing the accuracy in relative terms.

11. Real-Image Experiments

Figure 5 shows a pair of real images (512 × 768
pixels) of an indoor scene. We manually selected feature
points as marked in the images and reconstructed the 3D
shape by regarding the displacements of points as the flow
vectors at their midpoints and using the default noise model
of Eq. (5) (we assumed the standard values for the camera
parameters other than the focal length). Figure 6 shows a

side view of the reconstructed points as a stereogram. On
each point is centered the standard region defined by Eq.
(30). Wireframes consisting of some of the reconstructed
points are shown for visual aid.

Seeing this, we have an impression that the recon-
structed shape has large uncertainty in the depth orientation.
However, this is due to the uncertainty of the camera
translation velocity; the shape itself is not so very uncertain.
To see this, we picked out the polyhedral object in the scene
and displayed its shape after placing the centroid of the
object at the coordinate origin and scaling the root-mean-
square distance of the vertices from the origin to unity [Fig.
7(a)]. We see that the standard regions are very small
compared with Fig. 6. Alternatively, we can place one of
the vertices at the coordinate origin, another at (1, 0, 0), and
yet another on the XY plane [Fig. 7(b)]. The points placed
at the origin and (1, 0, 0) have no uncertainty by definition,
so their standard regions are nil.

Thus, even if the reconstructed shape itself is the
same, the reliability evaluation changes depending on the
normalization (or gauge). According to the gauge theory

Fig. 5. Real images of an indoor scene.

Fig. 4. (a) Reconstructed shape (solid lines) and the
true shape (broken lines). (b) The standard regions of the

grid points.

Fig. 6. Reconstructed points and their standard regions
(stereogram).

Fig. 7. Standard regions of the vertices. 
(a) Normalization of the centroid and the size. 

(b) Normalization of the three vertices.
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[9], which systematically describes this effect, the descrip-
tion of uncertainty of an indeterminate system cannot be
given absolute meanings because it depends on the normali-
zation involved. Absolute meanings can be given only to
the uncertainty of gauge invariants that are not affected by
the change of normalization (or gauge transformation).
Typical gauge invariants include ratios of lengths and an-
gles between lines.

We actually measured the size of the polyhedral
object with a rule and the angles at the vertices with a
protractor. Table 1 lists the ratio of the length of one of the
edges near the viewer to that of the other and the angle they
make; we compare the values computed from the recon-
structed shape, the measurement values, and the theoretical
standard deviations predicted by Eq. (29). The description
of uncertainty is meaningful only for this type of gauge
invariants in evaluating the reliability of 3D reconstruction.

The theoretical standard deviations given in Table 1
look like somewhat overestimating the deviations from the
measurement values. As in Fig. 4, this is probably because
we identified the finite displacement with an instantaneous
motion, omitted higher-order terms, and approximated the
variance of the flow fundamental matrices by their primary
deviation pairs. There is also a possibility that the physical
positions supposedly representing the reconstructed points
may not exactly coincide with those in the scene. Again,
rigorous analysis is very difficult, and this type of rough
evaluation can be of sufficient help for grasping the general
tendency.

Figure 8 shows real images (512 × 768 pixels) of a
car. We manually selected feature points as marked in the
images and reconstructed the 3D shape, using the default
noise model of Eq. (5) (we assumed the standard values for

the camera parameters other than the focal length). Figure
9 shows new views generated by creating a wireframe
model from the reconstructed points and mapping the tex-
ture to it. We see that the 3D shape is not very accurate in
the part far from the viewer compared with the front part,
which is fairly accurate.

12. Concluding Remarks

We have presented a scheme for reconstructing the
3D shape in a statistically optimal way from optical flow
observed by a camera with an unknown focal length as well
as evaluating the reliability of the reconstructed shape to a
first approximation. We have tested the performance of our
system by doing experiments using synthetic and real im-
ages. We have also studied how the normalization (or
gauge) for removing indeterminacy affects the description
of uncertainty.

Doing comparative experiments using the same im-
age data, we have found that the accuracy of our system is
somewhat inferior to the method based on the fundamental
matrix [8]. Baumela and colleagues [1] also obtained a
similar conclusion. It follows that the method based on the
fundamental matrix should be used if the 3D shape recon-
struction is the sole purpose. Optical flow, on the other
hand, has many applications including image segmentation
and moving object detection, and our system may be useful
in acquiring auxiliary 3D information in such applications.
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Table 1. Reliability of the ratio of edge lengths and the
angle

Fig. 8. Real images of a car.

Fig. 9. 3D reconstruction of the car.
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