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Abstract

Many feature tracking algorithms have been pro-
posed for motion segmentation, but the resulting tra-
jectories are not necessarily correct. In this paper,
we propose a technique for removing outliers based
on the knowledge that correct trajectories are con-
strained to be in a subspace of their domain. We first
fit the subspace to the detected trajectories robustly
using RANSAC and then remove those that have large
residuals. Using real video sequences, we demonstrate
that our method is effective even if multiple objects are
moving in the scene. We also confirm that the sepa-
ration accuracy is indeed improved by our method.

1 Introduction

Segmenting individual objects from backgrounds is
one of the most important techniques of video pro-
cessing. For images taken by a stationary camera,
many segmentation algorithms based on interframe
subtraction have been proposed. For images taken by
a moving camera, however, the segmentation is very
difficult because the objects and the backgrounds are
both moving in the images.

While most existing methods for multi-body seg-
mentation combine such information as optical flow,
color, and texture along with miscellaneous heuristics,
Costeira and Kanade [1] presented a segmentation al-
gorithm based only on the image motion of feature
points. Since then, various modifications and exten-
sions of their method have been proposed.

Gear [3] used the reduced row echelon form and
graph matching. Ichimura [5] applied the discrimi-
nation criterion of Otsu [18]. He also used the QR
decomposition for feature selection [6]. Inoue and
Urahama [9] introduced fuzzy clustering. Kanatani
[13, 14] introduced model selection and robust esti-
mation based on a new geometric interpretation of
the Costeira-Kanade algorithm. Maki and Wiles [17]
and Maki and Hattori [16] used Kanatani’s method
for analyzing the effect of illumination on moving ob-
jects. Wu, et al. [22] introduced orthogonal subspace
decomposition.

In all these methods, two issues need to be resolved.
One is the estimation of the number of independent
motions. Many authors set an appropriate thresh-
old for this, but it has been reported that estimat-
ing the number of motions is often more difficult than
the segmentation itself [3]. To cope with this prob-
lem, Kanatani and Matsunaga [15] proposed the use
of model selection criteria.

The other issue is the feature tracking. Most au-

thors use the Kanade-Lucas-Tomasi algorithm [20]
for this, but the resulting trajectories are not always
correct. In order to improve the tracking results,
Ichimura and Ikoma [8] and Ichimura [7] introduced
nonlinear filtering. Huynh and Heyden [4], motivated
by 3-D reconstruction applications, showed that out-
lier trajectories in an image sequence of a static scene
taken by a moving camera can be removed by robustly
fitting a 4-dimensional subspace to them.

In this paper, we extend the method of Huynh and
Heyden [4] to multiple moving objects. Adopting
Kanatani’s geometric interpretation of the segmenta-
tion problem [13, 14], we robustly fit an appropriate
subspace to the detected trajectories using RANSAC
and remove those that have large residuals.

Sec. 2 summarizes the subspace constraint used by
Kanatani [13]. Sec. 3 and 4 describe our outlier re-
moval procedure. In Sec. 5, we show real video se-
quence examples and demonstrate that our method
is effective even if multiple objects are moving in the
scene. We also confirm that the separation accuracy
is indeed improved by our method. Sec. 6 gives our
conclusion.

2 Subspace Constraint

We track N rigidly moving feature points over M
frames and let (xκα, yκα) be the image coordinates of
the αth point in the κth frame. If we stack all the
image coordinates vertically into a 2M -dimensional
vector in the form

pα = (x1α y1α x2α y2α · · · xMα yMα)>, (1)

the trajectory of a moving point can be represented
as a single point in a 2M -dimensional space.

We take an XY Z camera coordinate system with
the Z-axis in the direction of the optical axis. We
fix an object coordinate system to the moving object
and let tκ and {iκ, jκ, kκ} be, respectively, its origin
and orthonormal basis in the κth frame. If we let
(aα, bα, cα) be the object coordinates of the αth point,
its position in the κth frame is

rκα = tκ + aαiκ + bαjκ + cαkκ (2)

with respect to the camera coordinate system.
Assuming an affine camera model (e.g., ortho-

graphic, weak perspective, or paraperspective projec-
tion [10]), we have

(
xκα

yκα

)
= Aκrκα + bκ, (3)



where Aκ and bκ are, respectively, a 2× 3 matrix and
a 2-dimensional vector determined by the position and
the orientation of the camera and its internal param-
eters in the κth frame. From eq. (2), eq. (3) can be
rewritten as

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional
vectors determined by the position and the orienta-
tion of the camera and its internal parameters in the
κth frame. If the vectors m̃0κ, m̃1κ, m̃2κ, and m̃3κ

are stacked over the M frames vertically into 2M -
dimensional vectors m0, m1, m2 and m3, respec-
tively, the vector pα has the form

pα = m0 + aαm1 + bαm2 + cαm3. (5)

This implies that the trajectories of points that belong
to the same object are constrained to be in the 4-
dimensional subspace spanned by {m0, m1, m2,m3}
in R2M .

3 Subspace Separation

It follows from the above observation that mul-
tiple moving objects can be segmented by separat-
ing the corresponding points in R2M into distinct 4-
dimensional subspaces. This is the principle under-
lying the subspace separation of Kanatani [13], who
constructed a robust segmentation algorithm by com-
bining the Costeira-Kanade algorithm [1] with model
selection using the geometric AIC [12] and robust esti-
mation using LMedS [19]. Applying his method to real
and synthetic images, he demonstrated that the per-
formance was indeed superior to other existing meth-
ods.

However, his method, as well as other similar meth-
ods, works only when all the trajectories are correct.
In real video processing, detected trajectories are not
all correct. Motivated by 3-D reconstruction applica-
tions, Huynh and Heyden [4] proposed a procedure for
removing outlier trajectories from an image sequence
of a static scene taken by a moving camera. They
robustly fitted a 4-dimensional subspace to the tra-
jectories by random sampling and removed those that
have large residuals.

In this paper, we extend their method to multiple
objects by noting that if m objects are moving inde-
pendently in a scene, the points {pα} that represent
their trajectories should belong to a 4m-dimensional
subspace. So, we fit a 4m-dimensional subspace to
the detected trajectories using RANSAC [2, 11] and
remove those that have large residuals (Fig. 1).

4 Outlier Removal Procedure

We assume that we know the maximum number m
of independently moving objects in the scene. As-
suming too large a number m is likely to deteriorate
the performance of our algorithm, but we do not go
into the details of estimating it precisely, since this is
a very difficult task with a lot of subtleties involved
[15]. In the following, we are mainly concerned with

O

Figure 1 Removing outliers by fitting a
subspace.

the case for m = 1 or 2, which occurs in most prac-
tical applications (though theoretically m can be any
number).

Since we assume a 4m-dimensional subspace to the
detected trajectories, we assume that more than 4m
feature points are tracked throughout the sequence.
Let n = 2M and d = 4m. Our procedure is as follows:

1. Randomly choose d vectors q1, q2, . . ., qd from
{pα}, α = 1, . . ., N .

2. Define an n× n matrix

Md =
d∑

i=1

qiq
>
i . (6)

3. Let λ1 ≥ λ2 ≥ . . . ≥ λd be the d eigenvalues of
matrix Md, and {u1, u2, . . ., ud} the orthonor-
mal set of the corresponding eigenvectors.

4. Define an n× n projection matrix

P n−d = I −
d∑

i=1

uiu
>
i . (7)

5. Let S be the number of points pα that satisfy

‖P n−dpα‖2 < (n− d)σ2. (8)

Here, ‖P n−dpα‖2, which we call the residual , is
the squared distance of point pα from the fitted
d-dimensional subspace in Rn, and σ measures
the uncertainty of locating feature positions in
images.

6. Repeat the above procedure a sufficient number
of times1, and determine the projection matrix
P n−d that maximizes S.

7. Remove those pα that satisfy

‖P n−dpα‖2 ≥ σ2χ2
n−d;99, (9)

where χ2
r;a is the ath percentile of the χ2 distri-

bution with r degrees of freedom.

If the noise in the coordinates of the feature points
is an independent random Gaussian variable of mean 0
and standard deviation σ and if the fitted subspace is
correct, the residual ‖P n−dpα‖2 divided by σ2 should
be subject to a χ2 distribution with n − d degrees of
freedom, hence its expectation is (n− d)σ2, provided

1In our experiment, we stopped if S did not increase 200
times consecutively.
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Figure 2 (a) Five decimated frames of an image sequence of a static scene with 126 feature
points successfully tracked. (b) The trajectories of detected outliers. (c) The trajectories of de-
tected inliers. (d) The residuals of the trajectories. (e) The locations of the outliers.

pα is an inlier. The above procedure effectively fits
a d-dimensional subspace that maximizes the num-
ber of the points whose residuals are smaller than
(n − d)σ2. After determining the subspace, we re-
move those points which cannot be regarded as inliers
with significance level 1%.

5 Experiments

We tested our method using real video sequences of
static scenes and multiple moving objects. We gen-
erated and tracked feature points through the entire
video stream using the Kanade-Lucas-Tomasi algo-
rithm [20].

Fig. 2(a) shows five frames decimated from a 100
frame sequence (320 × 240 pixels) of a static scene
taken by a moving camera. We tracked 126 points
as indicated by the symbol 2 in the images. Setting
σ = 0.5 (pixels), we removed outlier trajectories by
our method. Figs. 2(b) and (c) show the trajectories
judged to be outliers and inliers, respectively.

Fig. 2(d) plots the residuals of the 126 trajectories;
they are marked on the horizontal axis in numerical
order. The horizontal line in the graph indicates the
threshold determined by eq. (9). Fig. 2(e) shows the
locations of the detected outliers in the first frame. We
see that many of them are on the occluding contours.

Closely inspecting all the images frame by frame, we
checked if the trajectories judged to be outliers were
really incorrect. In Fig. 2(d), those trajectories that
are indeed false are indicated by the symbol ×. As can
be seen, their residuals are large enough to be rejected
by our procedure. However, some apparently correct

trajectories are also rejected as outliers. A close exam-
ination revealed that they were caused by points that
were fluctuating around their supposed positions by a
few pixels throughout the sequence. In practice, re-
moving them, correct as they may be, is a reasonable
choice, since inclusion of such unreliable trajectories
would lower the reliability of the subsequent segmen-
tation.

Fig. 3(a) shows another sequence of a static scene.
The results are arranged in the same way in Figs. 3(b)–
(e), and similar observations hold. In this case, how-
ever, the number of outliers is relatively small, proba-
bly because the scene is a planar surface without oc-
cluding contours.

In the sequence shown in Fig. 4(a), an object (a
human body) is moving independently of the back-
ground, which is also moving in the images. Fig. 4(b)
shows the residuals of the 107 feature points success-
fully tracked. This time, the rejected trajectories are
all incorrect, while the remaining ones are all correct.
Fig. 4(c) shows the locations of the detected outliers
in the first frame. As can be seen, many of them are
on the occluding contours of the moving object.

In order to see the effect of outliers on segmenta-
tion, we applied the subspace separation algorithm2 of
Kanatani [13] to this image sequence with and without
removing outliers: Fig. 4(d) shows the segmentation
result without removing outliers; Fig. 4(e) shows the
result after removing outliers. The symbol 2 indi-

2The source program is publicly available from
http://www.suri.it.okayama-u.ac.jp/e-program.html.
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Figure 3 (a) Five decimated frames of an image sequence of a static scene with 155 feature
points successfully tracked. (b) The trajectories of detected outliers. (c) The trajectories of de-
tected inliers. (d) The residuals of the trajectories. (e) The locations of the outliers.

cates points classified to the background; the symbols
× indicates points classified to the moving object.

In Fig. 4(d), all inliers are correctly classified; mis-
classifications occur only for outliers, most of them are
on the occluding boundaries of the moving object. In
Fig. 4(e), in contrast, all points are correctly classified.
The second column of the table in Fig. 4(f) lists the
correctness of the segmentation: (the number of mis-
classified points)/(the total number of points) in per-
centage for Figs. 4(d) and (e), respectively. The third
column lists (the number of misclassifications)/(the
number of points classified to the object) and (the
number of misclassifications)/(the number of points
classified to the background). Figs. 4(g), (h), and (i)
show, respectively, the trajectories of the detected out-
liers, the inliers classified to the background, and the
inliers classified to the moving object.

Fig. 5 shows another example similarly arranged. In
this example, the existence of outliers adversely affects
the segmentation of inliers, as shown in Figs. 5(d) and
(e). In fact, the accuracy of segmentation is improved
by removing outliers beforehand.

From Fig. 5(b), we see that some correct trajecto-
ries are rejected as outliers. We also see that correct
trajectories consists of those with very small residuals
and those with relatively large residuals. This clear
distinction implies that the detected feature points are
divided into two types, unambiguous and ambiguous.
An unambiguous point is correctly tracked though-
out the sequence, while an ambiguous point is always
ambiguous in the course of the tracking. This phe-
nomenon can be observed more or less in all the pre-

vious examples but is particularly strong for this se-
quence. This is probably because the scene is very
far away and the range of the gray levels is relatively
narrow.

This is the very reason why we did not set the
threshold automatically. If the noise in the coordi-
nates of the feature points were Gaussian and inde-
pendent for each point and each frame, we could use
LMedS [19], estimating the noise level σ from the me-
dian of the residuals as described in [19]. In reality,
however, this is difficult due to the existence of strong
temporal correlations, so we empirically set σ (0.5 pix-
els in our experiment) and the siginificance level (1%
in our experiment) of the rejection decision.

The computation time for the outlier removal pro-
cedure was 33.17 sec., 36.83 sec, 32.57 sec, and 1.95
sec for the examples of Figs. 2, 3, 4, and 5, respec-
tively. We used Pentium IV 1.8GHz for the CPU and
Linux for the OS.

6 Concluding Remarks

In this paper, we have proposed a technique for re-
moving outliers from the trajectories of feature points
detected over a video sequence. Our algorithm ro-
bustly fits a subspace to the trajectories and removes
those that have large residuals.

Using real video sequences, we demonstrated that
our method was effective even if multiple objects are
moving in the scene. We also confirmed that the sepa-
ration accuracy was indeed improved by our method.

Our method is based on an affine camera model.
Also, feature points must be tracked throughout the
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Figure 4 (a) Five decimated frames of an image sequence of a static scene and a moving
object with 107 feature points successfully tracked. (b) The residuals of the trajectories. (c) The
locations of the outliers. (d) The segmentation with outliers ( × for object points; 2 for background
points). (e) The segmentation without outliers ( × for object points; 2 for background points). (f)
The correctness of segmentation and the classification details. (g) The trajectories of detected
outliers. (h) The trajectories of detected background points. (i) The trajectories of detected object
points.

sequence. These limit the use of our method to a rel-
atively short sequence of images. For a long sequence,
however, we can divide it into overlapping short seg-
ments and apply our method to them separately. We
can safely assume an affine camera model if the depth
of the scene does not vary much in each segment. How
to cope with strong perspective effects and how to au-
tomatically set the involved parameters are left for
future research.

Our approach is based on the geometric constraint
that the image motion of feature points should be
interpreted to be projections of rigid motions in the
scene. In contrast, the use of nonlinear filtering pro-
posed by Ichimura [7] and Ichimura and Ikoma [8]
is based on the stochastic constraint that the image
motion of feature points should be “smooth” with
a strong temporal coherence. Since these two ap-
proaches are complementary in nature, it is expected
that the segmentation accuracy will be further in-
creased by combining them.
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