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Generalized Global Sensitivity and
Correlation Analysis

KEN-ICHI KANATANI

Department of Computer Science, Gunma University,
Kiryu, Gunma 376, Japan

Quantities measuring sensitivities and correlations of parameters involved in an
engineering system are systematically defined by means of lattice theory.
Consideration of lattice duality leads to recognition of polymatroid structure of the
sensitivity and correlation measures. Analogous algebraic structures are shown to
exist in the formulation of mutual information in information theory and
multivariate analysis in statistics. Then, the sensitivity and correlation measures
thus obtained are transformed into more tractable analytic expressions by means of
expansion in series of orthogonal functions. Finally, a scheme of the so-called
number-theoretic or quasi-Monte Carlo method is given for numerical evaluation of
these expressions. This formulation generalizes the existing method of nonlinear
sensitivity analysis.

1. INTRODUCTION

In many physical, engineering and economical systems, the output is
influenced by a large number of parameters involved in the system. If the
governing equations are given in the form of differential, integral or
difference equations, the numerical output values corresponding to a
particular prescription of parameter values are easily calculated by the use of
a computer. In many cases, however, it is difficult to understand the way
each parameter is related to the output. Let / be the output of the system
under consideration, and let a,,..., a, be the parameters of the system. Then,
a function f(a,,..,a,) is algorithmically well defined via the numerical
solution of the governing equations. Throughout this paper, the output
f(@a,,..a,) is assumed to be a real continuous function of parameters
a,,.,a,. Suppose the explicit function form of f is not known. The
traditional sensitivity analysis is to evaluate partial derivatives df/oa, ..,
df/da, at a representative point (a,,..,a,) in the n-dimensional parameter
space and to regard them as quantities measuring influence of each of the
parameters exerted on the output f. However, this analysis is of practical
value only if function f'is approximately linear over the physically significant
region in the parameter space.

37
0019-9958/80/100037-22802.00/0

Copyright ¢ 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.



k1. ' KEN-ICHI KANATANI

Recently, a new type of sensitivity analysis applicable to large variations
of parameters has been developed by Shuler et al. (Cukier et al., 1973, 1975,
1978; Schaibly et al., 1973). Their method is referred to as the Fourier
amplitude senstivity test (FAST) or the nonlinear sensitivity analysis, and is
applied to chemical kinetic reaction systems (e.g., Cukier et al., 1973, 1975,
1978; Schaibly et al., 1973; Boni and Penner, 1977; Koda et al., 1979a,
1979b). They originally based their formulation on a heuristic approach:
They considered one-dimensional variation of parameters a,,..., a,, i.e., they
defined a one-parameter curve, which they called the search curve, in the n-
dimensional parameter space in the form

at) = h,(cos 2nw;t, sin 2nw,t), i=1l,..,n, (1.1)

where w,,..., w, are approximately incommensurate integers. Then, they
applied the harmonic analysis to the corresponding output and calculated the
Fourier coefficients corresponding to the frequencies w,,..., w, of the output
function, hence the name “FAST.” Later, they interpreted their sensitivity
measure as the “variance”

S@)={ (fita) = 7Y pay) da, (1.2)

where p,(a;) is the weight function which describes “physical significance,” in
a sense, of a particular prescription of the value of a,. Here, fi(a,) is a
function of a; obtained by “averaging” f with respect to parameters other
than a,, and fis the “total average,” i.c.,

f@)={ [ 1@a) [1papda;, (1.3)
J#il

f_=J‘"'J'f(a|,..., a") ﬁpj(aj)daj. (1.4)
j=1

They also suggested the possibility of formulating the couplings of
sensitivities among the parameters by the same principle. A full development
of their suggestion is one of the main purposes of this paper.

In this paper, we shall present a systematic way of deriving quantities that
measure not only sensitivity of each parameter but also the amount of
mutual coupling or correlation of the parameters by means of the lattice-
theoretic formulation which Han (1975, 1977, 1978, 1980, 1981) applied to
the formulation of mutual information in information theory and multivariate
analysis in statistics. We shall further show that consideration of lattice
duality leads to recognition of polymatroid structure found in information
theory (Fujishige, 1978; Han, 1979) and in other engineering problems (cf.
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Iri, 1979). This observation enables us to understand the inherent underlying
algebraic structure and to treat many seemingly unrelated problems in the
same mathematical discipline. Then, the sensitivity and correlation measures
thus obtained are transformed into more tractable analytic expressions by
means of expansion in series of orthogonal functions. Finally, we shall give a
scheme of the so-called number-theoretic or quasi-Monte Carlo method
(Haselgrove, 1961; Korobov, 1963, Hlawka, 1964a, 1964b; Zarembe, 1966,
1968; Conroy, 1967; Haber, 1970; Stroud, 1971; Chang et al., 1973;
Niederreiter, 1977) for numerical evaluation of these expressions. It will thus
be shown that our scheme is a generalization of the method of Shuler et al.

2. MEASURES OF SENSITIVITY AND CORRELATION

In the following, we assume that the weight function p(a,,...,a,) of
parameters a, ,..., @, has the form

P(@yses @y) =pi(@y) -+ Pu(@n)s 21

i.e., we consider the parameters to be “independent” a priori from each other.
We further assume that each p,(a;) is nonnegative and normalized:

pla) >0, J pla)da,=1, i=l,.,n 2.2)

Henceforth, we do not specify the domain of integration, assuming that the
weight function vanishes outside the physically significant region in the n-
dimensional parameter space.

Now, we put E = {1,..., n} and identify this set with the set of parameters,
associating integer { with parameter a; for i=1,.,n The parameters
associated with integers contained in a subset A of E are simply referred to
as parameters 4. Let

fa=[ [ f@san) [ pidan day, 23)
ted

where A = E — A is the complement of subset 4 with respect to E. In other
words, f, is a function of parameters 4 alone obtained from f by averaging it
with respect to the remaining parameters A. There exist 2" f,’s for 4 C E,
and we call them partial averages. In particular, f; is identical to fitself, and
J,» where ¢ is the empty set, equals the fotal average f defined by (1.4). The
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amount of variation of f induced by simultaneous variation of parameters 4
is described by

Say=[-[u=7*1nda 24)

which we call the sensitivity of parameters A. This generalizes the sensitivity
measure (1.2) to that of multiple parameters. We say that f is additive with
respect to A and 4 if f is decomposed to f=/, +/f,, where f, and f, are
functions of parameters 4 alone and parameters 4 alone, respectively. If this
is the case, it is easy to show that S(E) = S(4) + S@). If f=Y7_, fi(a,) in
particular, i.e., if f'is written as a sum of functions of a single argument, we
say that f'is completely additive. In this case, we obtain S(E)=>"7_, S({i}).
If fis not a completely additive function, quantities like S(E) — S(4) — S(4)
and S(4)— ;e S({i}) do not necessarily vanish. We say that these kinds
of quantities, or more precisely, those linear combinations of S(4)'s, 4 < E
which vanish whenever f is completely additive, are correlations of
parameters involved.

3. VECTOR SPACE OF PARTIAL AVERAGES

Let V be the real vector space generated by the 2" partial averages f,’s,
A S E. We say that elements f,,..., f, of V are linearly independent, when
Y i_1¢if;=0 holds identically for any function form of f if and only if
¢,=--=¢,=0. It is evident that all the partial averages f,’s, 4 S E are
linearly independent. Indeed, we can always define a function f such that
J4# 0 for some A € E and f =0 for B # 4. Thus, we obtain

PROPOSITION 1. The vector space V of partial averages is 2"
dimensional, and {f,|A S E} is a basis of V.

Next, we introduce inner product and norm into the vector space V.
Define the inner product (f, f3) of f,/; € V by

Ghd=[ (L5 ] prday a0
i=1

and the norm || f,|| of f, € V by

I/l = v (/15 £3)- 3.2)

If (f3,/3)=0, then we say that f, and f, are mutually orthogonal. We can
easily verify
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PROPOSITION 2.

(fos So) = farall®s (3.3)
(S fo)=S* for ANB=4. (3.4)

Now, we define the deviation of £, from f by
fu=tfi— 7. (3.5)

By virtue of Proposition 2, f is orthogonal to ffor all A S E. Let V' be the
orthogonal complement of f and call it the deviatoric subspace of V. Then,
Proposition 1 and Proposition 2 are rewritten respectively as follows:

PROPOSITION 3. The deviatoric subspace V' is (2" — 1)-dimensional, and
{(fY|A<E, A+¢}is a basis of V'.

PROPOSITION 4.

(fas S =S arall’ (3.6)
(fu,f5)=0  for ANB=4¢. X))

The definition (2.4) of the sensitivity S(4) of parameters 4 is now written
as

SA@) =14l (3-8)

4. BOOLEAN LATTICE, THE DIFFERENCE OPERATION AND CORRELATIONS

The collection of all the subsets of E, i.e., the power set 2£, is regarded as
a Boolean lattice L with the set-inclusion relations and the union-intersection
operations as the partial order relations and the basic operations. Let
& 2E 5 V be an arbitrary mapping. The difference A&: 25 — V of £ is defined
by

45A)= > u(B,A4)¢(B), (4.1

B<A

where u(B, A) is the Mébius function on L, which is recurrently defined by
=1 for C=4
2 HCB)=0dc, ( =0  otherwise )’ 4.2)

CSBSA
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(Rota, 1964). We can easily verify
u(B, A) = (—1)!1-181 for BcA

4.3
=0 otherwise, “3)

where |A| is the cardinality, i.e., the number of elements, of set 4. Expression
(4.1) is inverted in the form

{A)= Y 4&B), (4.4)

hence the name “difference.” Expressions (4.1) and (4.4) are also referred to
as the principle of inclusion—exclusion (Rota, 1964).
Consider the difference of the partial averaging /. : 2f » V and put

g.=4fy. 4.5)

Application of the principle of inclusion—exclusion yields

gi= > u(B,A)fp, (4.6)

B<A

Ja= .\: 8p- 4.7)

BSA4

The following proposition is a direct consequence of (4.3).

PROPOSITION 5. If fis completely additive, then

gA=f Jor A=¢
=fiw—f Jfor A={i} (4.8)
=0 Jor |A|> 1.

Let V, be the set of elements of V that vanish identically whenever f is
completely additive. It is evident that ¥ is a subspace of ¥, which we call
the correlative subspace of V. Since {f,|A S E} is a basis of V and is
mapped to { g,|4 < E} by the invertible linear mapping indicated by (4.6)
and (4.5), the latter is also a basis of V. Hence, we obtain from (4.8)

PROPOSITION 6. The correlative subspace V, is (2"—(n+ 1))
dimensional, and {g,|A S E, |A| > 1} is a basis of V.
Then, the squared norm of g,, which we put '
R(4) = g.l* (4.9)

is a measure of parameter correlation when |4| > 1. The following lemma is
of fundamental importance.
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LemMMA 1. {g,|A € E} is an orthogonal basis of V, i.e.,
(84> 85)=R(A4) 5. 4.10)

Indeed, {g,|4 € E} is nothing but the Gram-Schmidt orthogonalization of
{f4]4A < E}. Since this lemma was proved by Han (1977, 1980), though in a
different context, we omit the proof.

THEOREM 1.
Sd)= Y R(B), S (4.11)
¢cBc4
RA)= > u(B,A)S(B) for A+ ' (4.12)
Bs=A
Progf. From (3.5) and (4.7), we can see that
fi= Y gz for A#¢. (4.13)
¢cBSA

Taking the squared norm of both sides, we obtain (4.11) from the
orthogonality of g,’s. Application of the principle of inclusion—exclusion
yields (4.12).

Thus, the set function R: 2€ = R is the difference A4S of the set function S:
2E 5 R. From Proposition 6, we obtain

THEOREM 2. The necessary and sufficient condition that f be completely
additive is R(4)=0 for all |4]| > 1.

Suppose f, = f, + f;, where f; and f, are functions of parameters 4, alone
and parameters 4, alone, respectively, and 4, U A4, =4, 4, A4, =¢. Then,
it is easily confirmed that R(4) = 0. Hence, as long as R(4) # 0, parameters
A are intimately correlated and they cannot be separated additively in any
way. Thus, we are justified to call R(4) the correlation of parameters A4.

ExampLE 1. Let E={l,2,3}. Then

gn =/ -/
gua =Jua =Sy~ S+ ./
g =Juan —Sua — S —Son it S —F
R({1}) = S({1}),
R({1,2})=S({1,2}) — S({1}) — S({2}),

R({1,2,3})=S({1, 2,3}~ S({L,2}) — S({2, 3D — S({3, 1})
+SALY + 5|2 + S({3D).
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If f(a,, a,, a;) = fi(a,, a,) + fy(a,, a;), then R({1, 2}) # 0 and R({2,3})+#0
in general, whereas R({1,3})=0 and R({1,2,3})=0. If f(a,,a,,a;)=
filay, ay) + f(ay, a;) + fi(a;,a,) on the other hand, then R({1,2})#0,
R({2,3})# 0 and R({3, 1}) # 0 in general, whereas R({1,2,3})=0.

5. LATTICE DUALITY AND POLYMATROID

THEOREM 3.
(1) SA)>0, (5.1)
@) s@)=o, (5-2)
(3) SMA)KS(B) for AcCB, (5.3)
(4) S()+S(B)<S@AUB)+SANB). (5.4)

This theorem states that the set function S: 2£ — R is (1) nonnegative, (2)
normalized, (3) monotone nondecreasing and (4) supermodular. If we put
ANB=¢ in (5.4), then this supermodularity reduces to the condition of
superadditivity, which in turn implies monotone nondecrease.

Proof of the theorem. Conditions (5.1) and (5.2) follow from definition
(3.8). Let A, N A4, =¢. From Proposition 2, we obtain superadditivity

S,V A4;)—S(A) = SAo) = fuyuu, = S = fa, = FI* = Lfu, = 71
=faoa, = fa, = La, + 712 20. (5.5)
Hence, we have
S(A4,V4,)-54,)>S5(4,) >0, (5.6)

which coincides with (5.3) if we put A, =4 and 4, =B — A. Next, let 4,,
A, and 4, be mutually disjoint subsets of E. From Proposition 2, we obtain

S(A,UA,UA,;)— S(4,Ud,)— S(d,UA,)—S(A,UA4,)
+ S(4,)+SA4,)+S4,)
= fasongns = Sasons = Jagons = Sason, + Jay + fay + L0, = FI? 2 0.
Combination of this and (5.5) yields
S(A; VA, UA;)+ 8SA,)— (S, UA4,)+ 54,0 4,))
> S(4;U4,)— S(4;)— S(4,) >0,
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which coincides with (5.4) if we put 4,=4—B, 4,=ANB and 4,=
B —A.

Consider the following function £} “dual” to f, for 4 S E.
i=r-tn  L=f-SF (5.7

It follows from Proposition 2 that f is orthogonal to all £¥’s, 4 < E. Since
fs and fF’s are related by the invertible linear mapping (5.7), we obtain

PROPOSITION 7. (f¥, f|A S E, A+ ¢} is a basis of the vector space V
of partial averages.

PROPOSITION 8, {/f¥|ACSE, A+ ¢} is a bais of the deviatoric subspace
V' of V.

Let the squared norm of f} be

S*(A) =1 £FI* (5.8)

LEMMA 2.
S*(E)= S(E), (5.9)
S*(4)=S(E)— S(), S(A) = S*(E) — S*(4), (5.10)
S*() > S(A4). (5.11)

Proof. Equality (5.9) is obvious from the defining equations (3.8), (5.7)
and (5.8). To see (5.10), note that from Proposition 2 we have

S*A) =g — Sl = 1fel* = 2(fe» S + I = 1 Fe* = NS5
=fe = A = fz—JI? = S(E) - SA).

To see (5.11), note that from the superadditivity (5.5) we have

S*(d) — S(4) = S(E) — S(4) — S(A) > 0. (5.12)

From (5.10), we can see that S*(4) is the amount of variation of f induced
by simultaneous variation of all the parameters minus that induced by
parameters other than A. Hence, S*(4) is regarded as a measure of
“significance” or “predominance,” in a sense, of parameters 4. From (5.12),
we can see the equality in (5.11) holds when f is additive with respect to 4
and 4.
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THEOREM 4.
(1) S*4)>0, (5.13)
(2) S*@¢)=0, (5.14)
(3) S*A)<K S*(B) for ACB, (5.15)
4) S*A4)+S*B)>S*(4UB)+ S*¥(ANB). (5.16)

This theorem states that the set function S*:2f - R is (1) nonnegative,
(2) normalized, (3) monotone nondecreasing and (4) submodular. If we put
ANB=¢ in (5.16), this condition reduces to that of subadditivity.
Conditions (5.13)-(5.16) imply that the pair (E,S*) of the set E of
parameters and the set function S* on it constitutes a polymatroid (cf.
Welsh, 1976; Fujishige, 1978; Iri, 1979).

Proof of the theorem. Conditions (5.13) and (5.14) follow from
definition (5.8). Let A < B. Since B = 4, we obtain from (5.3)

S*(4) = S(E) — S(A) < S(E) — S(B) = S*(B),

which proves (5.15). Next, since AUB=ANB and ANB=4UB, we
obtain from (5.4)

S*(A4\UB) + §*(4 N B) = (S(E) — S(4 UB)) + (S(E) — S(AN B))
=2S(E)— S(ANB)—SANB)
<28(E) - S(4)— S(B)
= (S(E)— S(4)) + (S(E) — S(B))
= §*(4) + S*(B),
which proves (5.16).

Now, we consider the difference of /¥, which is dual, in a sense, to the
difference g, = 4f, of f,. Put

g = (=D 4fE (5.17)

Physical meaning of this function is made clear if we consider the dual
lattice L* obtained from L by inverting the set-inclusion relations and the
union-intersection operations. Since the Mébius function u*(4, B) of lattice
L* is obtained by

u*(4, B)=u(B, 4), (5.18)
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the dual difference, i.e., the difference on the dual lattice L*, is defined by

4*A)= Y u(4,B)&(B), (5.19)

B2A

where &: 2£ - V is an arbitrary mapping (Rota, 1964). The following lemma
shows the relation between the dual difference operation 4* and the (primal)
difference operation 4.

LEmMMA 3 (Han, 1975).

A¥A)= (1) ¥ 4¢(B), (5.20)

B24

45d)= (1M X 4*¢(B). (5.21)

Bs A

If we define the dual mapping &* of mapping & by
EHA)=EE)—&A),  &A)=EXE)—EHA), (5.22)
then we obtain

LEMMA 4.

AR (A) = —4*EA)  for A+, (5.23)
A*E(A)=—AE*(A)  for A+#E. (5.24)
Proof.

AgFA)= Y p(B, A)EE) — &(B)) = ¢(E) BZA #(B,A)— B;A (B, A)&(B)

=G(E) 044 — B_ZA (B, A) {(B) = ¢(E) Oy, — gxﬂ(f, A) &(B)
=&(E) 0,4 — .\;u(l B) §(B) =&(E) 6,4 — 4*¢(A),

where we have made use of identities

> ﬂ(B’A)=5CA’

e

CSBsA

u(A4,B)=u(B,A)=(—1)#-141  for ACB.

Hence, (5.23) follows when 4 # ¢, and (5.24) follows by replacing 4 by 4.
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Combination of Lemmas 3 and 4 yields the following two lemmas.

LEMMA 5.
g=(DEY (=1)%f,  for A% (5.25)
B2A
LEMMA 6.
gi=> g Jor A+¢, (5.26)
B2y
g4= ) u(d,B)gf for A#4. (5.27)
B34

Lemma 6 expresses nothing but the principle of inclusion—exclusion in the
dual form. We can see from this lemma that { g¥|4 S E, 4 # ¢} is mapped
to { g,|A S E, A # ¢} by an invertible linear mapping. Hence, the former is a
basis of the deviatoric subspace ¥’ of V. In particular, { gk |4 S E, |4| > 1}
is mapped to { g,|4 S E, |4]| > 1} by the same mapping. Hence, we obtain

PropPoSITION 9. {gX|ACE, |A|> 1} is a basis of the correlative
subspace V, of V.

ExAMPLE 2. Let E = {1, 2, 3}. Then, form (5.25) and (5.26),

gh. 2 =Soan — S —Jus /= 8uat 8-

829 = 8u.2.3-
If we let the squared norm of g* be
R¥A)=| gkl (5.28)

it is a measure of parameter correlations for |4|> 1 according to
Proposition 9. Indeed, we obtain the following theorem.

THEOREM §.
R*(4)= )" R(B) Jor A+, (5.29)
R(A)= > u(A,B)R*(B) for A+9¢. | (5.30)
B2A4

Proof. According to Lemma 1, all g,’s are mutually orthogonal. Hence,
we obtain (5.29) by taking the squared norm of both sides of (5.26). Then
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(5.30) follows by applying to (5.29) the principle of inclusion—exclusion in
the dual form.

Since R(4A)’s and R*(4)’s are nonnegative quantities by definition, we can
observe that if R*(4)=0, then not only R(4)=0 but also R(B)=0 for
B2 A. This implies that if R¥*(4)=0, then parameters 4 have no close
correlations with all sets of parameters which include 4. Hence, it may be
justifiable to call R*(4) the external correlation, whereas R(A) the internal
correlation. '

TﬁEOREM 6.
R¥(A)= (—DM!1=1 48*(4) = (—1)* Z (=12 S(B) for A+¢. (531)
BT .

Progf. Comparing Theorem 5 with Lemma 6, we can observe that
R(A)’s and R*(4)’s, A # ¢, are related to each other in the same way that
g.’s and g¥’s, A # ¢, are. Comparing Theorem 1 with (4.6) and (4.7), we can
also observe that, due to the orthogonality of g,’s, S(4)’s and R(4)’s, 4 # ¢,
are related to each other just in the same way that f,’s and g’s, 4 # ¢, are.
Hence, R*(4)’s and S(4)’s, 4 # ¢, must necessarily be related to each other
by (5.31) just as g¥’s and f,’s, 4 # ¢, are by (5.17) and (5.25).

EXaMpPLE 3. Let E = {1, 2, 3}. Then, from (5.29) and (5.31),

R*({1,2})=58({1,2,3}) - S({2,3}) = S({1, 3D + S({3})
=R({1,2}) + R({1, 2, 3}),
R*({1,2,3})) =R({1,2,3}).

6. ANALOGIES IN STATISTICS AND INFORMATION THEORY

We have so far shown the algebraic background and the physical
implication of the four basic quantities S(4), S*(4), R(4) and R*(4), which
are all nonnegative. In particular, we have shown that (E,S*) is a
polymatroid, which has been recognized to exist in a variety of engineering
problems (cf. Iri, 1979). This observation enables us to utilize various results
of the theory of polymatroid and submodular functions. Fujishige (1978), for
example, showed a way of decomposing mutually correlated random
variables appearing in information theory into several groups, applying the
so-called principal partition of polymatroid. His procedure is applicable to
the present subject without any modification. Nemhauser et al. (Nemhauser
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et al., 1978; Fisher et al., 1978) studied heuristic algorithms choosing the set
of variables with fixed cardinality that maximizes a given submodular
function. Their algorihtms are also applicable here to choose the “most
significant,” say k, parameters of the system.

Meanwhile, the algebraic structure observed here has many analogles in
other engineering problems. For example, if all the parameters a,,..., a, take
only on a finite number of discrete values, and if all the integrations carried
out to obtain partial averages are replaced by corresponding summations,
then the whole analysis is interpreted in terms of the analysis of variance in
statistics (see the lattice-theoretic formulation of Han (1977)). In statistical
terminologies, the parameters a,,..., a, are called factors, and the discrete
values they assume are called levels of corresponding factors. Quantities like
S(A4), S*(A4), R(4) and R*(A) are statistics called quadratic forms. In
particular, statistic R(4) is the quadratic form of multifactor interaction. If
on the observed values of the output f are superposed random errors which
are subject to normal distributions identical but independent for each
specification of factors and levels, then R(4) obeys a noncentral x>
distribution due to the orthogonality of g,’s (Lemma-1) and Cochran’s
theorem known in statistics. Hence, one can resort to the F-test to test the
hypothesis that the multifactor interaction does not exist. On the other hand,
Han (1980) showed that the analysis of contingency tables, or frequency
data, has the same lattice-theoretic structure if the entropy function is used
instead of the simple averaging. However, the polymatroid structure, which
is a natural consequence of the latice-theoretic formulation, has not yet be
fully recognized in statistics.

In information theory, Han (1975) presented a lattice-theoretic
formulation of multivariate correlations of random variables by the use of
the entropy function. Since the underlying algebraic structure is identical to
ours, various notions introduced there have sense in our context as well. For
example, what is called McGill's multiple mutual information and its dual
correspond to R(4) and R*(A). The quantity called Watanabe’s cohesion
measure and its dual correspond to

SU)- ¥ s (= > R®)), 6.1)

BSA.|Bl#1

Y srp-st) (= Y CmRe@). 62)

(=] BsA,|Bl#1

It is easily observed that to specify all the cohesion measures, or its duals,
for AC E, |A| > 1 is equivalent to specify all R(4)’s, or R¥(4)’s, for A S E,
|4| > 1. Thus, they are also fundamental quantities, which are nonnegative
due to Theorems 3 and 4, describing mutual correlations. Han (1978) also
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studied the algebraic structure of symmetric quantities. After translation to
our notations, the fundamental nonnegative quantities are

se= Y S(A)/(,';), st= Y S*(A)/(Z), (63)

14l=k |41=k
re= M‘_;kR(A)/(Z), = |A}I:=k1a=*=(f1)/<,':). (6.4)

Various identities and inequalities satisfied by these quantities are listed in
Han (1978). Fujishige (1978) introduced another set of nonnegative quan-
tities, which are, after translation to our notations,

k k
=S fE=stogrsh k=len=2 (69

and showed that

’

SE=Toco fk =ffe k=l.,n—1, (6.6)

k

k+1-fk+l\.f;(\ j;(+|s k=1,---,n_2, (6.7)
k

k+lfk+|<j* fk+l’ k=l,...,n—2. (6.8)

Hence, if f; or fi* vanishes for some , then so do f;’s and f}’s for all k. This
fact is easily understood in our case by noting that f, and f¥ are linear
combinations of nonnegative R(4)’s, or R*(4)’s, for all A C E, |[4| > 1 with
positive coefficients.

ExXAMPLE 4. Let E={l, 2, 3}. Then
Si=(8(1,2,3) - S({1}) - S{2h) - S({3D)/3
=(R({1,2,3}) + R({1, 2}) + R({2, 3}) + R({3, 1})/3,

S=(25(11,2,3) - S({1,2}) — S({2,3}) — 5({3, 1}))/3
=(2R({1,2,3}) + R({1, 2}) + R({2, 3}) + R({3, 1}))/3.

7. EXPANSION IN SERIES OF ORTHOGONAL FUNCTIONS

We now consider a practical way for evaluation of S(4) and R(4). The
defining expressions for them involve multiple integrations in a complicated
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order, so that direct evaluation of them is difficult and impractical. However,
they can be transformed into more tractable analytic expressions by means
of expansion in series of orthogonal functions. Let {p{(x)| k=0, 1, 2,...} be
a set of normalized complete orthogonal functions with respect to weight
function p,(x) and expand fla,,..., a,) in series of them. We obtain

fla,sna,)= ) > ) Ckyss k) j[j oi¥(a)), (7.1)
C(kyses k) =J . ff(a, yoony Q) jﬁl @%(a)) pj(a;) da;, (1.2)

where the bar designates the complex conjugate. Assume ¢{”(x)=1,
i=l,...,n. Then, we can observe that C(0...., 0) equals the total average f.
Denote by C,(k) the coefficient C(k,,..., k,) with k,, i € 4 replaced by 0. We
can easily confirm that

So= 2" C k) [] o*(a)), (1.3)
ki ieA JjeA

where Y’ denotes summation which excludes the term corresponding to
k;=0 for all i € 4. If we take the squared norm of both sides of (7.3), and
recalling the Parseval identity of orthogonal expansion, we obtain

THEOREM 7.

S@)= " |C k)" (1.4)

kiiea

Now, observe that (7.4) is rewritten as

SA=3 Y |Cyk) (1.5)

BSA k;j#0,ieB”
Then, the principle of inclusion—exclusion and the uniqueness of the

difference operation yield the following theorem.

THEOREM 8.

RA)= Y |C (k) (7.6)

k;#0,i€A
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EXAMPLE 5. Let E={l, 2, 3}. Then
S = ;'IC(pr, 0)*= 2 |C(k,,0,0)
1

ky#0

S({1,2)= 3 |Clky, ky, O)

klwkZ

= Y |Cky,ky, 0)

ky#0,k2#0

+ Y |C(k,,0,0)* + Z |C(0, ky, 0),

)

S(iL2,3)= > |Clky, ky, ks)*

ky.ka.ky

= > |Clky Ky k)

ky#0,ky#0,k3#0

+ Z |C(k|’ ks, o)lz + Z |C(0’ ks k3)|2

k]¢0.kz$0 k2¢0,k3¢0

+ Y |Cky, 0, k) + Y |Clk,,0,0)

ky#0,ky#0 ky#0

+ 2 1C(0, ks, 0 + Z |C(0,0, k)l

ky#0

R({l})" 2 |C(k,,0,0) = Z |C(ks, 0,0,

ky+0

R({1,2})= Z IC(k,,kz,O)lz

ky#0,k2#0

= 2 |Cky, ks, O)

kika

—2.1C(k,,0,0)? —kZ |C(0, ky, 0)f,
k 2

R({1,2,3})= Z |Clkys ks ka)'2
ky#0,k2#0,ky#0
= Z' |C(k,,k2,k3)|2

kl-kz'kl

= 2 |Gy ks OF = 2 1CO, ks, ks
ky ke ka.ky

- kZ |C ks, 0, k3)* + Z |C(k,,0,0)?
34Ky

+ 2 |C(0, ky, O) + 3| C(0, 0, ky)
ky ky

53
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ExamMpLE 6. Normal distribution: x € (—o0, ®),

pix)=e")\/2m,  ¢{P(x)=H,(x/\/2)/V 2%,

where H,(x) is the kth Hermite polynomial.

ExampLE 7. Exponential distribution: x € [0, c0),

pilx)=e"", 9 (x) = L (x)/k!,

where L,(x) is the kth Laguerre polynomial.

ExampLE 8. Uniform distribution: x € [—1, 1},

plx)=1/2,  ¢{¥(x)=2k+1Pyx),
where P,(x) is the kth Legendre polynomial.

8. NUMERICAL INTEGRATION ON A TORUS

A convenient way for numerical evaluation of S(4) and R(4) is given by
the use of Fourier coefficients. Suppose that for each / we can choose a
suitable function h,(x, y) such that the transformation of parameters from
a,,..,a,tof,,..,0, by

a, = h/cos 2n8,, sin 270,), i=l,.,n, 8.1)

reduces the weight function to unity. (The choice of A /(x, y) will be discussed
later.) The output is now looked on as a function f(,,..., 8,) over the n-
dimensional torus, i.e., a function periodic in each §, with period 1. Hence,
f(8,,..., 8,) is expanded in the multiple Fourier series in the form

f(ol poees en) = Z C(kl ooy k,,) ean(k|01 PR +kn0n)’ (8.2)
Kyveneskn
1 1
Clkysskg)=| - 8,,...6,
i k)= [ oo+ [ f1161)
X e~ 2rikiOi+ - +knbn) (49 ... d6,. (8.3)

If a practical method of evaluating the Fourier coefficient C(k,,..., k,) is
available, one can compute S(4) and R(4) by (7.4) and (7.6), respectively,
appropriately truncating the coefficients of high harmonics. Here, we
consider the so-called number-theoretic, or quasi-Monte Carlo method of
numerical integration (Haselgrove, 1961; Korobov, 1963; Hlawka, 1964a,
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1964b; Zaremba, 1966, 1968; Conroy, 1967; Haber, 1970; Stroud, 1971;
Cheng et al., 1973; Niederreiter, 1977). We obtain an identity

N-1 :
S f(le . wnJ)e—-2nl(k|w|+"'+k,.wn)i/N

- > C(K, yourr kL)

X Op((ky — ky) @y + - + (ky — k) @,), (8:4)
where w,,..., w, are integers and we have adopted the notation
oy(m)=1 for m=0(mod N
(m) ( ), ®.5)
=0 for m#0 (modN)

according to Korobov (1963). If f has the ath continuous partial derivative
for each §,, there exists a constant C such that

C
Clkyper k) S 75— 8.6
‘ ( 1 )l\(klkz "'k") ( )
where we have used the notation
m=|m for m#0
Im| 8.7
=1 for m=0

(Korobov, 1963). Hence, if we choose as w, ,..., w, the optimal coefficients in
the sense of Korobov, we obtain

1A (wi w.J
Clky s k) = f(-—’—J J )

N =N N
X e~ ritkiwit - +knwndiN 4 ¢ (8.8)
log?® N
el < cC' 2=, 8.9)

where C’ is a constant and f is the index of the optimal coefficients
(Korobov, 1963). The first term on the right-hand side of (8.8) has a form
easily computed by a simple algorithm of computer programming. However,
the choice of optimal coefficients depends on the choice of the indices
k..., k, and hence in general one must choose distinct sets of optimal coef-
ficients for distinct Fourier coefficients. For practical purposes, therefore, it
is more preferable to use a fixed set of optimal coefficients determined for
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k,=..-=k,=0 at the cost of less accuracy. Indeed, we are not iterested in
the values of S(4) and R(4) themselves but in the comparison of their
magnitude.

There still remains one problem to be remarked; namely, the choice of the
transformation function k,(x, y). Given an arbitrary weight function in the
form of (2.1), one can determine the transformation of the form (8.1) that
reduces the weight function to unity on the torus in principle, as is indicated
in Cukier et al. (1978). However, this process often introduces singularities
at x, y = +1, which drastically increases the error term ¢ in (8.8) as can be
seen from the estimate (8.9). One way to circumvent this difficulty is to
reverse the process and first to consider a family of candidate functions for
hy(x, y) which are smooth enough to have a fairly large value of a to assure
small & Next, examine what kind of weight is introduced in the original
parameter space. Then, we can choose one that gives an appropriate weight
function in the parameter space, because essentially the weight function of
the parameters is determined not by the system under consideration itself but
rather by our choice. A list of such possible choices is found in Koda et al.
(1979b).

Finally, we should note that our scheme is identical to the method of
Shuler et al. (Cukier et al., 1973, 1975, 1978; Schaibly et al., 1973). Indeed,
the discrete Fourier transform of f along their search curve (1.1) coincides
with the first term in the right-hand side of (8.8). Thus, our formulation of
the sensitivity and correlation analysis generalizes the sensitivity analysis of
Shuler er al. and gives an algebraic and analytical foundation to it. )
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