
For Geometric Inference from Images, What Kind of Statistical
Model Is Necessary?

Kenichi Kanatani

Department of Information Technology, Okayama University, Okayama, 700-8530 Japan

SUMMARY

In order to promote mutual understanding with re-
searchers in other fields including statistics, this paper
investigates the meaning of statistical methods for geomet-
ric inference based on image feature points. We trace back
the origin of feature uncertainty to image processing opera-
tions and discuss the meaning of geometric fitting, geomet-
ric model selection, the geometric AIC, and the geometric
MDL. Then, we discuss the implications of asymptotic
analysis in reference to nuisance parameters, the Neyman-
Scott problem, and semiparametric models and point out
that application of statistical methods requires careful con-
siderations about the peculiar nature of geometric infer-
ence. © 2004 Wiley Periodicals, Inc. Syst Comp Jpn, 35(6):
1–9, 2004; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/scj.10635

Key words: statistical method; feature point ex-
traction; asymptotic evaluation; Neyman-Scott problem;
semiparametric model.

1. Introduction

Statistical inference is one of the key components of
computer vision research. Today, sophisticated statistical

theories, once regarded as impractical, are applied in prac-
tice, taking advantage of the enormous computational
power of today’s advanced hardware [27]. On the other
hand, the author has used statistical methods for inferring
inherent relations in geometric data such as points and lines
extracted from images, deriving optimization techniques
for maximizing the accuracy and proving theoretical accu-
racy bounds for them [8, 9].

However, the same term statistical has different
meanings in different contexts. This difference has often
been overlooked, frequently causing controversies not only
among image processing researchers but also over different
research areas including statistics.

Geometric inference from images is one of the few
research areas in which Japan has taken the lead. Although
it is dominated by overseas research today, there is still a
strong interest in this problem in Japan [14, 20]. This paper
is not intended to present a new statistical method; rather,
we focus on the very question of why we need statistical
methods at all, with the motivation of encouraging a wider
range of collaborations among researchers of different ar-
eas, thereby promoting further theoretical developments of
this problem.

2. What Is a Statistical Method?

Most problems in mathematics and physics are deter-
ministic; various properties are deduced from axioms and
fundamental equations. A similar approach exists for com-
puter vision research, too; for example, an elaborate theory
has been proposed for reconstructing 3D shapes from im-
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ages by analyzing the camera imaging geometry [7]. In
contrast, the goal of statistical methods is not to describe
the properties of observed data themselves but to infer the
properties of the ensemble by regarding the observed data
as random samples from it. The ensemble may be a collec-
tion of existing entities (e.g., the entire population), but
often it is a hypothetical set of conceivable possibilities.

When a statistical method is employed, the underly-
ing ensemble is usually taken for granted. For character
recognition, for instance, it is understood that we are think-
ing of an ensemble of all prints and scripts of individual
characters. Since some characters are more likely to appear
than others, a probability distribution is naturally defined
over the ensemble.

For handwritten character recognition, our attention
is restricted to the set of all handwritten characters. The
ensemble is further restricted if we want to recognize char-
acters written by a specific writer (e.g., his/her signatures),
but these restrictions are too obvious to be mentioned.
However, this issue is very crucial for geometric inference
from images, yet this fact has not been well recognized in
the past. To show this is the main purpose of this paper.

3. What Is Geometric Inference?

3.1. Ensembles for geometric inference

What we call geometric inference in this paper deals
with a single image (or a single set of images). For example,
we observe an image of a building and extract feature points
such as the vertices of the building and the corners of
windows. We test if they are collinear, and if so, we fit a line
to them and evaluate the uncertainty of that fit. This is the
simplest example of geometric inference.

The reason why we use a statistical method is that the
extracted feature positions have uncertainty. For example,
we can fit a line to approximately collinear points in the
most reliable manner by considering the uncertainty of
individual feature points. We can also infer that those points
with large deviations from the fitted line are not collinear
with other points in the first place. What is the ensemble
that underlies this type of inference?

This question reduces to the question of why the
uncertainty of the feature points occurs at all. After all,
statistical methods are not necessary if the data are exact.
Using a statistical method means regarding the current
positions as random samples from its possible positions.
But what are the possible positions?

3.2. Uncertainty of feature extraction

Numerous algorithms have been proposed in the past
for extracting feature points including the Harris operator
[6] and SUSAN [24], and their performance has been
extensively compared [3, 21, 23]. For tracking feature
points through a video stream, the best known is the
Kanade-Lucas-Tomasi algorithm [26]. However, if we use,
for example, the Harris operator to extract a particular
corner of a particular window from a building image, the
output is unique (Fig. 1). No matter how many times we
repeat the extraction, we obtain the same point because no
external disturbances exist and the internal parameters (e.g.,
thresholds for judgment) are unchanged. It follows that the
current position is the sole possibility. How can we find it
elsewhere? In the past, no satisfactory answer seems to have
been given to this question.

The reason why we think that other possibilities
should exist is the fact that the extracted position is not
necessarily correct. But if it is not correct, why did we
extract it? Why didn’t we extract the correct position in the
first place? The answer is: we cannot. Why is this impossi-
ble?

3.3. Image processing for computer vision

The reason why there exist so many feature extraction
algorithms, none of them being definitive, is that they are
aiming at an intrinsically impossible task. If we were to
extract a point around which, say, “the intensity varies to
the largest degree measured in such and such a criterion,”
the algorithm would be unique (variations may exist in
intermediate steps, but the final output should be the same).
For computer vision applications, however, what we want
is not image properties but 3D properties such as corners
of a building, but the way a 3D property is translated into
an image property is intrinsically heuristic. As a result, as

Fig. 1. (a) A feature point in an image of a building. 
(b) Its enlargement and the uncertainty of the 

feature location.
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many algorithms can exist as the number of its 2D interpre-
tations. In this sense, feature extraction is essentially heu-
ristic. This fact has not been given much attention in the
past, and feature extraction has often been regarded as an
objective image processing task.

If we specify a 3D feature that we want to extract, its
appearance in the image is not unique. It is affected by
various properties of the scene including the details of its
3D shape, the viewing orientation, the illumination condi-
tion, and the light reflectance properties of the material. A
slight difference of any of them can result in a substantial
difference on the image plane. Theoretically, exact feature
extraction would be possible if all the properties of the
scene were exactly known, but to infer them from images
is the very task of computer vision. It follows that we must
make a guess in the image processing stage, and there exist
as many algorithms as the number of guesses. For the
current image, some guesses may be correct, but others may
be wrong.

This observation implies that the possible feature
positions should be associated with the set of hypothetical
algorithms, but this interpretation has not been considered
in the past. According to this interpretation, the current
position is regarded as produced by an algorithm sampled
from it. This explains why one always obtains the same
position no matter how many times one repeats extraction
using that algorithm. To obtain a different position, one has
to sample another algorithm.

4. Statistical Model of Feature Location

4.1. Covariance matrix of a feature point

For doing statistical analysis based on the above
interpretation, we need to hypothesize that the mean of the
potential positions coincides with the true position. In other
words, all hypothetical algorithms as a whole are assumed
to be unbiased. Without this hypothesis, efforts to devise
good algorithms would be meaningless.

The performance of feature point extraction depends
on the image properties around that point. If, for example,
we want to extract a point in a region with an almost
homogeneous intensity, the resulting position may be am-
biguous whatever algorithm is used. In other words, the
positions that the hypothetical algorithms would extract
should have a large spread around the true position. If, on
the other hand, the intensity greatly varies around that point,
any algorithm could easily locate it accurately, meaning that
the positions that the hypothetical algorithms would extract
should have a strong peak at the true position. This obser-
vation suggests that we may introduce for each feature point
its covariance matrix that predicts the spread of its potential
positions. 

Let V[pα] be the covariance matrix of the α-th feature
point pα. The above argument implies that we can determine
the qualitative characteristics of uncertainty in relative
terms but not its absolute magnitude. If, for example, the
intensity variations around pα are almost the same in all
directions, we can think of the probability distribution as
isotropic, a typical equiprobability line, known as the un-
certainty ellipses, being a circle [Fig. 1(b)]. If, on the other
hand, pα is on an object boundary, distinguishing it from
nearby points should be difficult whatever algorithm is
used, so its covariance matrix should have an elongated
uncertainty ellipse along that boundary.

From these observations, we write the covariance
matrix V[pα] in the form

where ε is an unknown magnitude of uncertainty, which we
call the noise level [8, 9]. The matrix V0[pα], which we call
the normalized covariance matrix, describes the relative
magnitude and the dependence on orientations [8, 9]. How-
ever, if we call Eq. (1) the covariance matrix of feature point
pα, it is not a property of point pα but a property of hypo-
thetical algorithms applied to the neighborhood of pα. This
fact has not been clearly recognized in the past.

4.2. Characteristics of feature extraction
algorithms

Most of the existing feature extraction algorithms are
designed to output those points that have large image vari-
ations around them [3, 6, 21, 23, 24]. As a result, the
covariance matrix of a feature point extracted by such an
algorithm can be regarded as nearly isotropic. This has also
been confirmed by experiments [13].

The intensity variations around different feature
points are usually unrelated, so their uncertainty can be
regarded as statistically independent. However, if we track
feature points over consecutive video frames, it has been
observed that the uncertainty of each point has strong
correlations over the frames [25].

Some interactive applications require humans to ex-
tract feature points by manipulating a mouse. It has been
shown by experiments that humans are likely to choose
easy-to-see points, such as isolated points and intersections,
around which the intensity varies almost in the same degree
in all directions [13]. In this sense, the statistical charac-
teristics of human extraction are very similar to machine
extraction. This is no surprise if we recall that image proc-
essing for computer vision is essentially a heuristic that
simulates human perception. It has also been reported that
strong microscopic correlations exist when humans manu-
ally select corresponding feature points over multiple im-
ages [17].

(1)
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4.3. Image quality and uncertainty

We have observed that the ensemble behind geomet-
ric inference is the set of algorithms and that statistical
assumptions such as normality, independence, unbiased-
ness, and correlations are properties of the underlying set
of algorithms. This is the central message of this paper. In
the past, however, a lot of confusion occurred because these
were taken to be properties of the image. The main cause
of this confusion may be the tradition that the uncertainty
of feature points has simply been referred to as image noise.
In particular, Eq. (1), which describes the uncertainty of
feature locations, has been called the statistical model of
image noise.

Of course, we may obtain better results if we use
higher-quality images whatever algorithm is used. The
performance of any algorithm naturally depends on the
image quality. However, the task of computer vision is not
to analyze image properties but to study the 3D properties
of the objects that we are viewing.

This observation also applies to edge detection,
whose goal is to find the boundaries of 3D we are viewing.
In reality, all existing algorithms seek edges, that is, lines
and curves across which the intensity changes discontinu-
ously (Fig. 2). So, it can be argued that edge detection is
also a heuristic and hence no definitive algorithm will ever
be found.

Thus, we conclude that as long as a hiatus exists
between what we want to extract and what we are comput-
ing, any process of computer vision accompanies uncer-
tainty independent of the image quality, and the result must
be interpreted statistically.The underlying ensemble is the
set of hypothetical (inherently imperfect) image processing
algorithms, which should be distinguished from image
noise caused by random intensity fluctuations of individual
pixels. Yet, it has been customary to evaluate the perform-
ance of image processing algorithms for extracting 3D
properties by adding independent Gaussian noise to indi-
vidual pixels.

5. What Is Asymptotic Analysis?

As stated earlier, statistical estimation refers to esti-
mating the properties of an ensemble from a finite number
of samples chosen from it, assuming some knowledge, or a
model, about the ensemble. If the uncertainty originates
from external conditions, the estimation accuracy can be
increased by controlling the measurement environments.
For internal uncertainty, on the other hand, there is no way
of increasing the accuracy but by repeating the experiment
and doing statistical inference. However, doing experi-
ments usually entails costs, and in practice the number of
experiments is often limited.

Taking account of such practical considerations, stat-
isticians usually evaluate the performance of estimation
asymptotically, analyzing the growth in accuracy as the
number n of experiments increases. This is justified because
a method whose accuracy increases more rapidly as
n → ∞ than others can reach admissible accuracy with a
fewer number of experiments [Fig. 3(a)].

In contrast, the ensemble for geometric inference
based on feature points is, as we have seen, the set of
potential feature positions that could be located if other
(hypothetical) algorithms were used. The goal is to estimate

Fig. 2. (a) An indoor scene. (b) Detected edges.

Fig. 3. (a) For the standard statistical estimation
problem, it is desired that the accuracy increases rapidly
as the number of experiments n → ∞, because admissible

accuracy can be reached with a smaller number of
experiments. (b) For geometric inference, it is desired

that the accuracy increases rapidly as the noise level ε →
0, because larger data uncertainty can be tolerated for

admissible accuracy.
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geometric quantities as closely as possible to their expecta-
tions over that ensemble, which we assume are their true
values. In other words, we want to minimize the discrep-
ancy between obtained estimates and their true values on
average over all hypothetical algorithms.

However, the crucial fact is, as stated earlier, we can
choose only one sample (n = 1) from the ensemble as long
as we use a particular image processing algorithm. In other
words, the number n of experiments is 1. Then, how can we
evaluate the performance of statistical estimation?

Evidently, we want a method whose accuracy is
sufficiently high even for large data uncertainty. This im-
plies that we need to analyze the growth in accuracy as the
noise level ε decreases, because a method whose accuracy
increases more rapidly as ε → 0 than others can tolerate
larger data uncertainty for admissible accuracy [Fig. 3(b)].

6. Asymptotic Analysis for Geometric
Inference

We now illustrate our assertion in more specific
terms.

6.1. Geometric fitting

Let p1, . . . , pN be extracted feature points. We assume
that their true positions p

_
1, . . . , p

_
N satisfy a constraint

parametrized by a p-dimensional vector u. Our task, which
we call geometric fitting, is to estimate the parameter u from
the observed positions p1, . . . , pN. Equation (2) is called the
(geometric) model [9].

A typical problem is to fit a line or a curve (e.g., a
circle or an ellipse) to given N points in the image, but this
can be straightforwardly extended to multiple images.
Namely, if a point (xα, yα) in one image corresponds to a

point (xα
ggggggg, yα

ggggggg) in another, we can regard them as a single
point pα in  a  4D joint  space with coordinates
(xα, yα, xα

ggggggg, yα
ggggggg) (Fig. 4). If the camera imaging geometry is

modeled as perspective projection, the constraint (2) corre-
sponds to the epipolar equation; the parameter u is the
fundamental matrix [16]. If the scene is a planar surface or
located very far away, Eq. (2) can be regarded as imposing
a (two-dimensional) homography (or projective transfor-
mation) on the two images; the parameter u is the homogra-
phy matrix [12].

If we write the covariance matrix of pα in the form of
Eq. (1) and regard the distribution of uncertainty as Gauss-
ian, maximum likelihood estimation (MLE) over the poten-
tial positions of the N feature points is to minimize the
squared Mahalanobis distance with respect to the normal-
ized covariance matrices V0[pα]:

Here, pα and pα
ggggggg are identified as two-dimensional vectors

and (⋅, ⋅) designates the inner product of vectors. Equation
(3) is minimized with respect to {p

_
α}, α = 1, . . . , N, and u

subject to the constraint (2).
Assuming that the noise level ε is small and using

Taylor expansion with respect to ε, one can show that the
covariance matrix V[û] of the MLE solution û converges to
O as ε → 0 (consistency) and that V[û] coincides with a
theoretical accuracy bound if terms of O(ε4) are ignored
(asymptotic efficiency) [9]. Thus, MLE achieves admissible
accuracy in the presence of larger uncertainty than other
methods.

6.2. Geometric model selection

Geometric fitting is to estimate the parameter u of a
given model in the form of Eq. (2). If we have multiple
candidate models F1(p

_
α, u1) = 0, F2(p

_
α, u2) = 0, . . . , from

(2)

(3)

Fig. 4. (a) Two images of a building and extracted feature points. (b) Optical flow consisting of segments connecting
corresponding feature points (black dots correspond to the positions in the left image). The two endpoints 

can be identified with a point in a four-dimensional space.
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which we are to select an appropriate one, the problem is
(geometric) model selection [9].

A naive idea is to first estimate the parameter u by
MLE and compute the residual (sum of squares), that is, the
minimum value Ĵ of J in Eq. (3), for each model and then
select the one that has the smallest Ĵ. However, this is not a
fair comparison of different constraints, because the MLE
solution û is determined for each constraint by minimizing
the residual Ĵ of that constraint. This observation leads to
the idea of compensating for the bias caused by substituting
the MLE solution. This is the principle of Akaike’s AIC
(Akaike Information Criterion) [1], whose theoretical basis
is the Kullback-Leibler information (or divergence). Doing
a similar analysis to Akaike’s and examining the asymptotic
behavior as the noise level ε goes to zero, one can obtain
the following geometric AIC [10]:

Here, d is the dimension of the manifold defined by the
constraint (2). Its existence in the right-hand side is the
major difference, in appearance, from Akaike’s AIC, re-
flecting the uncertainty of N feature positions.

Another well-known criterion is Rissanen’s MDL
(Minimum Description Length) [22], which measures the
goodness of a model by the minimum information theoretic
code length of the data and the model. If, following Ris-
sanen, one quantizes the real-valued parameters, deter-
mines the quantization width in such a way that the total
code length becomes smallest, and analyzes its asymptotic
behavior as the noise level ε goes to zero, one obtains the
following geometric MDL [10]:

Here, L is a reference length chosen so that its ratio to the
magnitude of data is O(1) (e.g., L can be taken to be the
image size for feature point data). Its exact determination
requires an a priori distribution that specifies where the data
are likely to appear, but it has been observed that the model
selection is not very much affected by L as long as it has the
same order of magnitude [10]. 

6.3. Equivalent statistical interpretation

Although the term asymptotic has opposite mean-
ings, the results in the preceding two sections bear a strong
resemblance to the standard statistical analysis. It is known
that the covariance matrix of an MLE estimator for the
standard statistical problem converges, under a standard
condition, to O as the number n of experiments goes to
infinity (consistency) and that it agrees with the Cramer-

Rao lower bound for O(1/n2) (asymptotic efficiency). It
follows that 1/√n  plays the same role as ε for geometric
inference.

The same correspondence exists for model selection,
too. Note that the unknowns are the p parameters of the
constraint plus the N true positions specified by the d
coordinates of the d-dimensional manifold defined by the
constraint. If Eq. (4) is divided by ε2,  we have
Ĵ / ε2 + 2(Nd + p) + O(ε2), which is (–2 times the logarith-
mic likelihood) + 2(the number of unknowns), the same
form as Akaike’s AIC. The same hold for Eq. (5), which
reduces to Rissanen’s MDL if ε is replaced by 1/√n .

This correspondence can be interpreted as follows.
Since the underlying ensemble is hypothetical, we can
actually observe only one sample from it as long as a
particular algorithm is used. Suppose we hypothetically
apply n different algorithms to find n different positions.
The optimal estimate of the true position under the Gauss-
ian model is their sample mean. The covariance matrix of
the sample mean is 1/n times that of the individual samples.
Hence, this hypothetical estimation is equivalent to divid-
ing the noise level ε in Eq. (1) by √n .

In fact, there were attempts to generate a hypothetical
ensemble of algorithms by randomly varying the internal
parameters (e.g., the thresholds for judgments) and sample
different points [4], not adding random noise to the image.
Then, one can compute their means and covariance matrix.
Such a process as a whole can be regarded as one operation
that effectively achieves higher accuracy. 

Thus, our conclusion is: the asymptotic analysis for
ε → 0 is equivalent to the asymptotic analysis for n → ∞,
where n is the number of hypothetical observations. As a
result, the expression ⋅ ⋅ ⋅ + O(1/√nk ) in the standard
statistical estimation problem turns into ⋅ ⋅ ⋅ + O(εk) in
geometric inference. This type of analysis has already been
done by the author for a long time, but he has not made clear
what the underlying ensemble was.

7. Nuisance Parameters and
Semiparametric Model

7.1. Asymptotic parameters

The number n that appears in the standard statistical
analysis is the number of experiments. It is also called the
number of trials, the number of observations, and the
number of samples. Evidently, the properties of the ensem-
ble are revealed more precisely as more elements are sam-
pled from it.

However, the number n is often called the number of
data, which has caused considerable confusion. For exam-
ple, if we observe 100-dimensional vector data in one

(4)

(5)

6



experiment, one may think that the number of data is 100,
but this is wrong: the number n of experiments is 1. We are
observing one sample from an ensemble of 100-dimen-
sional vectors.

For character recognition, the underlying ensemble is
the set of possible character images, and the learning proc-
ess concerns the number n of training steps necessary to
establish satisfactory responses. This is independent of the
dimension N of the vector that represents each character.
The learning performance is evaluated asymptotically as
n → ∞, not N → ∞.

The situation is the same for geometric inference, too.
If we extract, for example, 50 feature points, they constitute
a 100-dimensional vector consisting of their x and y coor-
dinates. If no other information, such as the image intensity,
is used, the image is completely characterized by that
vector. Applying a statistical method means regarding it as
a sample from a hypothetical ensemble of 100-dimensional
vectors.

7.2. Neyman-Scott problem

In the past, many computer vision researchers have
analyzed the asymptotic behavior as N → ∞ without explic-
itly mentioning what the underlying ensemble is. This is
perhaps motivated by a similar formulation in the statistical
literature. Suppose, for example, a rod-like structure lies on
the ground in the distance. We emit a laser beam toward it
and estimate its position and orientation by observing the
reflection of the beam, which is contaminated by noise. We
assume that the laser beam can be emitted in any orientation
any number of times but the emission orientation is meas-
ured with noise. The task is to estimate the position and
orientation of the structure as accurately as possible by
emitting as small a number of beams as possible. Naturally,
the estimation performance should be evaluated in the
asymptotic limit n → ∞ with respect to the number n of
emissions.

The underlying ensemble is the set of all response
times for all possible directions of emission. Usually, we
are interested in the position and orientation of the structure
but not the exact orientation of each emission, so the vari-
ables for the former are called the structural parameters,
which are fixed in number, while the latter are called the
nuisance parameters, which increase indefinitely as the
number n of experiments increases [18]. Such a formulation
is called the Neyman-Scott problem [19]. Since the con-
straint is an implicit function in the form of Eq. (2), we are
considering an errors-in-variables model [5]. If we linear-
ize the constraint by changing variables, the noise charac-
teristics differ for each data component, so the problem is
heteroscedastic [15].

To solve this problem, one can introduce a parametric
model for the distribution of possible laser emission orien-
tations, regarding the actual emissions as random samples
from it. This formulation is called a semiparametric model
[2]. An optimal solution can be obtained by finding a good
estimating function [2, 20].

7.3. Semiparametric model for geometric
inference

Since the semiparametric model has something dif-
ferent from the geometric inference problem described so
far, a detailed analysis is required for examining if applica-
tion of a semiparametric model to geometric inference will
yield a desirable result [14, 20]. In any event, one should
explicitly state what kind of ensemble (or ensemble of
ensembles) is assumed before doing statistical analysis.
This is the main message of this paper.

This is not merely a conceptual issue. It also affects
the performance evaluation of simulation experiments. In
doing a simulation, one can freely change the number N of
feature points and the noise level ε. If the accuracy of
Method A is higher than Method B for particular values of
N and ε, one cannot conclude that Method A is superior to
Method B, because opposite results may come out for other
values of N and ε. Here, we have two alternatives for
performance evaluation: fixing ε and varying N to see if
admissible accuracy is attained for a smaller number of
feature points [18]; fixing N and varying ε to see if larger
data uncertainty can be tolerated for admissible accuracy
[11]. These two types of evaluation have different mean-
ings. Our conclusion is that the results of one type of
evaluation cannot directly be compared with the results of
the other.

8. Conclusions

Since image processing for computer vision is based
on many peculiar assumptions that are not found in other
research areas, the meaning of the term statistical is not
necessarily the same as in other areas, often causing misun-
derstandings and controversies. The purpose of this paper
is to clarify the background of such assumptions, with the
motivation of encouraging a wider range of collaborations
among researchers of different areas including statistics,
thereby promoting further theoretical developments of
computer vision research.

Tracing back the origin of feature uncertainty to
image processing operations, we described the meaning of
geometric fitting, geometric model selection, geometric
AIC, and geometric MDL. We have also discussed the
implications of asymptotic analysis for performance evalu-
ation in reference to nuisance parameters, the Neyman-
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Scott problem,  and semiparametric models. We have
pointed out that application of statistical methods requires
careful considerations about the peculiar nature of the geo-
metric inference problem.
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