複数運動分離の教師なし学習による多段階最適化

菅谷 保之 金谷 健一

岡山大学工学部情報工学科

ビデオ画像上を移動する特徴点の軌跡から独立な運動を分離するさまざまな方法が提案されているが,物体や背景は一般の3次元運動をすると仮定するので,平面運動に近い実際のビデオシーンでは分離の精度が劣化する.本論文では退化した運動を仮定する教師なし学習(EM アルゴリズム)によって分離を最適化し,その結果をさらに一般の運動を仮定する教師なし学習で最適化する.この多段階最適化により,実際のシーンでよく生じる単純な運動に対して極めて高精度であるだけでなく,かなり複雑な3次元運動に対しても精度が保持される.シミュレーションおよび実ビデオ画像実験によれば,提案手法が従来のどの手法よりも優れ,この問題の最終的な解法と考えられる.

Multi-stage Optimization of Multi-body Motion Segmentation by Unsupervized Learning

Yasuyuki Sugaya Kenichi Kanatani

Department of Information Technology, Okayama University, Okayama 700-8530 Japan

Many methods have been proposed for separating feature point trajectories tracked through a video sequence into independent motions, but objects and backgrounds are assumed to be in general 3-D motions in the scene. As a result, the separation accuracy considerably deteriorates in realistic video sequences in which the motions of objects and backgrounds are nearly planar. In this paper, we introduce optimization by unsupervised learning (an EM algorithm) based on a degenerate model followed by unsupervised learning based on the general motion model. This multi-stage optimization allows us not only to separate simple motions that we frequently encounter with high precision but also to preserve the high performance for considerably general 3-D motions. According to simulations and real video experiments, our method is superior to all existing methods and can be a definitive method for this type of problem.

1. まえがき

ビデオ画像上を移動する特徴点の軌跡から独立な 運動を分離するさまざまな方法が提案されている.

Costeira・Kanade [1] は軌跡の分類をその画像座 標の履歴から計算される「作用行列」の要素の非零 判定に帰着させた.その後,これに基づく種々の応 用や改良が研究された.Gear [3] は行列の標準形を 用いてグラフのマッチングに帰着させ,市村・富田 [5] は行列の QR 分解を用い,市村 [4] は大津の判別 規準を適用した.井上・浦浜 [6] はファジクラスタリ ングを用いた.黒澤・金谷 [8,9] は幾何学的 AIC に よるモデル選択と投票によるロバスト推定を組み合 わせた.Wuら [14] は部分空間の直交分解を適用し ている.

しかし,これらはどれも物体や背景がそれぞれ異 なる一般の3次元運動をすることを仮定している.物 体や背景が平面的な運動をしたり,共通の方向の軸 回りに回転したりする場合は「退化」と呼ばれ,分 離の計算が破綻することが知られている.もちろん 実際には厳密な退化が起こることはないが,退化に 近いほど分離の精度が劣化する.

従来の研究では,提案手法の性能を複雑に3次元 運動をするシミュレーション画像を用いて評価する ことが多かった.ところが実際のシーン中を移動す る人物や車両を撮影すると,背景や物体が極端な3 次元運動をすることはなく,極めて単純な運動であ ることが多い.

素朴には単純な運動ほど扱いやすいと思われるが 実際は反対であり,動きが複雑なほど個々の運動の 区別が容易である.それに対して単純な運動ほど退 化に近く,正しい分離が困難となる.著者らは前報 [12]でこのような運動の性格の相違を幾何学的AIC によるモデル選択によって判別し,それに適した手 法を当てはめる試みを行なったが,精度の向上は限 定されたものであった.

本論文では、このような実際シーンによく生じる 単純な運動に対して、退化した運動を仮定する教師 なし学習(EMアルゴリズム[2]の一種)[10]によって 分離を最適化し、その結果をさらに一般の運動を仮 定する教師なし学習で最適化する.この多段階最適 化により、単純な運動のみならず、相当に複雑な運 動に対しても精度が保持される.シミュレーション および実ビデオ画像実験によれば、提案手法が従来

[†]700-8530 岡山市津島中 3-1-1, 岡山大学工学部情報工学科 {sugaya,kanatani}@suri.it.okayama-u.ac.jp

のどの手法よりも優れ,この問題の最終的な解法と $\tilde{m}_{0\kappa}, \tilde{m}_{1\kappa}, \tilde{m}_{2\kappa}, \tilde{m}_{3\kappa}$ は時刻 κ でのカメラの位置や 考えられる. 内部パラメータで決まる 2 次元ベクトルである. こ

以下,2節では画像上の運動の軌跡の満たす拘束 条件を示し,3節では教師なし学習による最適化を 「非ベイズ型」と「ベイズ型」に分けて説明する.4 章では通常起こりやすい退化の運動のモデル化とそ れを用いる多段階最適化の方法を述べる.5章では シミュレーションおよび実ビデオ画像による実験例 を示し,6章でまとめる.

1. 軌跡の空間

2.1 軌跡ベクトル

N 個の特徴点 $\{p_{\alpha}\}$ を M 枚の画像に渡って追跡し, 第 κ 画像における α 番目の特徴点 p_{α} の画像座標を $(x_{\kappa\alpha}, y_{\kappa\alpha}), \kappa = 1, ..., M, \alpha = 1, ..., N$ とする.そし てその運動履歴を次の 2M 次元ベクトルで表し,軌 跡ベクトルと呼ぶ.

$$\boldsymbol{p}_{\alpha} = (x_{1\alpha} \ y_{1\alpha} \ x_{2\alpha} \ y_{2\alpha} \cdots \ x_{M\alpha} \ y_{M\alpha})^{\top} \quad (1)$$

これによって各特徴点の軌跡を 2*M* 次元空間の 1 点 と同一視できる.便宜上,画像番号 κ を「時刻 κ」と 呼ぶ.

本論文ではカメラの光軸を Z 軸とするカメラ XYZ座標系をとり,これを世界座標系とする.そして静止したカメラに相対的にシーンが運動すると解釈する.シーン中に 3 次元物体座標系を任意に固定し 特徴点 p_{α} のそのシーン座標系に関する 3 次元座標を $(a_{\alpha}, b_{\alpha}, c_{\alpha})$ とする.時刻 κ でのシーン座標系の原点 と各座標軸の基底ベクトルを世界座標系 (=カメラ座 標系)で表したものをそれぞれ t_{κ} , $\{i_{\kappa}, j_{\kappa}, k_{\kappa}\}$ とすると,特徴点 p_{α} の時刻 κ における 3 次元位置 $r_{\kappa\alpha}$ は世界座標系では次式となる.

$$\boldsymbol{r}_{\kappa\alpha} = \boldsymbol{t}_{\kappa} + a_{\alpha}\boldsymbol{i}_{\kappa} + b_{\alpha}\boldsymbol{j}_{\kappa} + c_{\alpha}\boldsymbol{k}_{\kappa}$$
(2)

2.2 アフィンカメラモデル

平行投影や弱透視投影や疑似透視投影を抽象化し たアフィンカメラ [7] は,3次元点 $r_{\kappa\alpha}$ が次のように 画像上に投影されると仮定するものである.

$$\begin{pmatrix} x_{\kappa\alpha} \\ y_{\kappa\alpha} \end{pmatrix} = \boldsymbol{A}_{\kappa} \boldsymbol{r}_{\kappa\alpha} + \boldsymbol{b}_{\kappa}$$
(3)

ここに A_{κ} , b_{κ} はそれぞれ時刻 κ でのカメラの位置や 内部パラメータによって定まる 2×3 行列および 2 次 元ベクトルである [9].式 (2) を代入すると,式 (3) は次のように書ける.

$$\begin{pmatrix} x_{\kappa\alpha} \\ y_{\kappa\alpha} \end{pmatrix} = \tilde{\boldsymbol{m}}_{0\kappa} + a_{\alpha}\tilde{\boldsymbol{m}}_{1\kappa} + b_{\alpha}\tilde{\boldsymbol{m}}_{2\kappa} + c_{\alpha}\tilde{\boldsymbol{m}}_{3\kappa} \quad (4)$$

 $\tilde{m}_{0\kappa}, \tilde{m}_{1\kappa}, \tilde{m}_{2\kappa}, \tilde{m}_{3\kappa}$ は時刻 κ でのカメラの位置や 内部パラメータで決まる 2 次元ベクトルである.こ れを時刻 $\kappa = 1, ..., M$ に渡って式 (1) のように縦に 並べると,式 (1) の軌跡ベクトル p_{α} は次のように書 ける.

$$\boldsymbol{p}_{\alpha} = \boldsymbol{m}_0 + a_{\alpha} \boldsymbol{m}_1 + b_{\alpha} \boldsymbol{m}_2 + c_{\alpha} \boldsymbol{m}_3 \qquad (5)$$

 $m_i, i = 0, 1, 2, 3$ は $\tilde{m}_{i\kappa}$ を時刻 $\kappa = 1, ..., M$ に渡っ て縦に並べた2M次元ベクトルである.

2.3 軌跡の拘束条件

式 (5) は,同一の剛体運動をする特徴点 p_{α} の軌跡 が 2M 次元空間中の $\{m_0, m_1, m_2, m_3\}$ の張る「4 次元部分空間」に含まれることを意味する.したがっ て,観測した特徴点を異なる剛体運動に分離するに は,それらの軌跡ベクトル $\{p_{\alpha}\}$ を互いに異なる4次 元部分空間に分類すればよい.これが部分空間分離 法 [8] の原理である.

しかし,式(5)において m_0 の係数はすべての α に共通に1である.このため p_{α} は $\{m_0, m_1, m_2, m_3\}$ の張る4次元部間内のある「3次元アフィン空間」に含まれる.したがって,特徴点の運動を分離するには軌跡ベクトル $\{p_{\alpha}\}$ を互いに異なる3次元アフィン空間に分類すればよい.これがアフィン空間分離法 [9]の原理である.

2.4 部分空間・アフィン空間分離法

前節の原理に基づく分離のプログラムは Web 上に 公開されている¹. これらは Costeira・Kanade [1] の 作用行列の持つ情報に幾何学的 AIC によるモデル選 択と最小メジアン法によるロバスト推定を組み合わ せたものである [8, 9].

理論的には部分空間拘束条件よりも強いアフィン 空間拘束条件を用いるほうが分離の精度が高く、シ ミュレーション実験を行なっても、誤差がほとんど なく透視効果が極端に強い場合を除けばアフィン空 間分離法のほうが部分空間分離法よりも高精度であ る[9].しかし実ビデオシーンに適用すると、透視効 果がほとんどない場合でもアフィン空間分離法の精 度が部分空間分離法とほぼ同じかそれ以下となる場 合もある[12].これは理論やシミュレーション結果 と明らかに矛盾する.本論文の解析はその理由を与 えるものでもある.

¹http://www.suri.it.okayama-u.ac.jp/program.html

3. 教師なし学習による最適化

3.1 非ベイズ型

部分空間分離法またはアフィン空間分離法による 分離結果は必ずしも正しいものではない.そこで,そ の方法で分離された各クラスにそれぞれ4次元部分 空間または3次元アフィン空間を最適に当てはめ,各 軌跡ベクトルを最も近い空間に帰属させる.そして これを収束するまで反復する(図1(a)).

この操作は,画像上で追跡した各特徴点の座標の 各成分に独立に,期待値が0で特徴点やフレームに よらない一定の分散を持つ正規分布に従う誤差が入 ると仮定した場合の最尤推定に基づく教師なし学習 と見なせる.なぜなら,このような誤差モデルでは, 当てはめた空間までの距離を比較することは尤度(の 対数)を比較することと等価だからである.

3.2 ベイズ型

さらに当てはめた空間の内部のデータの分布まで モデル化することも考えられる(図1(b)).これも標 準的な教師なし学習[10]と同じ考え方であるが,部 分空間・アフィン空間拘束条件を仮定すると,確率 の計算が複雑になる.アフィン空間拘束条件の場合 は次のようになる.

n = 2M と置き, n 次元空間のN 個の軌跡ベクト ル { p_{α} } が m 個のクラスに分類されているとする. 各軌跡 α の各クラス k に対する重み $W_{\alpha}^{(k)}$ を次のように初期化する.

$$W_{\alpha}^{(k)} = \begin{cases} 1 & 軌跡 \alpha がクラス k に属するとき \\ 0 & それ以外 \end{cases}$$
(6)

そして次の \mathbf{A},\mathbf{B} を $\{W^{(k)}_{lpha}\}$ が収束するまで反復する.

A. 各クラス k = 1, ..., m について次の計算を行なう . 1. クラス k の占有率 $w^{(k)}$ を次のように計算する .

$$w^{(k)} = \frac{1}{N} \sum_{\alpha=1}^{N} W_{\alpha}^{(k)}$$
(7)

2. クラスkの重心 $p_C^{(k)}$ を次のように計算する.

$$\boldsymbol{p}_{C}^{(k)} = \frac{\sum_{\alpha=1}^{N} W_{\alpha}^{(k)} \boldsymbol{p}_{\alpha}}{\sum_{\alpha=1}^{N} W_{\alpha}^{(k)}}$$
(8)

3. クラス k のモーメント行列

$$\boldsymbol{M}^{(k)} = \frac{\sum_{\alpha=1}^{N} W_{\alpha}^{(k)} (\boldsymbol{p}_{\alpha} - \boldsymbol{p}_{C}^{(k)}) (\boldsymbol{p}_{\alpha} - \boldsymbol{p}_{C}^{(k)})^{\top}}{\sum_{\alpha=1}^{N} W_{\alpha}^{(k)}}$$
(9)

図 1: (a) 非ベイズ型モデル.(b) ベイズ型モデル.

の大きい 3 個の固有値に対応する単位固有ベクトル $u_1^{(k)}, u_2^{(k)}, u_3^{(k)}$ を計算する.

クラス k への射影行列 P^(k) とその外側方向への射影行列 P^(k) を次のように計算する (I は単位行列).

$$\boldsymbol{P}^{(k)} = \sum_{i=1}^{3} \boldsymbol{u}_{i}^{(k)} \boldsymbol{u}_{i}^{(k)\top}, \ \boldsymbol{P}_{\perp}^{(k)} = \boldsymbol{I} - \boldsymbol{P}^{(k)} \ (10)$$

5. クラス k のアフィン空間の外側に垂直な方向の 二乗平均誤差を次のように推定する.

$$\hat{\sigma}^2 = \max\left[\frac{\operatorname{tr}[\boldsymbol{P}_{\perp}^{(k)}\boldsymbol{M}^{(k)}\boldsymbol{P}_{\perp}^{(k)}]}{n-3}, \sigma^2\right] \qquad (11)$$

ただし $tr[\cdot]$ は行列のトレース (対角和) であり, σ は特徴点追跡の誤差である².

6. クラス k の共分散行列 V を次のように計算する.

$$V^{(k)} = P^{(k)} M^{(k)} P^{(k)} + \hat{\sigma}^2 P^{(k)}_{\perp}$$
(12)

B. 各軌跡 $\alpha = 1, ..., N$ について次の計算をする .

1. 軌跡 α の各アフィン空間に対する尤度 $P(\alpha|k)$, k = 1, ..., m を次のように計算する.

$$P(\alpha|k) = \frac{e^{-(\boldsymbol{p}_{\alpha} - \boldsymbol{p}_{C}^{(k)}, \boldsymbol{V}^{(k)-1}(\boldsymbol{p}_{\alpha} - \boldsymbol{p}_{C}^{(k)}))/2}}{\sqrt{\det \boldsymbol{V}^{(k)}}}$$
(13)

2. 軌跡 α の重み $W_{\alpha}^{(k)}, k = 1, ..., m$ を次のように 更新する (ベイズの定理).

$$W_{\alpha}^{(k)} = \frac{w^{(k)} P(\alpha|k)}{\sum_{l=1}^{m} w^{(l)} P(\alpha|l)}$$
(14)

収束したら各軌跡 $\alpha \in W_{\alpha}^{(k)}, k = 1, ..., m$ が最大と なるクラス k に分類する .

3.3 教師なし学習

前節の手順では, 軌跡の各 3 次元アフィン空間の 内部での分布に期待値 $p_C^{(k)}$, ランク 3 の共分散行列 2実画像実験では $\sigma = 0.5$ (画素)とした. $P^{(k)}M^{(k)}P^{(k)}$ の正規分布を当てはめ,その外側へ分 布は期待値が0で,分散が場所や方向によらずに一定 の正規分布とし,これを軌跡 α がクラスkに分類さ れたという条件のもとでの「条件付き確率」 $P(\alpha|k)$ としている.そして,クラスkの占有率 $w^{(k)}$ をそ のクラスの「事前確率」とし,式(14)のベイズの定 理で各クラスへの分類の「事後確率」 $W^{(k)}_{\alpha}$ を計算す る.これによって分類を更新し,これを収束するま で反復する.分類は確率的であり,軌跡 α は事後確 率 $W^{(k)}_{\alpha}$ (一般に小数)でクラスkに分類される.

一方,アフィン空間内での分布を考えず,外側の 分布のみを考えると3.1節の非ベイズ型となる.また3次元アフィン空間の代わりに原点を通る4次元 部分空間を用いても手順は同様である.このような 反復はクラスタリングの「教師なし学習」として研 究され,反復によって尤度が単調の増加し,一つの 局所解に収束することが証明される³[10].

ただし,この方法で大域的な最適解に収束させる には相当に正しい初期値から反復を開始しなければ ならない.任意の初期値からこのような教師なし学 習のみで正しいクラスタリングを行なうのはほとん どの場合,無理である.

4. 退化モデル

4.1 平面内の運動

通常のシーンでは物体と背景が画像内で 2 次元的 な運動をすることが多い.回転が画像面内で起これ ば,式(2)の基底ベクトル k_{κ} をZ軸方向に取ること ができる.これはアフィンカメラのもとでは画像面 に投影されないから,式(5)の m_3 が0となり,背 景も物体も軌跡ベクトルが m_0, m_1, m_2 の張る3次 元部分空間の中の2次元アフィン空間に含まれ,「退 化」と呼ばれる.Costeira・Kanade [1]が導入した作 用行列に基づく方法はその改良や変形を含めて,す べてそれぞれの運動の軌跡の空間が独立であること を仮定している.したがって,このような退化が生 じると,従来の方法では正しい分離を行なうことが できない.

さらに物体も背景も回転しなければ,式(2)の i_{κ} , j_{κ} をそれぞれ X 方向, Y 方向の基底i, jに固定し てよい.これは物体,背景に共通であるから,式(5) の m_1 , m_2 も物体,背景に共通になり,それぞれの 2次元アフィン空間は互いに「平行」になる(図2).

図 2: 物体と背景が独立に並進すると,それぞれの軌跡ベクトルの2次元アフィン空間は互いに平行になる.

しかし,二つの平行な2次元アフィン空間に対し て,両者を含む3次元アフィン空間が存在する.ア フィン空間分離法は軌跡ベクトルを独立な3次元ア フィン空間に分離するものであるから,2種類の運 動物体の軌跡ベクトルが同一の3次元アフィン空間 に含まれれば原理的に分離できない.これが,実ビ デオシーンでアフィン空間分離法の分離精度が予想 されるほど高くない理由であると考えられる.

4.2 退化モデルによる教師なし学習

実際のシーンではシーンも物体もほぼ並進成分の みで独立な回転成分は少ない.これを考慮すると,前 節の退化モデルによる教師なし学習を適用すること によってロバストな分離が可能になると期待される. その手順は次のようになる.

まず各軌跡 α の各クラス k に対する重み $W_{\alpha}^{(k)}$ を 式 (6) のように初期化する.そして次の A, B, C を $\{W_{\alpha}^{(k)}\}$ が収束するまで反復する.

- A. 各クラス k = 1, ..., m について次の計算を行なう.
- 1. クラスkの占有率 $w^{(k)}$ を(7)のよって計算する.
- 2. クラス kの重心 $\boldsymbol{p}_C^{(k)}$ を式 (8)によって計算する .
- クラス k のモーメント行列 M^(k) を式 (9) によって計算する.
- B. 次の計算を行なう.
- 1. 全特徴点のモーメント行列

$$\boldsymbol{M} = \sum_{k=1}^{m} w^{(k)} \boldsymbol{M}^{(k)}$$
(15)

の大きい2個の固有値に対する単位固有ベクト ル u_1, u_2 を計算する.

 2. 2次元アフィン空間への射影行列 P とその外側 方向への射影行列 P_⊥ を次のように計算する.

$$\boldsymbol{P} = \sum_{i=1}^{2} \boldsymbol{u}_i \boldsymbol{u}_i^{\top}, \ \boldsymbol{P}_{\perp} = \boldsymbol{I} - \boldsymbol{P} \qquad (16)$$

³後に欠落データを補う EM アルゴリズム [2] と数学的に同じ 構造を持つことが指摘され,今日では EM アルゴリズムとして紹 介されることが多い.

3. アフィン空間の外側に垂直な方向の二乗平均誤 差を次のように推定する.

$$\hat{\sigma}^2 = \max[\frac{\operatorname{tr}[\boldsymbol{P}_{\perp}\boldsymbol{M}\boldsymbol{P}_{\perp}]}{n-2}, \sigma^2] \qquad (17)$$

4. クラス k = 1, ..., m の共分散行列 $V^{(k)}$ を次の ように計算する.

$$\boldsymbol{V}^{(k)} = \boldsymbol{P}\boldsymbol{M}^{(k)}\boldsymbol{P} + \hat{\sigma}^2 \boldsymbol{P}_{\perp}$$
(18)

C. 各軌跡 $\alpha = 1, ..., N$ について次の計算をする.

- 1. 軌跡 α の各部分空間に対する尤度 $P(\alpha|k), k =$ 1, ..., mを式 (13) によって計算する.
- 2. 軌跡 α の重み $W_{\alpha}^{(k)}, k = 1, ..., m$ を式 (14) に よって更新する.

収束したら各軌跡 α を $W_{\alpha}^{(k)}, k = 1, ..., m$ が最大と なるクラス k に分類する.この手順でアフィン空間 内部での分布を考えなければ非ベイズ型の手順が得 られる.

4.3 多段階最適化

運動の軌跡ベクトルが2次元アフィン空間であるこ とを仮定するアフィン空間分類法を用いる[9].そし て上記の退化モデルに基づく最適化を行なえば,実 際に退化モデルが成立しているとき非常に正確な分

が厳密に平面的な運動であるとは限らない.また面 内および面外の回転も独立に起こっているであろう. これを考慮するために,得られた分類を初期値とし て 3.2 節に述べた 3 次元アフィン空間に基づ最適化 を施す.すなわち,次の3段階の処理を行なう.

- 1.2次元アフィン空間に基づくアフィン空間分離 法で初期分類を行なう.
- 2. それに対して退化モデルに基づくベイズ型学習 を行なう.
- 3. それに対して3次元アフィン空間に基づくベイ ズ型学習を行なう.

こうすれば退化に近い運動では最適な解が得られ,退 化から相当に隔たった運動に対してもかなりの精度 が維持されると期待される.

- 5. 実験
- 5.1 シミュレーション実験

図 3 はシーン中で 20 個の背景点と 14 個の物体点 がそれぞれ独立に移動している 512 × 512 画素を想 定したシミュレーション画像である.見やすくする 上記の学習を開始するための初期分類として,各 ために物体点を線分で結んでいる.本論文の理論は 奥行き効果のないアフィンカメラに基づいているが, この例ではより現実的な状況を想定して画像フレー ムを見込む画角が 30°の透視投影を用いている.そ して,背景は画像面に対して角度10°で遠ざかり,物 類が行なわれるであろう.しかし背景や物体の運動 体は別の方向に角度10°で近づいている.図3(a)で

図 4: 図 3 に対する分離の平均正解率. 横軸は加えた誤差の標準偏差.1. Costeira・Kanade の方法,2. 市村の方法, 3. 最適部分空間分離法,4. 最適アフィン空間分離法,5. 多段階最適化法.

は物体も背景も回転せず平行移動している.図3(b) では光軸に対してそれぞれ別々に方向に10°傾いた 回転軸の周りに互いに反対方向に角度10°の回転を している.図3(c)では60°傾いた回転軸の周りに互 いに反対方向に角度60°の回転をしている.

この例に対して,各点の位置のx, y座標に独立に 期待値0,標準偏差 σ (画素)の正規分布に従う誤差を 加えて背景点と物体点を分離した.図4は横軸の各 σ に対して誤差を変えて500回試行した平均の誤り率 (全34点中の誤って分類された点の割合)を縦軸にプ ロットしたものである.分離方法として,Costeira・ Kanade [1]に示されている作用行列の行と列を入れ 換えて近似的なブロック対角行列に変換する方法,作 用行列に大津の判別条件を適用する市村の方法 [4], 黒澤・金谷の部分空間分離法 [8] およびアフィン空間 分離法 [9]のそれぞれにベイズ型学習を組み合わせ たもの(それぞれ「最適部分空間分離法」,「最適ア フィン空間分離法」と呼ぶ),および4.3節の多段階 最適化を比較している.

図 3(a) は退化した運動であり,図 4(a) からわかる ように,最適部分空間分離法も最適アフィン空間分 離法もよく機能せず,4.1節で考察したようにアフィ ン空間分離法の優位が失われている.誤差を加えな い厳密なデータでも100%正しい分離ができないのは 透視投影画像のためであり,アフィンカメラのモデ ル化誤差が画像の誤差と同じ役割を果たすからであ る(黒澤・金谷[9] はこれを「実効誤差」と呼んでい る).これに対して多段階最適化法はこのような退化 の運動のモデルに基づいているので,ほとんど誤差 の大きさによらずに正確な分離を行う.

図 3(b) は退化ではないので,図 4(b) からわかる ように最適部分空間分離法も最適アフィン空間もあ る程度の精度で分離するが,多段階最適化法は依然 としてほとんど誤差の範囲で正しい分離を行う.

図 3(c) は物体も背景もほとんど一般の3次元運動

をしているので,図4(c)からわかるように最適部分 空間分離法も最適アフィン空間分離法もかなり正し い分離を行なうが,多段階最適化法はそれよりさら に高い精度を維持している.

多段階最適化法と最適アフィン空間分離法は同じ 教師なし学習を行なっているが,多段階最適化法の 精度が高いのはその前段階の処理で高い精度の初期 値が得られるからである.このように,退化でない 場合も退化のモデルに基づく初期値から出発するこ とで高い精度が達成される.

なお,どの場合でも素朴な Costeira・Kanade の方 法[1] は無力であり,ほとんどランダムな分離に近 い.作用行列に大津の判別条件を適用する市村の方 法[4] も退化に対してはほとんど効果がないが,図 3(c)のような一般の3次元運動ではやや効果を発揮 する.しかし最適部分空間分離法,最適アフィン空 間分離法,および多段階最適化法にははるかに及ば ない.

5.2 学習の効果

図5は教師なし学習がどの程度の効果を持つかを 調べるために,図3(c)の運動に対して黒澤・金谷の 部分空間分離法[8]およびアフィン空間分離法[9]の みを施した場合と,それぞれに非ベイズ型およびベ イズ型学習を組み合わせたものに対して図4と同様 に誤り率をプロットしたものである.これから非ベ イズ型およびベイズ型の学習がともに効果的であり, ベイズ型のほうが非ベイズ型学習より優位であるこ とが確認できる.ただし,それでも図4(c)からわか るように,多段階最適化法には及ばない.

図6は4.3節に示した3段階がどの程度の効果を 持つかを調べるために,図3(c)の運動に対してそれ ぞれの段階ごとに誤り率を評価したものである.こ の運動は退化でないにもかかわらず,退化モデルに よる学習でかなり精度が向上し,その後の一般のモ デルによる学習によって極めて高精度の分離が達成

図 5: 図 3(c) の運動に対する学習の効果. 横軸は誤差の 標準偏差,縦軸は分離の平均正解率.1.部分空間分離法, 2. 部分空間分離法に非ベイズ型学習を加えたもの, 3. 部 |分空間分離法にベイズ型学習を加えたもの,4. アフィン 空間分離法,5.アフィン空間分離法に非ベイズ型学習を 加えたもの,6.アフィン空間分離法にベイズ型学習を加 えたもの.

されている.

5.3 実ビデオ画像実験

3次元シーンを撮影した3種類のビデオ画像列A, B, C (320×240 画素) からそれぞれ Kanade-Lucas-Tomasi の方法 [13] で特徴点を抽出して追跡した.図 7は特徴点位置をマークした5フレームを抜き出し たものである.表1に最終フレームまで追跡できた 軌跡から菅谷・金谷 [11] の方法でアウトライアを除 去して得られた軌跡の個数,フレーム数,および多 段階最適化法の実行時間(秒)を示す.この計算では, すべての軌跡ベクトルの次元を8次元に圧縮して計 算を効率化する菅谷・金谷 [12] の手法を用いている. CPU には Pentium 4 2.4B GHz, 主メモリ 1Gb, OS には Linux を用いた.

表 2 に Costeira・Kanade の方法 [1],市村の方法 [4],黒澤・金谷の部分空間分離法[8],アフィン空間 |分離法 [9],それらに本論文のベイズ型学習を施した 最適部分空間分離法,最適アフィン空間分離法,お よび多段階最適化法による分離の正解率(正しく分 類された軌跡の割合)を%で示す.ただし最初の二つ 以外は初期推定に黒澤・金谷の部分空間分離法 [8] お よびアフィン空間分離法 [9] を用いており, これらは 内部でランダム投票によるロバスト推定を行なって いるため、試行ごとに結果がやや異なることがある。 そこで表では 50 回の試行の平均値を示した.

この結果からわかるように, Costeira・Kanadeの 方法 [1] ではどれもほとんどランダムな分離しか行な われず,市村の方法[4] は画像列A,Bには効果があ るが画像列 Cには効果が見られない.画像列 A では 部分空間分離法 [8] よりアフィン空間分離法 [9] のほ うが高精度であり,画像列 B ではどちらも同程度に 性能が発揮され,この問題の最終的な解法と考えら

図 6: 図 3(c) の運動に対する学習の効果. 横軸は誤差の 標準偏差,縦軸は分離の平均正解率.1.2次元アフィン 空間に基づくアフィン空間分離法,2. それに退化モデル に基づくベイズ型学習を加えたもの.3. さらに3次元ア フィン空間に基づくベイズ型学習を加えたもの.

高精度であるが,画像列Cでは逆に部分空間分離法 のほうがアフィン空間分離法より高精度である.こ れらのことから画像列 C の運動はかなり退化に近い と考えられる.

この部分空間分離法とアフィン空間分離法にベイ ズ型学習を施すと画像列 A では大きな効果が見られ るが,画像列B,Cでは効果はわずかである.このこ とからも教師なし学習の効果は初期値の精度に大き く依存することがわかる.それに対して多段階最適 化法はどの場合も 100%の正解率を達成している.

6. まとめ

ビデオ画像上を移動する特徴点の軌跡から独立な 運動を分離する方法として,本論文では退化した運動 を仮定する教師なし学習 (EM アルゴリズム) によっ て分離を最適化し、その結果をさらに一般の運動を 仮定する教師なし学習で最適化する多段階最適化の 方法を提案した.そしてシミュレーションおよび実 ビデオ画像を用いて,多段階最適化法は従来のどの 手法よりも優れていることを実証した.

多段階最適化法がこのように優れている理由は,図 7のような実ビデオ画像では物体や背景が極端な3次 元運動をすることはなく,回転が少なく平面運動に 近いにもかかわらず,従来のCosteira・Kanade [1] に由来する作用行列を基にするどの方法も,物体と 背景がともに一般の3次元運動をするという前提で 構築されていたためである.このため実際に起きや すい単純な運動にはかえって性能が悪化する.

それに対して多段階最適化法は現実に生じやすい 退化を仮定したモデルによって学習し,さらに一般 の3次元運動のモデルによる学習を加えているので, 通常起こり得るさまざまな3次元運動に対して高い

図 7: 実ビデオ画像上の特徴点の追跡 (5 フレームを抜き出したもの).

表 1: 図7のビデオ画像列に対する多段階最適化手法の実 行時間.

	A	В	С
フレーム数	30	17	100
軌跡の個数	136	63	73
実行時間(秒)	2.50	0.51	1.49

$h\delta^4$.

参考文献

- J. P. Costeira and T. Kanade, A multibody factorization method for independently moving objects, *Int. J. Computer Vision*, **29**-3, 159–179, Sept. 1998.
- [2] A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM Algorithm, J. Roy. Statist. Soc., B-39, 1–38, 1977.
- [3] C. W. Gear, Multibody grouping from motion images, Int. J. Comput. Vision, 29-2, 133–150, Aug./Sept. 1998.
- [4] 市村直幸,形状空間への直交射影行列と判別基準を用 いた複数運動の分割,情報処理学会研究報告,2000-CVIM-120-3,17-24, Jan. 2000.
- [5] 市村直幸,富田文明,形状行列からの特徴選択に基づく動きの分割,電子情報通信学会論文誌 D-II, J81-D-II-12, 2757-2766, Dec. 1998.
- [6] 井上光平, 浦浜喜一, クラスタリングによる動画像中の複数物体の分離, 電子情報通信学会技術研究報告, PRMU2000-45, 29–36, July 2000.
- [7] 金出武雄、コンラッド・ポールマン、森田俊彦、因子 分解法による物体形状とカメラ運動の復元、電子情報

表 2: 図7のビデオ画像に対する分離の正解率(%).

	A	В	С
Costeira-Kanade 法	60.3	71.3	58.8
市村の方法	92.6	80.1	68.3
部分空間分離法	59.3	99.5	98.9
アフィン空間分離法	81.8	99.7	67.5
最適部分空間分離法	99.0	99.6	99.6
最適アフィン空間分離法	99.0	99.8	69.3
多段階最適化法	100.0	100.0	100.0

通信学会論文誌 D-II, **J74-D-II**-8, 1497–1505, Aug. 1993.

- [8] 黒澤 典義,金谷 健一,部分空間分離法とモデル選択 による運動物体の分離,情報処理学会研究報告,2000-CVIM-124-4,25-32,Nov.2000.
- [9] 黒澤 典義, 金谷 健一, アフィン空間分離法による運 動物体の分離, 情報処理学会研究報告, 2001-CVIM-125-3, 25-32, Mar. 2001.
- [10] M. I. Schlesinger and V. Hlaváč, Ten Lectures on Statistical and Structural Pattern Recognition, Kluwer, Dordrecht, The Netherlands, 2002.
- [11] 菅谷保之,金谷健一,部分空間分離法による特徴点追 跡のアウトライア除去,情報処理学会研究報告,2002-CVIM-133-24,177-184, May 2002.
- [12] 菅谷保之,金谷健一,運動物体分離のためのカメラモ デルの自動選択,情報処理学会研究報告,2002-CVIM-134-2,9-16,Sept. 2002.
- [13] C. Tomasi and T. Kanade, Detection and Tracking of Point Features, CMU Tech. Rep. CMU-CS-91-132, Apr. 1991;

http://vision.stanford.edu/~birch/klt/.

[14] Y. Wu, Z. Zhang, T. S. Huang and J. Y. Lin, Multibody grouping via orthogonal subspace decomposition, sequences under affine projection, *Proc. IEEE Conf. Computer Vision Pattern Recog.*, Vol.2, pp.695–701, Kauai, Hawaii, U.S.A., Dec. 2001.

 $^{^4}$ 実験に用いたプログラムソースは注1) と同じ Web サイトに 公開している .