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Abstract
This paper investigates the meaning of “statistical methods” for geometric infer-

ence based on image feature points. Tracing back the origin of feature uncertainty
to image processing operations for computer vision in general, we discuss impli-
cations of asymptotic analysis in reference to “geometric fitting” and “geometric
model selection”. For the latter, we point out the prominent characteristics of the
“geometric AIC” and the “geometric MDL” as compared with Akaike’s AIC and Ris-
sanen’s MDL and present a dual interpretation between the standard and geometric
inferences. We also evaluate their degeneracy detection performance by simulation,
showing that their asymptotic characteristics are very contrasting. Finally, we dis-
cuss some issues concerning “nuisance parameters” and “semiparametric models”.
We conclude that application of statistical methods requires careful considerations
about the peculiar nature of the geometric inference problem.

1. Introduction

Statistical inference from images has been one of the key components of computer
vision research. Traditionally, statistical methods have been used for recognition and
classification purposes. Recently, however, there are many studies of statistical analysis
for geometric inference based on geometric primitives such as points and lines extracted
by image processing operations.

However, the term “statistical” has somewhat a different meaning for such geometric
inference than for recognition and classification purposes. This difference has often been
overlooked, causing controversies over the validity of the statistical approach for geometric
problems in general.

In this paper, we take a close look at this problem, tracing back the origin of fea-
ture uncertainty to image processing operations for computer vision. We then discuss
implications of asymptotic analysis in reference to “geometric fitting” and “geometric
model selection”. For the latter, we point out the prominent characteristics of the “geo-
metric AIC” and the “geometric MDL” as compared with Akaike’s AIC and Rissanen’s
MDL present a dual interpretation between the standard and geometric inferences. We
also evaluate their degeneracy detection performance by simulation, showing that their
asymptotic characteristics are very contrasting. Finally, we discuss some issues concerning
“nuisance parameters” and “semiparametric models” in relation to geometric inference.
We conclude that application of statistical methods requires careful considerations about
the peculiar nature of the geometric inference problem.

2. Statistical Methods for Geometric Inference

First, we clarify the meaning of a “statistical method”.



2.1 What is a statistical method?

The goal of statistical methods is not to study the properties of observed data them-
selves but to infer the properties of the ensemble from which we regard the observed data
as having been sampled. The ensemble may be a collection of existing entities (e.g., the
entire population), but often it is a hypothetical set of conceivable possibilities.

When a statistical method is employed, the underlying ensemble is often taken for
granted. For character recognition, for instance, it is understood that we are thinking of
an ensemble of all prints and scripts of individual characters. Since some characters are
more likely to appear than others, a probability distribution is naturally defined over the
ensemble.

For handwritten character recognition, our attention is restricted to the set of all
handwritten characters. The ensemble is further restricted if we want to recognize char-
acters written by a specific writer (e.g., his/her signatures), but these restrictions are too
obvious to be mentioned. However, this issue is very crucial for geometric inference from
image features. To show this is the main purpose of this paper.

2.2 Ensembles for geometric inference

What we call geometric inference in this paper deals with a single image (or a single
set of images). For example, we observe an image of a building and extract feature points
such as isolated points, corners, and intersections of lines. Our task is to test if a particular
geometric constraint exists on them. If so, we estimate the parameters of the constraint
and evaluate the degree of uncertainty of that estimation.

The reason why we need a statistical method is that the extracted feature positions
have uncertainty . So, we have to judge the extracted feature points as collinear if they are
sufficiently aligned. We can also evaluate the degree of uncertainty of the fitted line by
propagating the uncertainty of the individual points. What is the ensemble that underlies
this type of inference?

This question reduces to the question of why the uncertainty of the feature points
occurs at all . After all, statistical methods are not necessary if the data are exact. Using
a statistical method means regarding the current feature position as randomly sampled
from a set of its possible positions . But where else could it be if not in the current position?
This is the key question of this paper.

2.3 Uncertainty of feature extraction

Many algorithms have been proposed for extracting feature points including the Harris
operator [9] and SUSAN [38], and their performance has been extensively compared [4,
33, 37]. However, if we use, for example, the Harris operator to extract a particular corner
of a particular building image, the output is unique (Fig. 1). No matter how many times
we repeat the extraction, we obtain the same point because no external disturbances exist
and the internal parameters (e.g., thresholds for judgment) are unchanged. It follows that
the current position is the sole possibility. How can we find it elsewhere? In the past, no
satisfactory answer seems to have been given to this question.

If we closely examine the situation, we are compelled to conclude that other possi-
bilities should exist because the extracted position is not necessarily correct . But if the
extracted position is not correct, why did we extract it? Why didn’t we extract the correct
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Figure 1: (a) A feature point in an image of a building. (b) Its enlargement and the uncertainty
of the feature location.

position in the first place? The answer is: we cannot . Why is this impossible? This is
the core of our discussion.

2.4 Image processing for computer vision

The reason why there exist so many feature extraction algorithms, none of them being
definitive, is that they are aiming at an intrinsically impossible task . If we were to extract
a point around which, say, the intensity varies to the largest degree measured in such
and such a criterion, the algorithm would be unique (variations may exist in intermediate
steps, but the final output should be the same).

However, what we want is not “image properties” but “3-D properties” such as corners
of a building, but the way a 3-D property is translated into an image property is intrin-
sically heuristic. As a result, as many algorithms can exist as the number of heuristics
for its 2-D interpretation. This fact has not been given much attention in the past, and
feature extraction has often been regarded as an objective image processing task.

If we specify a 3-D feature that we want to extract, its appearance in the image is
not unique. It is affected by various properties of the scene including the details of its
3-D shape, the viewing orientation, the illumination condition, and the light reflectance
properties of the material. A slight difference of any of them can result in a substantial
difference on the image plane.

Theoretically, exact feature extraction would be possible if all the properties of the
scene were exactly known, but to infer them from images is the very task of computer
vision. It follows that we must make a guess in the image processing stage. For the
current image, some guesses may be correct, but others may be wrong.

This means that the exact feature position could be found only by an (non-existing)
“ideal” algorithm that could guess everything correctly. In reality, however, a wrong po-
sition may be located if the algorithm is based on wrong guesses. This observation allows
us to interpret the “possible feature positions” to be the positions that would be located
by different (non-ideal) algorithms based on different guesses. So far, this interpretation
does not seem to have been explicitly noticed by computer vision researchers.

Our assertion is that the set of hypothetical positions should be associated with the set
of hypothetical algorithms . The current position is regarded as produced by an algorithm
sampled from it. This explains why one always obtains the same position no matter how
many times one repeats extraction using that algorithm. To obtain a different position,
one has to sample another algorithm.
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3. Statistical Model of Feature Location

Next, we examine the meaning of “uncertainty” of feature locations.

3.1 Covariance matrix of a feature point

For doing statistical analysis based on the above interpretation, we hypothesize that
the “mean” of the potential positions coincides with the true position. In other words, all
hypothetical algorithms as a whole are assumed to be unbiased. Without this hypothesis,
efforts to devise good algorithms would be meaningless.

The performance of feature point extraction depends on the image properties around
that point. If, for example, we want to extract a point in a region with an almost
homogeneous intensity, the resulting position may be ambiguous whatever algorithm is
used. In other words, the positions that the hypothetical algorithms would extract should
have a large spread around the true position. If, on the other hand, the intensity greatly
varies around that point, any algorithm could easily locate it accurately, meaning that
the positions that the hypothetical algorithms would extract should have a strong peak
at the true position. This observation suggests that we may introduce for each feature
point its covariance matrix that measures the spread of its potential positions.

Let V [pα] be the covariance matrix of the αth feature point pα. The above argument
implies that we can determine the qualitative characteristics of uncertainty in relative
terms but not its absolute magnitude. If, for example, the intensity variations around
pα are almost the same in all directions, we can think of the probability distribution as
isotropic, a typical equiprobability line, known as the uncertainty ellipses , being a circle
(Fig. 1(b)). If, on the other hand, pα is on an object boundary, distinguishing it from
nearby points should be difficult whatever algorithm is used, so its covariance matrix
should have an elongated uncertainty ellipse along that boundary.

From these observations, we write the covariance matrix V [pα] in the form

V [pα] = ε2V0[pα], (1)

where ε is an unknown magnitude of uncertainty, which we call the noise level . The matrix
V0[pα], which we call the normalized covariance matrix , describes the relative magnitude
and the dependence on orientations.

Most existing feature extraction algorithms are designed to output those points that
have large image variations around them, so points in a region with an almost homoge-
neous intensity or on object boundaries are rarely chosen as feature points. As a result,
the covariance matrix of a feature point extracted by such an algorithm can be regarded
as nearly isotropic. This has also been confirmed by experiments [22], justifying the use
of the identity as the normalized covariance matrix.

Remark 1. The intensity variations around different feature points are usually unrelated,
so their uncertainty can be regarded as statistically independent. However, if we track
feature points over consecutive video frames, it has been observed that the uncertainty of
each point has strong correlations over the frames [39].

Remark 2. Many interactive applications require humans to extract feature points by
manipulating a mouse. Extraction by a human is also an “algorithm”, and it has been
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shown by experiments that humans are likely to choose “easy-to-see” points such as
isolated points and intersections, avoiding points in a region with an almost homogeneous
intensity or on object boundaries [22]. In this sense, the statistical characteristics of
human extraction are very similar to machine extraction. This is no surprise if we recall
that image processing for computer vision is essentially a heuristic that simulates human
perception. It has also been reported that strong microscopic correlations exist when
humans manually select corresponding feature points over multiple images [28].

3.2 Image processing in computer vision

We have observed that the ensemble behind geometric inference is the set of algo-
rithms and that statistical assumptions such as normality, independence, unbiasedness,
and correlations are properties of the underlying set of algorithms . In the past, however,
they were taken to be properties of the image. This has caused a lot of confusion. The
main cause of this confusion may be the tradition that the uncertainty of feature points
has simply been referred to as “image noise”, giving a misleading impression as if the
feature locations fluctuate because of random intensity perturbations of individual pixels .

Of course, we may obtain better results if we have higher-quality images whatever
algorithm is used. The performance of any algorithm naturally depends on the image
quality. However, the task of computer vision is not to analyze “image properties” but
to study the “3-D properties” of the objects that we are viewing. As long as the image
properties and the 3-D properties do not correspond one to one, any image processing
for computer vision inevitably entails some degree of uncertainty, however high the image
quality may be.

Thus, we conclude that as long as a hiatus exists between what we really want to
extract and what we are actually computing, any process of computer vision accompanies
uncertainty independent of the image quality, and the result must be interpreted statisti-
cally . The underlying ensemble is the set of hypothetical (inherently imperfect) algorithms
of image processing , which should be distinguished from “image noise” caused by random
intensity fluctuations of individual pixels. Yet, it has been customary to evaluate the
performance of image processing algorithms for computer vision by adding independent
Gaussian noise to individual pixels .

Remark 3. The above argument also applies to edge detection, whose goal is to find the
boundaries of 3-D objects in the scene. In reality, however, all existing algorithms seek
edges , i.e., lines and curves across which the intensity changes discontinuously. From the
above observations, it can be argued that edge detection is also intrinsically a heuristic
and hence no definitive algorithm will ever be found.

4. Asymptotic Analysis for Geometric Fitting

Here, we clarify the meaning of “asymptotic analysis”.

4.1 What is asymptotic analysis?

As stated earlier, statistical estimation refers to estimating the properties of an en-
semble from a finite number of samples chosen from it, assuming some knowledge, or a
model , about the ensemble.
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Figure 2: (a) For the standard statistical estimation problem, it is desired that the accuracy
increases rapidly as the number of experiments n → ∞, because admissible accuracy can be
reached with a smaller number of experiments. (b) For geometric inference, it is desired that
the accuracy increases rapidly as the noise level ε → 0, because admissible accuracy can be
reached in the presence of larger uncertainty.

If the uncertainty originates from external conditions, as in experiments in physics,
the estimation accuracy can be increased by controlling the measurement devices and
environments. For internal uncertainty, on the other hand, there is no way of increasing
the accuracy except by repeating the experiment and doing statistical inference. However,
repeating experiments usually entails costs, and often the number of experiments is limited
in practice.

Taking account of such practical considerations, statisticians usually evaluate the per-
formance of estimation asymptotically , analyzing the growth in accuracy as the number
n of experiments increases. This is justified because a method whose accuracy increases
more rapidly as n → ∞ than others can reach admissible accuracy with a fewer number
of experiments (Fig. 2(a)).

In contrast, the ensemble for geometric inference based on feature points is, as we have
seen, the set of potential feature positions that could be located if other (hypothetical)
algorithms were used. The goal is to estimate geometric quantities as closely as possible
to their expectations, which we assume are their true values. In other words, we want
to minimize the discrepancy between obtained estimates and their true values on average
over all hypothetical algorithms .

However, the crucial fact is, as stated earlier, we can choose only one sample from the
ensemble as long as we use a particular image processing algorithm. In other words, the
number n of experiments is 1. Then, how can we evaluate the performance of statistical
estimation? This is the second main question of this paper.

Evidently, we want a method whose accuracy is sufficiently high even for large feature
uncertainty . This implies that we need to analyze the growth in accuracy as the noise
level ε decreases, because a method whose accuracy increases more rapidly as ε → 0
than others can reach admissible accuracy with larger uncertainty of feature extraction
(Fig. 2(b)).

4.2 Geometric fitting

We now illustrate our assertion in more specific terms. Let p1, ..., pN be the extracted
feature points. Suppose each point should satisfy a parameterized constraint

F (pα,u) = 0 (2)
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Figure 3: (a) Fitting a manifold S to the data {xα}. (b) Estimating {x̄α} and u by minimizing
the sum of squared Mahalanobis distance with respect to the normalized covariance matrices
V0[xα].

when no uncertainty exists. In the presence of uncertainty, eq. (2) may not hold exactly.
Our task is to estimate the parameter u from observed positions p1, ..., pN in the presence
of uncertainty.

A typical problem of this form is to fit a line or a curve (e.g., a circle or an ellipse)
to given N points in the image, but this can be straightforwardly extended to multiple
images. For example, if a point (xα, yα) in one image corresponds to a point (x′α, y′α)
in another, we can regard them as a single point pα in a 4-dimensional joint space with
coordinates (xα, yα, x′α, y′α). If the camera imaging geometry is modeled as perspective
projection, the constraint (2) corresponds to the epipolar equation; the parameter u is
the fundamental matrix [10].

4.3 General geometric fitting

The above problem can be stated in more general terms. We view a feature point in
the image plane or a set of feature points in the joint space as an m-dimensional vector
x; we call it a “datum”. Its covariance matrix is denoted by V [x], which is an m × m
symmetric matrix. Assuming that multiple constraints exist on each datum x, we define
the geometric fitting problem as follows.

Let x1, ..., xN be N observed data. Their true values x̄1, ..., x̄N are supposed to
satisfy r constraint equations

F (k)(x̄α, u) = 0, k = 1, ..., r, (3)

parameterized by a p-dimensional vector u. We call eq. (3) the (geometric) model . The
domain X of the data {xα} is called the data space; the domain U of the parameter u
is called the parameter space. The number r of the constraint equations is called the
rank of the constraint. The r equations F (k)(x, u) = 0, k = 1, ..., r, are assumed to be
mutually independent, defining a manifold S of codimension r parameterized by u in the
data space X . Eq. (3) requires that the true values {x̄α} be all in the manifold S. Our
task is to estimate the parameter u from the noisy data {xα} (Fig. 3(a)).

4.4 Maximum likelihood estimation

Let
V [xα] = ε2V0[xα] (4)
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be the covariance matrix of xα, where ε and V0[xα] are the noise level and the normalized
covariance matrix, respectively. If the distribution of uncertainty is Gaussian, which we
assume hereafter, the probability density of the data {xα} is given by

P ({xα}) = C
N∏

α=1

e−(xα−x̄α,V [xα]−1(xα−x̄α))/2 = Ce−J/2ε2 , (5)

where C is a normalization constant and we put

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)), (6)

which is known as the sum of squared Mahalanobis distance with respect to the normalized
covariance matrices V0[xα].

Maximum likelihood estimation (MLE ) is to find the values of {x̄α} and u that mini-
mize eq. (6) subject to the constraint (3) (Fig. 3(b)). The solution is called the maximum
likelihood (ML) estimator . If the uncertainty is small, which we assume hereafter, the
constraint (3) can be eliminated by introducing Lagrange multipliers and applying first
order approximation. After some manipulations, we obtain the following form [11]:

J =
N∑

α=1

r∑

k,l=1

W (kl)
α F (k)(xα, u)F (l)(xα, u). (7)

Here, W (kl)
α is the (kl) element of the inverse of the r × r matrix whose (kl) element is

(∇xF (k)
α , V0[xα]∇xF (l)

α ); we symbolically write
(
W (kl)

α

)
=

(
(∇xF (k)

α , V0[xα]∇xF (l)
α )

)−1
, (8)

where ∇xF (k) is the gradient of the function F (k) with respect to x. The subscript α
means that x = xα is to be substituted.

Remark 4. The data {xα} may be subject to some constraints. For example, each xα

may be normalized to be a unit vector. The above formulation still holds in such a case if
the inverse V0[xα]−1 in eq. (6) is replaced by the (Moore-Penrose) generalized (or pseudo)
inverse V0[xα]− [11].

Remark 5. The r constraints in eq. (3) may be redundant, and only r′ (< r) of them
may be algebraically independent. The above formulation still holds in such a case if the
inverse in eq. (8) is replaced by the generalized inverse with rank r′, i.e., the generalized
inverse computed after all but r′ largest eigenvalues are replaced by zero [11].

4.5 Accuracy of the ML estimator

It can be shown [11] that the covariance matrix of the ML estimator û has the form

V [û] = ε2M(û)−1 + O(ε4), (9)

where

M(u) =
N∑

α=1

r∑

k,l=1

W (kl)
α ∇uF (k)

α ∇uF (k)>
α . (10)

Here, ∇uF (k) is the gradient of the function F (k) with respect to u. The subscript α
means that x = xα is to be substituted.
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Remark 6. It can be proved that no other estimators could reduce the covariance matrix
further than eq. (9) except for the higher order term O(ε4) [11, 14]. The ML estimator is
optimal in this sense. Note that we are focusing on the asymptotic analysis for small ε,
as we argued in Sec. 4.1. So, what we call the “ML estimator” should be understood to
be a first approximation to the true ML estimator for small ε. This is justified because
the effects of the first approximation is squeezed into the term O(ε4).

Remark 7. The p-dimensional parameter vector u may be constrained. For example,
it may be normalized to a unit vector. If it has only p′ (< p) degrees of freedom, the
parameter space U is a p′-dimensional manifold in Rp. In this case, the matrix M(u) in
eq. (9) is replaced by P uM (u)P u, where P u is the projection matrix onto the tangent
space to the parameter space U at u [11]. Then inverse M(û)−1 in eq. (9) is replaced by
the generalized inverse M(û)−1 with rank p′ [11].

5. Asymptotic Analysis for Geometric Model Selection

Now, we turn to “model selection”.

5.1 Geometric model selection

Geometric fitting is to estimate the parameter u of the model given in the form of (3).
If, on the other hand, we have multiple candidate models

F
(k)
1 (x̄α,u1) = 0, F

(k)
2 (x̄α,u2) = 0, F

(k)
3 (x̄α, u3) = 0, ..., (11)

from which we are to select an appropriate one for the observed data {xα}, the problem
is (geometric) model selection [11, 13, 15].

5.2 Geometric AIC

A naive idea for model selection is first to estimate the parameter u by MLE and
compute the residual (sum of squares), i.e., the minimum value Ĵ of J in eq. (6), for
each model. Then, we select the one that has the smallest residual Ĵ . This does not
work, however, because the ML estimator û is determined so as to minimize the residual
Ĵ , so the residual Ĵ can be made arbitrarily smaller if the model is equipped with more
parameters to adjust.

This observation leads to the idea of compensating for the negative bias of the residual
caused by substituting the ML estimator. This is the principle of Akaike’s AIC (Akaike
information criterion) [1], which is derived from the asymptotic behavior of the Kullback-
Leibler information (or divergence) as the number n of experiments goes to infinity. Doing
a similar analysis to Akaike’s and examining the asymptotic behavior as the noise level ε
goes to zero, as discussed in Sec. 4.1, we obtain the following geometric AIC [11, 12]:

G-AIC = Ĵ + 2(Nd + p)ε2 + O(ε4). (12)

Here, d is the dimension of the manifold S defined by the constraint (3); p is the dimension
of u (i.e., the number of unknowns). The model for which eq. (12) is the smallest is
regarded as the best model. The derivation of eq. (12) is based on the following facts
[11, 12]:
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• The ML estimator û converges to its true value as ε → 0.

• The ML estimator û obeys a Gaussian distribution under linear constraints, because
the noise is assumed to be Gaussian. For nonlinear constraints, linear approximation
can be justified in the neighborhood of the solution if ε is sufficiently small, which
we assume as discussed in Sec. 4.1.

• A quadratic form in standardized Gaussian random variables is subject to a χ2

distribution, whose expectation is equal to its degree of freedom.

5.3 Geometric MDL

Another well known criterion for model selection is Rissanen’s MDL (minimum de-
scription length) [34, 35, 36], which measures the goodness of a model by the minimum
information theoretic code length of the data and the model. The idea is simple, but the
following issues must be resolved for applying it in practice:

• Encoding a problem involving real numbers requires an infinitely long code length.

• The probability density, according to which a minimum length code can be obtained,
involves unknown parameters.

• Evaluating an exact form of the minimum length code is very difficult.

Rissanen [34, 35, 36] avoided these difficulties by quantizing real numbers in a way that
does not depend on individual models and substituting the ML estimators for the unknown
parameters. They, too, are real numbers, so they are also quantized. The quantization
width is chosen so as to minimize the total description length (two-stage encoding). The
resulting code length is evaluated asymptotically as the data length n goes to infinity.
If we analyzes the asymptotic behavior of encoding the geometric fitting problem as the
noise level ε goes to zero, as discussed in Sec. 4.1, we obtain the following geometric MDL
[16]:

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2
+ O(ε2). (13)

Here, L is a reference length chosen so that its ratio to the magnitude of data is O(1),
e.g., L can be taken to be the image size for feature point data. Its exact determination
requires an a priori distribution that specifies where the data are likely to appear, but it
has been observed that the model selection is not very much affected by L as long as it is
within the same order of magnitude [16].

6. Dual Interpretations for Statistical Inference

We now contrast geometric fitting (Sec. 4) and geometric model selection (Sec. 5) with
the standard statistical estimation and the standard (stochastic) model selection. This
section is another core of this paper.

6.1 Standard statistical inference

The asymptotic analysis in the preceding two sections bears a strong resemblance to
the standard statistical analysis, although the basic premises and assumptions are dif-
ferent. In the standard statistical analysis, as pointed out in Sec. 2, an experiment is
regarded as an instance of sampling from an ensemble with a probability density P (x|θ)
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parameterized by a k-dimensional vector θ. Suppose we repeat the experiment inde-
pendently n times and observe n outcomes x1, x2, ..., xn. Our task is to estimate the
parameter θ of the (stochastic) model P (x|θ). Maximum likelihood estimation (MLE ) is
to find the value θ that maximizes

∏n
α=1 P (xα|θ), or equivalently minimizes its negative

logarithm −∑n
α=1 log P (xα|θ). It can be shown that the covariance matrix V [θ̂] of the

resulting ML estimator θ̂ converges, under a mild condition, to O as the number n of
experiments goes to infinity (consistency) in the form

V [θ̂] = I(θ)−1 + O
( 1

n2

)
, (14)

where we define the Fisher information matrix I(θ) by

I(θ) = nE[(∇θ log P (x|θ))(∇θ log P (x|θ))>]. (15)

The operation E[ · ] denotes expectation with respect to the density P (x|θ). The first
term in the right-hand side of eq. (14) is called the Cramer-Rao lower bound , describing
the minimum degree of fluctuations in all estimators. Thus, the ML estimator is optimal
if n is sufficiently large (asymptotic efficiency).

If we have multiple candidate models

P1(x|θ1), P2(x|θ2), P3(x|θ3), ..., (16)

from which we are to select an appropriate one for the observations {xα}, the problem is
(stochastic) model selection. Akaike’s AIC has the following form:

AIC = −2
N∑

α=1

log P (xα|θ̂) + 2k + O
( 1

n

)
. (17)

The model for which this quantity is the smallest is regarded as the best model. The
derivation of eq. (17) is based on the following facts [1]:

• The maximum likelihood estimator θ̂ converges to its true value as n →∞ (the law
of large numbers).

• The maximum likelihood estimator θ̂ asymptotically obeys a Gaussian distribution
as n → ∞ (the central limit theorem).

• A quadratic form in standardized Gaussian random variables is subject to a χ2

distribution, whose expectation equals its degree of freedom.

The Rissanen’s MDL has the following form [35, 36]:

MDL = −
n∑

α=1

log P (xα|θ̂) +
k

2
log

n

2π
+ log

∫

T

√
|I(θ)|dθ + O(1). (18)

Here, θ̂ is the ML estimator; the symbol O(1) denotes terms of order 0 in n in the
limit n → ∞. In order that the integration in the right-hand side of eq. (18) exists, the
domain T of the parameter θ must be compact. In other words, we must specify in the
k-dimensional space of θ a finite region T in which the true value of θ is likely to exist.
This is nothing but the Bayesian standpoint that requires a prior distribution for the
parameter to estimate. If it is not known, we must introduce an appropriate expedient to
suppress an explicit dependence on the prior. Such an expedient is also necessary for the
geometric MDL, i.e., the introduction of the reference length L in eq. (18).
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6.2 Dual interpretations of asymptotic analysis

We have seen above that the covariance matrix of the ML estimator for the standard
statistical analysis converges to O as the number n of experiments goes to infinity and
that it agrees with the Cramer-Rao lower bound expect for O(1/n2). If follows that 1/

√
n

plays the same role as ε for geometric inference.
The same correspondence exists for model selection, too. Note that the unknowns are

the p parameters of the constraint plus the N true positions specified by the d coordinates
of the d-dimensional manifold S defined by the constraint. If eq. (12) is divided by ε2,
we have Ĵ/ε2 + 2(Nd + p) + O(ε2), which is (−2 times the logarithmic likelihood)+2(the
number of unknowns), the same form as Akaike’s AIC. The same holds for eq. (13), which
reduces to Rissanen’s MDL if ε is replaced by 1/

√
n.

This correspondence can be interpreted as follows. Since the underlying ensemble is
hypothetical, we can observe only one sample from it as long as a particular algorithm is
used. Suppose we hypothetically apply n different algorithms to find n different positions.
The optimal estimate of the true position under the Gaussian model is their sample mean.
The covariance matrix of the sample mean is 1/n times that of the individual samples.
Hence, this hypothetical estimation is equivalent to dividing the noise level ε in eq. (4)
by
√

n.
In fact, there were attempts to generate a hypothetical ensemble of algorithms by

randomly varying the internal parameters (e.g., the thresholds for judgments) and sample
different points [5, 6], not adding any noise to the image. Then, one can compute their
means and covariance matrix. Such a process as a whole can be regarded as one operation
that effectively achieves higher accuracy.

Thus, the asymptotic analysis for ε → 0 is equivalent to the asymptotic analysis for
n → ∞, where n is the number of hypothetical observations. As a result, the expression
· · · + O(1/

√
nk) in the standard statistical analysis turns into · · · + O(εk) in geometric

inference.

6.3 Noise level estimation

In order to use the geometric AIC or the geometric MDL, we need to know the noise
level ε. If it is not known, it must be estimated. Here arises a sharp contrast to the
traditional stochastic model selection.

For stochastic model selection, the noise magnitude is a model parameter , because
“noise” is defined to be the random effects that cannot be accounted for by the assumed
model. Hence, the noise magnitude must be estimated, if not known, according to the
assumed model . For geometric inference, however, the noise level ε is a constant that re-
flects the uncertainty of feature detection (Sec. 3). So, it must be estimated independently
of individual models .

If we know the true model, it can be estimated from the residual Ĵ using the knowledge
that Ĵ/ε2 is subject to a χ2 distribution with rN − p degrees of freedom in the first order
[11]. Hence, we obtain an unbiased estimator of ε2 in the form

ε̂2 =
Ĵ

rN − p
. (19)

The validity of this formula has been confirmed by many simulations.
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Figure 4: Fitting a line, a circle, and an ellipse.

Remark 8. Eq. (19) can be intuitively understood as follows. Recall that Ĵ is the sum
of square distances from {xα} to the manifold Ŝ defined by the constraint F (k)(x, u) =
0, k = 1, ..., r, in the data space X . Since Ŝ has codimension r (the dimension of the
orthogonal directions to it), the residual Ĵ should have expectation rNε2. However, Ŝ is
fitted so as to minimize Ĵ by adjusting its p-dimensional parameter u, so the expectation
of Ĵ reduces to (rN − p)ε2.

One may wonder if model selection is necessary at all when the true model is known.
In practice, however, a typical situation where model selection is called for is degeneracy
detection. In 3-D analysis from images, for instance, the constraint (3) corresponds to our
knowledge about the scene such as rigidity of motion. However, the computation fails if
degeneracy occurs (e.g., the motion is zero). Even if exact degeneracy does not occur, the
computation may become numerically unstable in near degeneracy conditions. In such a
case, the computation can be stabilized by detecting degeneracy by model selection and
switching to a specific model that describes the degeneracy [13, 17, 20, 21, 25, 31, 45].

Degeneracy means addition of new constraints, such as some quantity being zero. As
a result, the manifold S defined by the general constraint degenerates into a submanifold
S ′ of it. Since the general model holds irrespective of the degeneracy, i.e. S ′ ⊂ S, we can
estimate the noise level ε from the residual Ĵ of the general model S by eq. (19).

7. Comparing the geometric AIC and the geometric MDL

We now compare the performance of the geometric AIC and the geometric MDL in
detecting degeneracy.

7.1 Detection of circles and lines

Consider an ellipse that is tangent to the x-axis at the origin O with radius 50 in
the y direction and eccentricity 1/β. On it, we take eleven points that have equally
spaced x coordinates. Adding random Gaussian noise of mean 0 and variance ε2 to the
x and y coordinates of each point independently, we fit an ellipse, a circle, and a line in
a statistically optimal manner by a technique called renormalization [11, 18, 19]. Fig. 4
shows one instance for β = 2.5 and ε = 0.1. Note that a line and a circle are both special
cases (degeneracies) of an ellipse.

Lines, circles, and ellipses define one-dimensional (geometric) models with 2, 3, and 5
degrees of freedom, respectively. Hence, their geometric AIC and the geometric MDL for
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Figure 5: The ratio (%) of detecting a line by the geometric AIC (solid lines) and the geometric
MDL (dashed lines) using (a) the true noise level and (b) the estimated noise level.

0

20

40

60

80

100

0.7 0.8 0.9 1 1.1 1.2 1.3

[%
]

β

G-AIC
G-MDL

0

20

40

60

80

100

0.7 0.8 0.9 1 1.1 1.2 1.3

[%
]

β

G-AIC
G-MDL

(a) (b)

Figure 6: The ratio (%) of detecting a circle by the geometric AIC (solid lines) and the geometric
MDL (dashed lines) using (a) the true noise level and (b) the estimated noise level.

N points are given as follows:

G-AICl = Ĵl + 2(N + 2)ε2, G-MDLl = Ĵl − (N + 2)ε2 log
( ε

L

)2
,

G-AICc = Ĵc + 2(N + 3)ε2, G-MDLc = Ĵc − (N + 3)ε2 log
( ε

L

)2
,

G-AICe = Ĵe + 2(N + 5)ε2, G-MDLe = Ĵe − (N + 5)ε2 log
( ε

L

)2
. (20)

The subscripts l, c, and e refer to lines, circles, and ellipses, respectively. For each β, we
compute the geometric AIC and the geometric MDL of the fitted line, circle, and ellipse
and choose the one that has the smallest geometric AIC or the smallest geometric MDL.
We used the reference length L = 1.

Fig. 5(a) shows the percentage of choosing a line for ε = 0.01 after 1000 independent
trials for each β in the neighborhood of β = 0. If there were no noise, it should be 0%
for β 6= 0 and 100% for β = 0. In the presence of noise, the geometric AIC gives a sharp
peak, indicating a high capability of distinguishing a line from an ellipse. However, it
judges a line to be an ellipse with some probability. The geometric MDL judges a line
to be a line almost 100% for small noise, but it judges an ellipse to be a line over a wide
range of β.

In Fig. 5(a), we used the true value of the noise variance ε2. If it is unknown, it can
be estimated from the residual of the general ellipse model by eq. (19). Fig. 5(b) shows
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2A

Figure 7: Fitting a space line and a plane to points in space.

the result using its estimate. Although the sharpness is somewhat lost, we observe similar
performance characteristics of the geometric AIC and the geometric MDL.

Fig. 6 shows the percentage of choosing a circle for ε = 0.01 in the neighborhood of
β = 1. If there were no noise, it should be 0% for β 6= 1 and 100% for β = 1. In the
presence of noise, as we see, it is difficult to distinguish a small circular arc from a small
elliptic arc for β < 1. Yet, the geometric AIC can detect a circle very sharply, although
it judges a circle to be an ellipse with some probability. In contrast, the geometric MDL
almost always judges an ellipse to be a circle for β < 1.1.

7.2 Detection of space lines

Consider a rectangular region [0, 10] × [−1, 1] in the xy plane. We randomly take
eleven points in it and enlarge them A times in the y direction (Fig. 7). Adding random
Gaussian noise of mean 0 and variance ε2 to the x, y, and z coordinates of each point
independently, we fit a line and a plane in a statistically optimal manner. The rectangular
region degenerates into a line segment as A → 0.

A space line is a one-dimensional model with four degrees of freedom; a plane is a
two-dimensional model with three degrees of freedom. Hence, their geometric AIC and
geometric MDL have the following form:

G-AICl = Ĵl + 2(N + 4)ε2, G-MDLl = Ĵl − (N + 4)ε2 log
( ε

L

)2
,

G-AICp = Ĵp + 2(2N + 3)ε2, G-MDLp = Ĵp − (2N + 3)ε2 log
( ε

L

)2
. (21)

The subscripts l and p refer to lines and planes, respectively. For each A, we compare the
geometric AIC and the geometric MDL of the fitted line and plane and choose the one
that has the smaller geometric AIC or the smallest geometric MDL. We used the reference
length L = 1 for the geometric MDL.

Fig. 8(a) shows the percentage of choosing a line for ε = 0.01 after 1000 independent
trials for each A in the neighborhood of A = 0. If there were no noise, it should be 0%
for A 6= 0 and 100% for A = 0. In the presence of noise, the geometric AIC has a high
capability of distinguishing a line from a plane, but it judges a line to be a plane with
some probability. In contrast, the geometric MDL judges a line to be a line almost 100%
for small noise, but it judges a plane to be a line over a wide range of A.

In Fig. 8(a), we used the true value of the noise variance ε2. Fig. 8(b) shows the
corresponding result using its estimate obtained from the general plane model by eq. (19).
We observe somewhat degraded but similar performance characteristics.

Thus, we can observe that the geometric AIC has a higher capability for distinguishing
degeneracy than the geometric MDL, but the general model is chosen with some probabil-
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Figure 8: The rate (%) of detecting a space line by the geometric AIC (solid lines) and the
geometric MDL (dashed lines) with (a) the true noise level and (b) the estimated noise level.

ity when the true model is degenerate. In contrast, the percentage for the geometric MDL
to detect degeneracy when the true model is really degenerate approaches 100% as the
noise decreases. This is exactly the dual statement to the well known fact, called the con-
sistency of the MDL, that the percentage for Rissanen’s MDL to identify the true model
converges to 100% in the limit of an infinite number of observations. Rissanen’s MDL is
regarded by many as superior to Akaike’s AIC because the latter lacks this property.

At the cost of this consistency, however, the geometric MDL regards a wide range
of nondegenerate models as degenerate. This is natural, since the penalty −(Nd +
p)ε2 log(ε/L)2 for the geometric MDL in eq. (13) is heavier than the penalty 2(Nd + p)ε2

for the geometric AIC in eq. (12). As a result, the geometric AIC is more faithful to the
data than the geometric MDL, which is more likely to choose a degenerate model. This
contrast in their behavior can also be observed in virtual studio applications for stabilizing
the camera position estimation [25].

Remark 9. Despite the difference of geometric model selection from the standard
(stochastic) model selection, many attempts have been made in the past to apply Akaike’s
AIC and their variants to computer vision problems directly [40, 41, 42, 43, 44] without
much consideration of the meaning of the underlying asymptotic analysis. Rissanen’s
MDL is also used in computer vision applications. Its use may be justified if the problem
has the standard form of linear/nonlinear regression [3, 26]. Often, however, the solution
having a shorter description length was simply chosen with a rather arbitrary definition
of the complexity [8, 23, 27].

8. Nuisance Parameters and Semiparametric Model

We now give a brief discussion about a different statistical approach based on the
concepts of nuisance parameters and semiparametric models , which are recently attracting
attentions of some computer vision researchers [32, 30]. The underlying assumptions are
very contrasting to those of our approach.

8.1 Asymptotic parameters

The number n that appears in the asymptotic analysis of the standard statistical
estimation problem is the number of experiments . It is also called the number of trials ,
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the number of observations , and the number of samples . Evidently, the properties of an
ensemble are revealed more precisely as more elements are sampled from it.

However, the number n is often called the number of data, which has caused consid-
erable confusion. For example, if we observe a 100-dimensional vector data in one exper-
iment, one may think that the “number of data” is 100, but this is wrong: the number n
of experiments is 1. We are observing one sample from an ensemble of 100-dimensional
vectors.

For character recognition, the underlying ensemble is a set of character images, and the
learning process concerns the number n of training steps necessary to establish satisfactory
responses. This is independent of the dimension N of the vector that represents each
character. The learning performance is evaluated asymptotically as n →∞, not N →∞.

For geometric inference, many researchers have taken the dimension of the data as the
“number of data” perhaps because the ensemble is hypothetical and one cannot sample
more than one datum from it. However, if we extract, for example, 50 feature points, they
constitute a 100-dimensional vector consisting of their x and y coordinates. If no other
information, such as the intensity value, is used, the image is completely characterized
by that vector. Applying a statistical method means regarding it as a sample from a
hypothetical ensemble of 100-dimensional vectors.

8.2 Neyman-Scott problem

Many studies of geometric inference for computer vision have analyzed the asymptotic
behavior as N → ∞ with respect to the number N of extracted feature points without
explicitly mentioning what the underlying ensemble is. This is perhaps motivated by a
similar formulation in the statistical literature. Suppose, for example, a rod-like structure
lies on the ground in the distance. We emit a laser beam toward it and estimate its
position and orientation by observing the reflection of the beam, which is contaminated
by noise. We assume that the laser beam can be emitted in any orientation any number
of times but the emission orientation is measured with noise. The task is to estimate the
position and orientation of the structure as accurately as possible by emitting as small a
number of beams as possible. Naturally, the estimation performance should be evaluated
in the asymptotic limit n → ∞ with respect to the number n of emissions.

Evidently, this problem has nested ensembles behind. Since we are interested in the
position and orientation of the structure but not the exact orientation of each emission, the
variables for the former are called the structural parameters , which are fixed in number,
while the latter are called the nuisance parameters , which increase indefinitely as the
number n of experiments increases [2]. This type of formulation is called the Neyman-
Scott problem [29]. Since the constraint is an implicit function in the form of eq. (3), we
are considering an errors-in-variables model [7]. If we linearize the constraint by changing
variables for the data, the noise characteristics differs for each data component, so the
problem is heteroscedastic [24].

To solve this problem, one can introduce a parametric model for the laser emission
orientations and regarding the actual emissions as randomly sampled from it. This for-
mulation is called a semiparametric model [2]. An optimal solution can be obtained by
finding a good estimating function [2, 32].
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8.3 Semiparametric model for geometric inference

Since the semiparametric model has something different from the geometric inference
problem described in Sec. 2 and 3, a detailed analysis is required for examining if ap-
plication of a semiparametric model for geometric inference will yield a desirable result
[32, 30]. In any event, one should explicitly state what kind of ensemble (or ensemble of
ensembles) is assumed before doing statistical analysis.

This is not merely a conceptual issue. It also affects the performance evaluation of
simulation experiments. In doing a simulation, one can freely change the number N of
feature points and the noise level ε. If the accuracy of Method A is higher than Method B
for particular values of N and ε, one cannot conclude that Method A is superior to Method
B, because opposite results may come out for other values of N and ε. Here, we have
two alternatives for performance evaluation: fixing ε and varying N to see if admissible
accuracy is attained for a smaller number of feature point; fixing N and varying ε to
see if admissible accuracy is attained for less certain feature extraction. These two types
of evaluation have different meanings. Our conclusion is that the results of one type of
evaluation cannot directly be compared with the results of the other.

9. Conclusions

We have investigated the meaning of “statistical methods” for geometric inference
based on image feature points. Tracing back the origin of feature uncertainty to image
processing operations for computer vision in general, we discussed the implications of
asymptotic analysis for performance evaluation in reference to “geometric fitting” and
“geometric model selection”. For the latter, we pointed out the prominent characteristics
of the “geometric AIC” and the “geometric MDL” as compared with Akaike’s AIC and
Rissanen’s MDL presented a dual interpretation between the standard and geometric in-
ferences. We have also evaluated their degeneracy detection performance by simulation,
showing that their asymptotic characteristics are very contrasting. Finally, we discussed
some issues concerning “nuisance parameters”, and “semiparametric models”. We con-
clude that application of statistical methods requires careful considerations about the
peculiar nature of the geometric inference problem.
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