GPS計測データの階層的運動モデル当てはめによる東日本大震災の地盤変形解析

Analysis of Land Deformation of Great East Japan Earthquake by Hierachical Motion Model Fitting to GPS Measurement Data

本田卓士[†] 松永力[‡] 金谷 健一[†]

Takuto Honda, Chikara Matsunaga and Kenichi Kanatani

† 岡山大学大学院自然科学研究科 Department of Computer Science, Okayama University, Japan

‡ (株) 朋栄 FOR-A Co., Ltd., Japan

ABSTRACT Given 3-D sensing data of points slightly moving in space, we consider the problem of discerning whether or not translation, rotation, and scale change take place and to what extent. For this purpose, we propose a new method for fitting various motion models to 3-D noisy data. Based on the observation that subgroups of the 3-D affine transformations are defined by imposing various internal constraints on the variables, our method fits 3-D affine transformations with internal constraints using the scheme of EFNS, which, unlike conventional methods, dispenses with introducing particular parameterizations for particular motion models. We apply our method to the GPS geodetic data of the land deformation in northeast Japan, where a massive earthquake took place on 11 March 2011, and show how model selection using the geometric AIC, the geometric BIC and the geometric MDL works.

1. まえがき

ステレオ視やレンジファインダーなどの3次元センサー によって空間をわずかに移動する複数の点の移動前後の 位置を計測したとき、どのような並進、回転、スケール 変化が生じているのか、あるいは生じていないのかを判 断する問題を考える.これは静止した対象を複数のセン サーで計測したとき、結果が同一であるのか、異なるの かを判断する問題ともみなせる.すなわち、数値的な差 が観測の精度を考慮すれば無視できる差なのか、それと も意味のある差なのかを判断する問題でもある.そのた めには、二組の3次元位置が同一である、スケールが異 なっている、位置が異なっている、向きが異なっている、 あるいはそれらが組み合わさっているなどのさまざまな モデルを導入して、その妥当性を判断することになる.

モデルの妥当性は誤差の統計的性質を考慮した残差(正確には「マハラノビス距離」)で測るのが普通であるが, よく知られたように,複雑な(すなわち多数のパラメー タを持つ)モデルほど残差が小さくなる.この残差のモ デルの複雑さをバランスさせた評価法が「モデル選択」で ある.そして,幾何学的モデルに対するモデル選択規準 として「、幾何学的AIC」[5]「、幾何学的BIC」[7]「、幾何 学的 MDL」[6]が提案されている.

幾何学的モデル選択のためには,まず各モデルを最適 に当てはめて,その残差を計算しなければならない.し かし,従来の方法はモデルごとに計算法が異なっている. それはパラメータが異なるからである.例えば並進はそ のx,y,z成分を指定すればよいが,回転が加わると,四 元数[8,13]やリー代数の方法[11]などのパラメータが必 要である.そして,パラメータごとに残差のパラメータに 関する導関数が異なり,別々に評価しなければならない. 本論文ではモデル間の階層構造に利用して,何らのパ ラメータを導入することなしに異なるモデルを同じ方法 で統一的に計算する手法を提案する。本論文で考えるモ

で統一的に計算する手法を提案する.本論文で考えるモ デルは恒等変換,並進,回転,拡大縮小,およびそれらの 組せである.これらはすべてアフィン変換の部分群であ り,部分群に対する最適計算はアフィン変換に対する最 適計算に拘束条件を付加したものであることに着目する. 拘束条件を付加した最適計算を統一的に計算する手法と して「拡張 FNS 法」[10]」提案されている.これはもと もと2画像の点対応から基礎行列を計算するために考案 された方法である.基礎行列 F は対応点データに対して 「エピ極線方程式」と呼ばれる拘束条件を満たす[3].その ようなデータに対する拘束を「外部拘束」と呼ぶ.一方, 基礎行列 F は det F = 0 という拘束がある [3] . そのよう なパラメータ自身の拘束を「内部拘束」と呼ぶ. 内部拘 束に対処する方法として,古くから内部拘束を考えずに 最適化し,内部拘束を満たすように事後的に補正する方 法と内部拘束が満たされるようにパラメータ化して,そ のパラメータ空間を探索する方法があったが,拡張 FNS 法は新たなパラメータを導入せずに,次第に内部拘束が 次第に満たされ, 収束時には内部拘束が完全に満たされ るように反復する解法である.

本論文では、アフィン変換にさまざまな内部拘束を指 定すれば並進,回転,剛体運動,相似変換などの部分群 が実現されることに着目して,拡張 FNS 法を3次元点の アフィン変換の最適計算に適用する.従来の拡張 FNS法 はエピ極線方程式にようなスカラ方程式に対するもので あったが,3次元点の変換はベクトル方程式で表される. そこで従来の拡張 FNS 法をベクトル方程式に拡張する. そして、いろいろな内部拘束を付加してアフィン変換の部 分群を統一的に計算する.この考え方は既に松永[12]に よって提起され,2次元/3次元の幾何学的変換を射影変 換の部分群とみなす統一的な方法論が示されている.本 論文ではこれを内部拘束をもつ3次元アフィン変換の計 算に適用する.そして,これをGPSで計測した地盤の移 動のデータを解析する.そして,2011 年3月11日の東 日本大震災による地盤の変形がどのようなものかを判定 する幾何学的モデル選択の具体的な実施例を示す.

2.3次元アフィン変換

移動前と移動後の観測位置をそれぞれ $r = (x, y, z)^{\top}$, $r' = (x', y', z')^{\top}$ とするとき,移動が「アフィン変換」で あるとは, ある正則行列 A とベクトル t があって次の関係が成り立つことである.

$$\boldsymbol{r}' = \boldsymbol{A}\boldsymbol{r} + \boldsymbol{t} \tag{1}$$

行列 A の要素とベクトル t の成分を次のように置く.

$$\mathbf{A} = \begin{pmatrix} u_1 & u_2 & u_3 \\ u_4 & u_5 & u_6 \\ u_7 & u_8 & u_9 \end{pmatrix}, \qquad \mathbf{t} = \begin{pmatrix} u_{10}L_0 \\ u_{11}L_0 \\ u_{12}L_0 \end{pmatrix}$$
(2)

ただし, L_0 はr, r'とほぼ同じ大きさの基準長である.これはr, r'の各成分がほぼ $0 \sim 1$ となるような長さの単位を用いることに相当し,これによって有限長の数値計算が安定する.式(1)は次のように書ける.

$$u_0x' = u_1x + u_2y + u_3z + u_{10}L_0,$$

$$u_0y' = u_4x + u_5y + u_6z + u_{11}L_0,$$

$$u_0z' = u_7x + u_8y + u_9z + u_{12}L_0$$
(3)

ただし, $u_0 = 1$ である.このダミー変数 u_0 を導入して式(1)をパラメータの同次1次式で表すことが提案方法の眼目である.13次元ベクトル $u, \xi^{(1)}, \xi^{(2)}, \xi^{(3)}$ を次のように定義する.

すると式(3)のアフィン変換は次のように書ける.

$$(\boldsymbol{\xi}^{(1)}, \boldsymbol{u}) = 0, \quad (\boldsymbol{\xi}^{(2)}, \boldsymbol{u}) = 0, \quad (\boldsymbol{\xi}^{(3)}, \boldsymbol{u}) = 0 \quad (6)$$

以下,本論文ではベクトルa,bの内積を(a,b)と書く.

3. アフィン変換の内部拘束

3次元アフィン変換はいくつかの同次式 $\phi_1(u), ..., \phi_r(u)$ を用いて内部拘束を $\phi_1(u) = 0, ..., \phi_r(u) = 0$ の形で指定すれば,さまざまな部分群を表すことができる.

【例1】行列Aが回転行列のとき式(3)は剛体運動と なる.Aが回転行列である条件は、その各列が互いに直 交する単位ベクトルである.行列式が負なら反転を表す が、ここでは与えられたデータに当てはめる問題を考え るので、行列式を考慮する必要はない.したがって、剛 体運動は次の「2次形式」が0となることで指定される.

$$\phi_{1}(\boldsymbol{u}) = u_{1}u_{4} + u_{2}u_{5} + u_{3}u_{6},
\phi_{2}(\boldsymbol{u}) = u_{4}u_{7} + u_{5}u_{8} + u_{6}u_{9},
\phi_{3}(\boldsymbol{u}) = u_{7}u_{1} + u_{8}u_{2} + u_{9}u_{3},
\phi_{4}(\boldsymbol{u}) = u_{1}^{2} + u_{2}^{2} + u_{3}^{2} - u_{4}^{2} - u_{5}^{2} - u_{6}^{2},
\phi_{5}(\boldsymbol{u}) = u_{4}^{2} + u_{5}^{2} + u_{6}^{2} - u_{7}^{2} - u_{8}^{2} - u_{9}^{2},
\phi_{6}(\boldsymbol{u}) = u_{1}^{2} + u_{2}^{2} + u_{3}^{2} - u_{0}^{2}$$
(7)

条件 $\phi_6(u) = 0$ を除けば, A は回転行列の定数倍であり, 式 (3) は相似変換を表す.

【例 2】 恒等変換 A = I, t = 0, s = 1 は次の「1 次形 式」を 0 とすることで実現される.

$$\phi_{7}(\boldsymbol{u}) = u_{2}, \ \phi_{8}(\boldsymbol{u}) = u_{3}, \ \phi_{9}(\boldsymbol{u}) = u_{4}, \ \phi_{10}(\boldsymbol{u}) = u_{6}, \phi_{11}(\boldsymbol{u}) = u_{7}, \ \phi_{12}(\boldsymbol{u}) = u_{8}, \ \phi_{13}(\boldsymbol{u}) = u_{1} - u_{5}, \phi_{14}(\boldsymbol{u}) = u_{5} - u_{9}, \ \phi_{15}(\boldsymbol{u}) = u_{1} - u_{0}, \ \phi_{16}(\boldsymbol{u}) = u_{10}, \phi_{17}(\boldsymbol{u}) = u_{11}, \ \phi_{18}(\boldsymbol{u}) = u_{12}$$
(8)

条件 $\phi_{15}(\boldsymbol{u}) = 0$ を除けば, \boldsymbol{A} は単位行列 \boldsymbol{I} の定数倍であり,スケール変化が表せる.条件 $\phi_{16}(\boldsymbol{u}) = 0, \phi_{17}(\boldsymbol{u}) = 0, \phi_{18}(\boldsymbol{u}) = 0$ を除けば並進が表せる.

内部拘束を満たす u の定義域 U は 13 次元空間 \mathcal{R}^{13} の 多様体である.このとき $u_0 = 1$ であるが,式 (6) は u の 定数倍の不定性がある.そこで ||u|| = 1 となる単位ベク トル u を計算してから,最後に $u_0 = 1$ となるように正 規化する.したがって定義域 U は次のようになる.

$$\mathcal{U} = \{ \boldsymbol{u} \, | \, \| \boldsymbol{u} \| = 1, \phi_1(\boldsymbol{u}) = 0, ..., \phi_r(\boldsymbol{u}) = 0 \} \subset \mathcal{R}^{13}$$
(9)

 $\|u\| = 1 \ \operatorname{tl} \mathcal{R}^{13}$ の単位球面を表し, 各 $\phi_k(u) = 1 \ \operatorname{tl} \mathcal{R}^{13}$ の超曲面を表す. $\mathcal{U} \ \operatorname{tl} r + 1$ 枚の超曲面の交わりであるから 12 - r次元多様体である. 多様体 \mathcal{U} の法線方向を考える. 単位球面 $\|u\| = 1$ の法線はu自身であり, 各超曲面 $\phi_k(u) = 0$ の法線は $\nabla_u \phi_k$ であるから, それらの張る線形空間({ \cdots } \mathcal{L} は…の張る線形空間を表す)

$$\mathcal{N}_{\boldsymbol{u}} = \{\boldsymbol{u}, \nabla_{\boldsymbol{u}}\phi_1, ..., \nabla_{\boldsymbol{u}}\phi_r\}_{\mathcal{L}}$$
(10)

は定義域 \mathcal{U} の u における接空間 $T_u(\mathcal{U})$ の直交補空間 $T_u(\mathcal{U})^{\perp}$ である . \mathcal{N}_u の部分空間 \mathcal{M}_u を

$$\mathcal{M}_{\boldsymbol{u}} = \{\nabla_{\boldsymbol{u}}\phi_1, ..., \nabla_{\boldsymbol{u}}\phi_r\}_{\mathcal{L}}$$
(11)

と置けば, \mathcal{N}_u は次のように直和分解される.

$$\mathcal{N}_{\boldsymbol{u}} = \{\boldsymbol{u}\}_{\mathcal{L}} \oplus \mathcal{M}_{\boldsymbol{u}} \tag{12}$$

本論文の拡張 FNS 法の核心は次の補題である.

補題 $\phi_k(\boldsymbol{u}) = 0 \iff (\nabla_{\boldsymbol{u}} \phi_k, \boldsymbol{u}) = 0$

(証明) $\phi_k(u)$ は同次式であるから,その次数を D_k とすると任意のtに対して $\phi_k(tu) = t^{D_k}\phi_k(u)$ である.両辺をtで微分すると($\nabla_u\phi_k(tu), u$) = $D_k t^{D_k-1}\phi_k(u)$ となり,t = 1と置くと,($\nabla_u\phi_k, u$) = $D_k\phi_k(u)$ となる. □

したがって式 (9) の定義域 U は次のように書ける.

$$\mathcal{U} = \{ \boldsymbol{u} \, | \, \| \boldsymbol{u} \| = 1, \boldsymbol{u} \in \mathcal{M}_{\boldsymbol{u}}^{\perp} \}$$
(13)

4. 共分散行列

3次元空間を移動する N 点を測定し,移動前と移動後 の測定位置をそれぞれ r_{α} , r'_{α} とする $(\alpha = 1, ..., N)$.測 定は誤差を含むとし,それぞれの共分散行列を $\sigma^2 V_0[r_{\alpha}]$, $\sigma^2 V_0[r'_{\alpha}]$ とする. σ は誤差の絶対的な大きさを表す定数 (「ノイズレベル」)であり, $V_0[r_{\alpha}]$, $V_0[r'_{\alpha}]$ は誤差の分布 を表す行列(「正規化共分散行列」)である.以下,ノイ ズレベル σ は未知,正規化共分散行列 $V_0[r_{\alpha}]$ は既知とす る.このように分離するのは,誤差の絶対的な大きさを 知ることが難しいことと,および以下に示すようにノイ ズレベルによらずに正規化共分散行列のみから最適な推 定ができるためである.このため $\sigma \ge V_0[r_{\alpha}]$ の分離は便 宜的である.

データ r_{α}, r'_{α} から計算した式 (5) の $\xi^{(k)} \in \xi^{(k)}_{\alpha}$ とする と,その誤差 $\Delta \xi^{(k)}_{\alpha}$ は式 (5) より誤差 $\Delta x_{\alpha}, \Delta y_{\alpha}, \Delta x'_{\alpha}, \Delta y'_{\alpha}$ と次の線形関係がある.

$$\Delta \boldsymbol{\xi}_{\alpha}^{(1)} = \boldsymbol{T}_{1}^{\top} \begin{pmatrix} \Delta x_{\alpha} \\ \Delta y_{\alpha} \\ \Delta z_{\alpha} \\ \Delta x'_{\alpha} \\ \Delta z'_{\alpha} \end{pmatrix}, \qquad \Delta \boldsymbol{\xi}_{\alpha}^{(2)} = \boldsymbol{T}_{2}^{\top} \begin{pmatrix} \Delta x_{\alpha} \\ \Delta y_{\alpha} \\ \Delta z_{\alpha} \\ \Delta x'_{\alpha} \\ \Delta y'_{\alpha} \\ \Delta z'_{\alpha} \end{pmatrix},$$
$$\Delta \boldsymbol{\xi}_{\alpha}^{(3)} = \boldsymbol{T}_{3}^{\top} \begin{pmatrix} \Delta x_{\alpha} \\ \Delta y_{\alpha} \\ \Delta z_{\alpha} \\ \Delta x'_{\alpha} \\ \Delta x'_{\alpha} \\ \Delta x'_{\alpha} \\ \Delta y'_{\alpha} \\ \Delta z'_{\alpha} \end{pmatrix}$$
(14)

各 T_k は次のようになる.

$$T_{1} = \frac{1}{L_{0}} \begin{pmatrix} I & O & O & 0 \\ O & O & O & -i \end{pmatrix}, \\
 T_{2} = \frac{1}{L_{0}} \begin{pmatrix} O & I & O & 0 \\ O & O & O & -j \end{pmatrix}, \\
 T_{3} = \frac{1}{L_{0}} \begin{pmatrix} O & O & I & O & 0 \\ O & O & O & -k \end{pmatrix}$$
 (15)

ただし,Oは 3×3 零行列,0は3次元零ベクトルであ り, $i = (1,0,0)^{\top}, j = (0,1,0)^{\top}, k = (0,0,1)^{\top}$ と置いた.以上より $\boldsymbol{\xi}_{\alpha}^{(k)}$ と $\boldsymbol{\xi}_{\alpha}^{(l)}$ の間の共分散行列が次のようになる.

$$\sigma^{2} V_{0}^{(kl)}[\boldsymbol{\xi}_{\alpha}] = E[\Delta \boldsymbol{\xi}_{\alpha}^{(k)} \Delta \boldsymbol{\xi}_{\alpha}^{(l)\top}]$$
$$= \sigma^{2} \boldsymbol{T}_{k}^{\top} \begin{pmatrix} V_{0}[\boldsymbol{r}_{\alpha}] & \boldsymbol{O} \\ \boldsymbol{O} & V_{0}[\boldsymbol{r}_{\alpha}'] \end{pmatrix} \boldsymbol{T}_{l}$$
(16)

5. 残差の計算

観測値 $\boldsymbol{\xi}_{\alpha}^{(k)}$ の真値を $\overline{\boldsymbol{\xi}}_{\alpha}^{(k)}$ とすると , アフィン変換の最 尤推定はマハラノビス距離 (以下「残差」と呼ぶ)

$$J = \sum_{\alpha=1}^{N} \left(\begin{pmatrix} \boldsymbol{\xi}_{\alpha}^{(1)} - \boldsymbol{\xi}_{\alpha}^{(1)} \\ \boldsymbol{\xi}_{\alpha}^{(2)} - \bar{\boldsymbol{\xi}}_{\alpha}^{(2)} \\ \boldsymbol{\xi}_{\alpha}^{(3)} - \bar{\boldsymbol{\xi}}_{\alpha}^{(3)} \end{pmatrix}, \\ \begin{pmatrix} V_{0}^{(11)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(12)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(12)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(23)}[\boldsymbol{\xi}_{\alpha}] \\ V_{0}^{(21)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(22)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(33)}[\boldsymbol{\xi}_{\alpha}] \end{pmatrix}^{-1} \begin{pmatrix} \boldsymbol{\xi}_{\alpha}^{(1)} - \bar{\boldsymbol{\xi}}_{\alpha}^{(1)} \\ \boldsymbol{\xi}_{\alpha}^{(2)} - \bar{\boldsymbol{\xi}}_{\alpha}^{(2)} \\ \boldsymbol{\xi}_{\alpha}^{(3)} - \bar{\boldsymbol{\xi}}_{\alpha}^{(3)} \end{pmatrix} \right) (17)$$

を最小化することである.ただし,真値 $\bar{\boldsymbol{\xi}}_{\alpha}^{(k)}$ は式(6)の制約を満たしているとする.その制約に対するラグランジュ 乗数 $\lambda_{\alpha}^{(k)}$ を導入して上式に $-\sum_{\alpha=1}^{N}\sum_{k=1}^{3}\lambda_{\alpha}^{(k)}(\bar{\boldsymbol{\xi}}_{\alpha}^{(k)},\boldsymbol{u})$ を追加して $\bar{\boldsymbol{\xi}}_{\alpha}^{(1)}, \bar{\boldsymbol{\xi}}_{\alpha}^{(2)}, \bar{\boldsymbol{\xi}}_{\alpha}^{(3)}$ に関する導関数を0と置くと次のようになる.

$$-\begin{pmatrix} V_{0}^{(11)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(12)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(13)}[\boldsymbol{\xi}_{\alpha}] \\ V_{0}^{(21)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(22)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(23)}[\boldsymbol{\xi}_{\alpha}] \\ V_{0}^{(31)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(32)}[\boldsymbol{\xi}_{\alpha}] \ V_{0}^{(33)}[\boldsymbol{\xi}_{\alpha}] \end{pmatrix}^{-1} \begin{pmatrix} \boldsymbol{\xi}_{\alpha}^{(1)} - \bar{\boldsymbol{\xi}}_{\alpha}^{(1)} \\ \boldsymbol{\xi}_{\alpha}^{(2)} - \bar{\boldsymbol{\xi}}_{\alpha}^{(2)} \\ \boldsymbol{\xi}_{\alpha}^{(3)} - \bar{\boldsymbol{\xi}}_{\alpha}^{(3)} \end{pmatrix} \\ - \begin{pmatrix} \lambda_{\alpha}^{(1)}\boldsymbol{u} \\ \lambda_{\alpha}^{(2)}\boldsymbol{u} \\ \lambda_{\alpha}^{(3)}\boldsymbol{u} \end{pmatrix} = \boldsymbol{0}$$
(18)

これを $ar{m{\xi}}_{lpha}^{(1)},ar{m{\xi}}_{lpha}^{(2)},ar{m{\xi}}_{lpha}^{(3)}$ について解くと次のようになる.

$$\bar{\boldsymbol{\xi}}_{\alpha}^{(k)} = \boldsymbol{\xi}_{\alpha}^{(k)} + \sum_{l=1}^{3} \lambda_{\alpha}^{(l)} V_{0}^{(kl)} [\boldsymbol{\xi}_{\alpha}] \boldsymbol{u}$$
(19)

これが拘束条件 $(ar{m{\xi}}_{lpha}^{(k)},m{u})=0$ を満たすから,

$$\sum_{l=1}^{3} \lambda_{\alpha}^{(l)}(\boldsymbol{u}, V_{0}^{(kl)}[\boldsymbol{\xi}_{\alpha}]\boldsymbol{u}) = -(\boldsymbol{\xi}_{\alpha}^{(k)}, \boldsymbol{u})$$
(20)

であり,これは $\lambda_{\alpha}^{(k)}$ に関する連立1次方程式である.解は次のように書ける.

$$\lambda_{\alpha}^{(k)} = -\sum_{l=1}^{3} W_{\alpha}^{(kl)}(\boldsymbol{\xi}_{\alpha}^{(l)}, \boldsymbol{u})$$
(21)

ただし , $({m u},V_0^{(kl)}[{m \xi}_{lpha}]{m u})$ を (kl)要素とする行列を

$$V_{\alpha} = \left((\boldsymbol{u}, V_0^{(kl)} [\boldsymbol{\xi}_{\alpha}] \boldsymbol{u}) \right)$$
(22)

と定義するとき , $W^{(kl)}_{\alpha}$ は V^{-1}_{α} の(kl)要素である . これを記号的で次のように書く .

$$W_{\alpha}^{(kl)} = \left((\boldsymbol{u}, V_0^{(kl)} [\boldsymbol{\xi}_{\alpha}] \boldsymbol{u}) \right)^{-1}$$
(23)

式 (21) を式 (19) に代入し , それを式 (17) に代入すると , 残差 J が次のように表される .

$$J = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} W_{\alpha}^{(kl)}(\boldsymbol{\xi}_{\alpha}^{(k)}, \boldsymbol{u})(\boldsymbol{\xi}_{\alpha}^{(l)}, \boldsymbol{u})$$
(24)

これを u の定義域 U 上で最小化すればよい.

6. 内部拘束をもつアフィン変換の最適計算

関数 J を内部拘束のもとに最小化する方法は次のよう に大別される.

- 事後補正法 まず J を内部拘束を考慮せずに最小化する. そして得られた解 u が内部拘束を満たす多様体 U に 載るように補正する (Fig. 1(a)). 例えば行列 A が回 転行列なら,これを一般の 3×3 行列として計算し てから $AA^{\top} = I$, det A = 1 を満たすように補正す る.よく知られているの特異値分解による方法であ る [4].
- 内部接近法 未知数 u が内部拘束を満たすようにより少 ないパラメータで表現する.例えば A が回転行列で あれば,これをオイラー角や四元数やリー代数の方 法で表す [8,13].そして内部拘束を満たす次元の低 いパラメータ(内部)空間 U を探索して J を最小に する (Fig.1(b)).
- 外部接近法 制約のない (外部) 空間を探索して,反復と ともに次第に内部拘束が満たされ,収束した時点で 多様体 U 上にあるようにする (Fig. 1(c)).

外部接近法として知られているのものに「拡張 FNS 法」 [10] がある.これは2 画像からの3次元復元のための基 礎行列 F がランク拘束 det F = 0 [3] を満たすように計

Figure 1: The solution is constrained to be in \mathcal{U} . (a) A posteriori correction. (b) Internal access. (c) External access.

算する方法として考えられたものである.ただし,これ はエピ極線方程式のようなスカラ方程式に対するもので ある.しかし,3次元運動はベクトル方程式で表される. そこで,拡張FNS法をベクトル方程式の場合に拡張する. そのためにまず式 (24)の残差 Jを u で微分する.

M O

$$\nabla_{\boldsymbol{u}} J = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} \nabla_{\boldsymbol{u}} W_{\alpha}^{(kl)}(\boldsymbol{\xi}_{\alpha}^{(k)}, \boldsymbol{u})(\boldsymbol{\xi}_{\alpha}^{(l)}, \boldsymbol{u}) + \sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} W_{\alpha}^{(kl)}(\boldsymbol{\xi}_{\alpha}^{(l)}, \boldsymbol{u}) \boldsymbol{\xi}_{\alpha}^{(k)}$$
(25)

式中の $\nabla_{\boldsymbol{u}} W^{(kl)}_{\alpha}$ を計算する. W_{α} は式 (22)の行列 V_{α} の逆行列として定義されているので, $V_{\alpha}W_{\alpha} = I$ の両 辺を u_i で微分すると

$$\frac{\partial \boldsymbol{V}_{\alpha}}{\partial u_{i}}\boldsymbol{W}_{\alpha} + \boldsymbol{V}_{\alpha}\frac{\partial \boldsymbol{W}_{\alpha}}{\partial u_{i}} = \boldsymbol{O}$$
(26)

であるから,

$$\frac{\partial \boldsymbol{W}_{\alpha}}{\partial u_{i}} = -\boldsymbol{V}_{\alpha}^{-1} \frac{\partial \boldsymbol{V}_{\alpha}}{\partial u_{i}} \boldsymbol{W}_{\alpha} = -\boldsymbol{W}_{\alpha} \frac{\partial \boldsymbol{V}_{\alpha}}{\partial u_{i}} \boldsymbol{W}_{\alpha} \quad (27)$$

である.この(kl) 要素は式(22)より次のようになる.

$$\nabla_{\boldsymbol{u}} W_{\alpha}^{(kl)} = -\sum_{m,n=1}^{3} W_{\alpha}^{(km)} \nabla_{\boldsymbol{u}} (\boldsymbol{u}, V_{0}^{(mn)} [\boldsymbol{\xi}_{\alpha}] \boldsymbol{u}) W_{\alpha}^{(nl)}$$
$$= -2\sum_{m,n=1}^{3} W_{\alpha}^{(km)} W_{\alpha}^{(nl)} V_{0}^{(mn)} [\boldsymbol{\xi}_{\alpha}] \boldsymbol{u} \quad (28)$$

これを式 (25) に代入すると,最終的に次のようになる.

$$\nabla_{\boldsymbol{u}} J = \left(\sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} W_{\alpha}^{(kl)} \boldsymbol{\xi}_{\alpha}^{(k)} \boldsymbol{\xi}_{\alpha}^{(l)\top}\right) \boldsymbol{u} - \left(\sum_{\alpha=1}^{N} \sum_{m,n=1}^{3} v_{\alpha}^{(m)} v_{\alpha}^{(n)} V_{0}^{(mn)}[\boldsymbol{\xi}_{\alpha}]\right) \boldsymbol{u}$$
(29)

ただし,次のように置いた.

$$v_{\alpha}^{(k)} = \sum_{l=1}^{3} W_{\alpha}^{(kl)}(\boldsymbol{\xi}_{\alpha}^{(l)}, \boldsymbol{u})$$
(30)

ここで行列M, Lを次のように置く.

$$M = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} W_{\alpha}^{(kl)} \boldsymbol{\xi}_{\alpha}^{(k)} \boldsymbol{\xi}_{\alpha}^{(l)\top},$$
$$L = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} v_{\alpha}^{(k)} v_{\alpha}^{(l)} V_{0}^{(kl)}[\boldsymbol{\xi}_{\alpha}]$$
(31)

すると式 (29) は次のように書ける.

$$\nabla_{\boldsymbol{u}} J = (\boldsymbol{M} - \boldsymbol{L}) \boldsymbol{u} \tag{32}$$

7. 反復解法

変分学でよく知られているように,関数 J が u の定義 域 $\mathcal{U} (\in \mathcal{R}^{13})$ で停留値をとる必要十分条件は J の勾配 $\nabla_u J$ がその点 u で \mathcal{U} に直交することである(直交して いなければ \mathcal{U} に沿って J が増加・減少する方向に進むこ とができる).これは式 (10)の空間 \mathcal{N}_u を用いて $\nabla_u J \in$ \mathcal{N}_u と書ける.しかし,すぐ確かめられるように,式 (24) は 0 次同次式であり, u を定数倍しても J の値は変化し ない.このため $\nabla_u J$ は常に u に直交している.したがっ て式 (12) より, $\nabla_u J \in \mathcal{N}_u$ は次のように書いてもよい.

$$\nabla_{\boldsymbol{u}} J \in \mathcal{M}_{\boldsymbol{u}} \tag{33}$$

部分空間 \mathcal{M}_u の直交補空間 \mathcal{M}_u^\perp 上への射影行列 $P_\mathcal{M}$ を用いれば次のようにも書ける.

$$\boldsymbol{P}_{\mathcal{M}} \nabla_{\boldsymbol{u}} J = \boldsymbol{0} \tag{34}$$

一方,式 (13) より単位ベクトル u が定義域 U に含まれる条件 $u \in \mathcal{M}_u^{\perp}$ は射影行列 $P_{\mathcal{M}}$ を用いれば,上式は次のように書ける.

$$\boldsymbol{P}_{\mathcal{M}}\boldsymbol{u} = \boldsymbol{u} \tag{35}$$

したがって,内部拘束をもつアフィン変換の最適に計算 するには式(34),(35)を満たす単位ベクトル u を計算す ればよい.式(34)と式(32)より,解は次式を満たす.

$$\boldsymbol{P}_{\mathcal{M}}(\boldsymbol{M}-\boldsymbol{L})\boldsymbol{u}=\boldsymbol{0} \tag{36}$$

これは , 式 (35) を満たす *u* に対しては次のように書いて もよい .

$$\boldsymbol{P}_{\mathcal{M}}(\boldsymbol{M}-\boldsymbol{L})\boldsymbol{P}_{\mathcal{M}}\boldsymbol{u}=\boldsymbol{0}$$
(37)

 $P_{\mathcal{M}}$ は対称行列であり,対称行列Xを

$$\boldsymbol{X} = \boldsymbol{P}_{\mathcal{M}}(\boldsymbol{M} - \boldsymbol{L})\boldsymbol{P}_{\mathcal{M}}$$
(38)

と定義すれば,式 (34), (32) を満たす単位ベクトル u を 計算することは

$$\boldsymbol{X}\boldsymbol{u} = \boldsymbol{0}, \qquad \boldsymbol{P}_{\mathcal{M}}\boldsymbol{u} = \boldsymbol{u} \tag{39}$$

満たす単位ベクトル *u* を計算することである.これは次の反復によって求まる.

1. uの初期値を与える.

- 2. 式 (31) の行列 M, Lを計算する.
- 3. ベクトル $\nabla_{\mathbf{u}}\phi_1(u), ..., \nabla_{\mathbf{u}}\phi_r(u)$ を計算し,これに シュミットの直交化を施した正規直交系 $\{u_1, ..., u_r\}$ とし,次の射影行列 $P_{\mathcal{M}}$ を計算する.

$$\boldsymbol{P}_{\mathcal{M}} = \boldsymbol{I} - \sum_{k=1}^{r} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}$$

$$\tag{40}$$

4. 式 (38) の行列 X を計算する.

- 5. 固有値問題 $Xv = \lambda v$ の小さい r + 1 個の固有値に 対応する単位固有ベクトル $v_0, ..., v_r$ を求める.
- 6. 現在の解uを次のように $\hat{\mathcal{N}}_{u} = \{v_{0}, ..., v_{r}\}_{\mathcal{L}}$ に射影した \hat{u} を計算する.

$$\hat{\boldsymbol{u}} = \sum_{k=0}^{r} (\boldsymbol{u}, \boldsymbol{v}_k) \boldsymbol{v}_k \tag{41}$$

7. 次の u' を計算する.

$$\boldsymbol{u}' = \mathcal{N}[\boldsymbol{P}_{\mathcal{M}}\hat{\boldsymbol{u}}] \tag{42}$$

ただし $\mathcal{N}[\cdot]$ は単位ベクトルへの正規化を表す ($\mathcal{N}[a]$ = a ||a||).

8. $u' \approx u$ なら u' を返して終了する.そうでなければ $u \leftarrow N[u+u']$ としてステップ (2) に戻る.

ステップ (5) では絶対値の小さいr + 1 個の固有値を計 算するのが自然であるが,実験によれば単に値の小さい r+1 個の固有値を計算するほうが収束が速いことが確認 される.これは内部拘束を考えない Chojnacki ら [2] の FNS 法や Kanatani ら [10] の拡張 FNS 法でも同様であり, 値の小さい固有値を計算するほうが収束が速い [10, 9].

ステップ (8) では「 $u \leftarrow u'$ としてステップ (2) に戻 る」とするのが自然であるが、「中点」(u' + u)/2を正 規化した $\mathcal{N}[u' + u]$ を返すほうが収束が安定する.これ も Chojnacki ら [2] の FNS 法や Kanatani ら [10] の拡張 FNS 法でも同様である.

8. 解法の証明

前節の反復によって解が得られることは次のように示 される.まず,反復が収束した時点ではステップ(6)で 計算される \hat{N}_u はXの零空間に一致することを示す.式 (40)の P_M の定義より $P_M u_k = 0, k = 1, ..., r$ である から,式(38)のXの定義より $u_1, ..., u_r$ はXの固有値 0の固有ベクトルである.ゆえにステップ(5)で計算され るr+1個の $v_0, ..., v_r$ の内のr個は常に固有値 0の固有 ベクトルである. \hat{N}_u がXの零空間でないなら,一つの 固有ベクトル v_* は0でない固有値 λ_* (\neq 0)を持ち,残 りの固有ベクトルに直交する.それらの張る部分空間が $\mathcal{M}_u = \{u_1, ..., u_r\}_{\mathcal{L}}$ であるから, v_* は \mathcal{M}_u に直交する.

構成により,式(41)の \hat{u} は $\hat{\mathcal{N}}_{u} = \{v_{*}\}_{\mathcal{L}} \oplus \mathcal{M}$ の元で あり,式(42)のu'はそれを $\hat{\mathcal{N}}_{u}$ 内で \mathcal{M}_{u} に直交する方 向へ射影したものであるから,u'は $\pm v_{*}$ に一致する.反 復が終了した時点では $u = u' = \pm v_{*}$ であり, v_{*} は固有 値 λ_{*} の固有ベクトルであるから, $Xu = \lambda_{*}u$ が成り立 つ.両辺とuとの内積をとると

$$(\boldsymbol{u}, \boldsymbol{X}\boldsymbol{u}) = \lambda_* \,(\neq 0) \tag{43}$$

となる.しかし, $u (= \pm v_*)$ はXのすべての固有値0の 固有ベクトルと直交するので,それらの張る部分空間が M_u に直交する.したがって

$$\boldsymbol{P}_{\mathcal{M}}\boldsymbol{u} = \boldsymbol{u} \tag{44}$$

である.このため次の関係が成り立つ.

$$(\boldsymbol{u}, \boldsymbol{X}\boldsymbol{u}) = (\boldsymbol{u}, \boldsymbol{P}_{\mathcal{M}}(\boldsymbol{M} - \boldsymbol{L})\boldsymbol{P}_{\mathcal{M}}\boldsymbol{u}) = (\boldsymbol{u}, (\boldsymbol{M} - \boldsymbol{L})\boldsymbol{u})$$
$$= (\boldsymbol{u}, \boldsymbol{M}\boldsymbol{u}) - (\boldsymbol{u}, \boldsymbol{L}\boldsymbol{u})$$
(45)

しかし , (u, Mu) = (u, Lu)が恒等式であることが次のように示される .

$$(\boldsymbol{u}, \boldsymbol{M}\boldsymbol{u}) = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} W_{\alpha}^{(kl)}(\boldsymbol{\xi}_{\alpha}^{(k)}, \boldsymbol{u})(\boldsymbol{\xi}_{\alpha}^{(l)}, \boldsymbol{u}), \qquad (46)$$

$$(\boldsymbol{u}, \boldsymbol{L}\boldsymbol{u}) = \sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} v_{\alpha}^{(k)} v_{\alpha}^{(l)}(\boldsymbol{u}, V_{0}^{(kl)}[\boldsymbol{\xi}_{\alpha}]\boldsymbol{u})$$

$$= \sum_{\alpha=1}^{N} \sum_{k,l=1}^{3} \left(\sum_{m=1}^{3} W_{\alpha}^{(km)}(\boldsymbol{\xi}_{\alpha}^{(m)}, \boldsymbol{u})\right)$$

$$\left(\sum_{n=1}^{3} W_{\alpha}^{(ln)}(\boldsymbol{\xi}_{\alpha}^{(n)}, \boldsymbol{u})\right) V_{\alpha}^{(kl)}$$

$$= \sum_{\alpha=1}^{N} \sum_{m,n=1}^{3} \left(\sum_{k,l=1}^{3} W_{\alpha}^{(mk)} V_{\alpha}^{(kl)} W_{\alpha}^{(ln)}\right) (\boldsymbol{\xi}_{\alpha}^{(m)}, \boldsymbol{u}) (\boldsymbol{\xi}_{\alpha}^{(m)}, \boldsymbol{u})$$

$$= \sum_{\alpha=1}^{N} \sum_{m,n=1}^{3} W_{\alpha}^{(mn)}(\boldsymbol{\xi}_{\alpha}^{(m)}, \boldsymbol{u}) (\boldsymbol{\xi}_{\alpha}^{(n)}, \boldsymbol{u}) \qquad (47)$$

ただし $W_{\alpha} = V_{\alpha}^{-1}$ より得られる関係 $W_{\alpha}V_{\alpha}W_{\alpha} = W_{\alpha}$ を用いた.ゆえに (u, Xu) = 0であり,式 (43) に反する. したがって,反復が収束した時点では $\hat{\mathcal{N}}_{u}$ のすべての元が X の固有値 0 の固有ベクトルであり, $\hat{\mathcal{N}}_{u}$ は X の零空間に一致する. $u = u' = \pm v_{*} \in \hat{\mathcal{N}}_{u}$ であるから,Xu = 0 である.式 (44) と合わせて u (構成より単位ベクトル)が式 (39) を満たす解である.

9. 地盤の GPS 計測データの解析

測地学者は世界中で地盤の変形を GPS によってモニ ターしている.Table 1 は 2010 年 4 月, 2011 年 1 月, 2012 年 1 月における東日本の 8 基準点の X, Y, and Z座 標 (単位はメートル)である¹.Table 1 中の基準点の ID 0036, 0172, 0175, 0549, 0550, 0914, 0916, 0918 はそれ ぞれ Fig. 2 に示すように女川,気仙沼,志津川,矢本, 牡鹿,東和,南方,河北である.各データの共分散行列 $\begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \end{pmatrix}$ の各要素を Table 2 に示す.これを用

\σ₃₁ σ₃₂ σ₃₃/ NC, 2010 年 4 月と 2011 年 1 月のデータ, および 2011 年 1 月と 2012 年 1 月のデータに対して本論文の方法に よってアフィン変換のさまざまな部分群を最適に当ては める、考えるのは次の 9 通りである.

- 0. アフィン変換: 内部拘束なし
- 1. 相似変換: $\phi_1(u), ..., \phi_5(u)$
- 2. 剛体運動: $\phi_1(u), ..., \phi_6(u)$
- 3. 回転・スケール変化: $\phi_1(\boldsymbol{u}), \dots, \phi_5(\boldsymbol{u}), \phi_{16}(\boldsymbol{u}), \phi_{17}(\boldsymbol{u}), \phi_{18}(\boldsymbol{u})$
- 4. 並進・スケール変化: $\phi_7(\boldsymbol{u}), ..., \phi_{14}(\boldsymbol{u})$
- 5. 回転: $\phi_1(\boldsymbol{u}), ..., \phi_6(\boldsymbol{u}), \phi_{16}(\boldsymbol{u}), \phi_{17}(\boldsymbol{u}), \phi_{18}(\boldsymbol{u})$
- 6. 並進: $\phi_7(\boldsymbol{u}), ..., \phi_{15}(\boldsymbol{u})$
- 7. スケール変化: $\phi_7(\boldsymbol{u})$, ..., $\phi_{14}(\boldsymbol{u})$, $\phi_{16}(\boldsymbol{u})$, $\phi_{17}(\boldsymbol{u})$, $\phi_{18}(\boldsymbol{u})$
- 8. 恒等変換: $\phi_7(\boldsymbol{u}), ..., \phi_{18}(\boldsymbol{u})$

これらの部分群の包含関係を Fig. 3 に示す.反復の初期 値としては回転 R,並進t,スケール変化 s を最小二乗

¹国土地理院(http://www.gsi.go.jp)による.

Figure 2: Eight locations (black circles) in northeast Japan and the epicenter (the star mark) of the earthquake on 11 March 2011.

Table 1: The 3-D data (in meters) of eight locations in northeast Japan in April 2010, January 2011, and January 2012.

		April 2010	
ID	x	y	z
0036	-3911124.6109	3117611.8596	3944663.0892
0172	-3893613.1472	3089073.9138	3983982.4425
0175	-3898936.7310	3106983.5744	3964933.7807
0549	-3899954.0638	3134197.0846	3942545.9721
0550	-3922366.9569	3119914.9630	3931806.3441
0914	-3888499.5166	3113285.6200	3970160.1127
0916	-3884406.9622	3127530.4255	3963000.4271
0918	-3900409.6500	3124326.0455	3949941.0937
		January 2011	
ID	x	y	z
0036	-3911124.6161	3117611.8674	3944663.0891
0172	-3893613.1407	3089073.9247	3983982.4331
0175	-3898936.7224	3106983.5798	3964933.7745
0549	-3899954.0672	3134197.0985	3942545.9686
0550	-3922366.9488	3119914.9518	3931806.3268
0914	-3888499.5075	3113285.6240	3970160.1054
0916	-3884406.9628	3127530.4296	3963000.4215
0918	-3900409.6423	3124326.0532	3949941.0840
		January 2012	
ID	x	y	z
0036	-3911128.3589	3117608.0272	3944661.2547
0172	-3893616.5621	3089070.9017	3983980.4920
0175	-3898940.3307	3106980.2371	3964931.9731
0549	-3899957.3856	3134193.9276	3942544.6596
0550	-3922370.7681	3119910.6783	3931804.3063
0914	-3888502.8233	3113282.7641	3970158.5816
0916	-3884410.1104	3127527.7274	3962999.1209
0918	-3900413.1310	3124322.7276	3949939.5679

法で推定した (計算式は [8, 13] 参照). 具体的には t を運動前後の重心の差から推定し,スケール変化 s は重心からの平方平均誤差の変化から推定し,回転 R は特異値分解の方法 [4] で推定する.そして,その結果をモデルに応じて調節する. 具体的には回転がなければ R = I とし, 並進がなければ t = 0 とし,スケール変化がなければ s = 1とする.基準長は $L_0 = 1000$ とした.そしてどの部

	rigid motion rotation
affinity similarity	rotation+scale translation identity
,	translation+scale scale

Figure 3: The inclusion relationships of the subgroups of the 3-D affinity.

分群が生じているとみなせるかを各モデルに対する幾何 学的 AIC, 幾何学的 BIC, 幾何学的 MDL はそれぞれ次の ようになる [5, 6, 7] (幾何学的 BIC と幾何学的 MDL は 同じ値となる)

$$\text{G-AIC} = \hat{J} + 2(3N+p)\hat{\sigma}^2,$$

$$G-BIC = G-MDL = \hat{J} - (3N+p)\hat{\sigma}^2 \log \frac{\sigma^2}{L_0^2} \qquad (48)$$

ただし, \hat{J} は当てはめた残差 J の値であり, N はデータ 数 である(この実験では地点の数8). p はモデルの自由 度であり,上記のモデル0, 1, ..., 8 に対してそれぞれ p =12, 7, 6, 4, 4, 3, 3, 1, 0 である. $\hat{\sigma}^2$ は σ^2 の推定値であ る.モデル1, ..., 7 はすべて 3 次元アフィン変換の部分群 であるから,どのモデルが正しいとしても次のように推 定できる [4].

$$\hat{\sigma}^2 = \frac{\hat{J}_0}{3N - 12} \tag{49}$$

ただし, \hat{J}_0 はアフィン変換(モデル0)を当てはめた残 差である.

幾何学的 AIC は「赤池の AIC」[1] に基づいている.赤 池の AIC は Kullback-Leibler 情報量の評価にバイアス補 正を加えたものをデータ数 $N \rightarrow \infty$ に対して漸近評価し たものである.これをノイ ズレベル $\sigma \rightarrow 0$ で近似すると 幾何学的 AIC が得られる [5].幾何学的 BIC は「Schwarz の BIC」[15] に基づいている.Schwarz の BIC は各モデ ルに対する事後確率をラプラス近似したものをデータ数 $N \rightarrow \infty$ に対して漸近評価したものである.これをノイ

Table 2: Covariance matrices $(\times 10^{-8})$ of the GPS measurements in Table 1.

	April 2010							
ID	0036	0172	0175	0549	0550	0914	0916	0918
σ_{11}	543.81468	2600.5301	588.95526	299.42994	2298.3728	2580.3350	510.26601	2230.8269
σ_{22}	425.88304	2395.0165	557.68621	206.77237	2204.4857	2378.9566	473.90957	2148.0015
σ_{33}	320.91074	1180.6302	306.88459	187.97368	970.31985	1113.2217	255.43911	958.60970
σ_{23}	204.01142	655.80839	222.80817	129.75187	555.38549	609.86213	181.32306	530.02453
σ_{31}	-262.01505	-765.87092	-252.43021	-173.89883	-658.16237	-830.68293	-225.06877	-625.30146
σ_{12}	-143.09649	-145.37253	-155.31865	-117.32354	-141.02400	-180.97003	-143.14545	-98.325922
				Januar	y 2011			
ID	0036	0172	0175	0549	0550	0914	0916	0918
σ_{11}	287.87533	249.12117	452.82105	247.77608	2300.5173	2509.0785	1664.8206	803.41570
σ_{22}	208.37832	192.85786	371.08918	189.61635	1811.4054	1958.3768	1707.0988	592.74803
σ_{33}	186.80209	161.45344	230.58634	154.45629	869.80636	978.14059	822.11796	316.10716
σ_{23}	125.56468	110.72924	143.89346	106.81192	412.96236	417.99055	400.88891	182.73249
σ_{31}	-170.69383	-143.73564	-198.90161	-139.79921	-627.57330	-766.42047	-523.79020	-261.03986
σ_{12}	-112.37926	-93.520583	-101.24319	-90.106188	-71.178480	-71.479138	-43.792427	-84.101060
	January 2012							
ID	0036	0172	0175	0549	0550	0914	0916	0918
σ_{11}	305.96250	250.29374	384.59613	250.86478	273.56924	2514.4584	586.20375	274.97742
σ_{22}	215.96414	191.07272	222.83353	182.75383	195.10014	1960.5877	568.93574	178.45872
σ_{33}	212.30943	161.34809	219.11424	157.11409	162.31885	1000.0640	300.81322	156.79702
σ_{23}	135.52470	108.43137	141.58703	103.04156	111.27658	42.292048	179.18146	101.31024
σ_{31}	-190.15388	-145.39350	-211.37678	-141.09274	-154.20913	-771.60432	-299.18962	-140.78606
σ_{12}	-122.02639	-97.485117	-130.11266	-91.186199	-103.82372	-58.595343	-101.51431	-89.699310

Figure 4: Land movement between April 2010 and January 2011 (1000 times magnified).

ズレベル $\sigma \rightarrow 0$ で近似すると幾何学的 BIC が得られる [7].幾何学的 MDL は「Rissanen の MDL」[14] に基づい ている.Rissanen の MDL は最小記述長に最適に実数の 量子化を施したものをデータ数 $N \rightarrow \infty$ に対して漸近評 価したものである.これをノイズレベル $\sigma \rightarrow 0$ で近似す ると幾何学的 MDL が得られる [6].

2010 年 4 月と 2011 年 1 月のデータに対して, (-3899900,3116600,3956400)を原点とする仮の座標系 をとり,基準長を $L_0 = 1000$ として計算し,結果を元の 座標系に戻すと,最適なアフィン変換は次のようになる.

Table 3: The residual J, G-AIC, and G-BIC (= G-MDL) of each model for the deformation between April 2010 and January 2011. The models selected by these criteria are indicated by underlines.

model	J	G-AIC	G-BIC/MDL
0	2.7003×10^{-7}	1.8902×10^{-6}	2.5727×10^{-5}
1	3.4728×10^{-7}	1.7424×10^{-6}	2.2269×10^{-5}
2	3.7689×10^{-7}	1.7270×10^{-6}	2.1591×10^{-5}
3	1.8191×10^{-6}	3.0792×10^{-6}	2.1619×10^{-5}
4	4.6868×10^{-7}	1.7288×10^{-6}	2.0269×10^{-5}
5	2.3356×10^{-6}	3.5507×10^{-6}	2.1429×10^{-5}
6	5.0286×10^{-7}	1.7180×10^{-6}	1.9596×10^{-5}
7	1.9123×10^{-6}	$\overline{3.0374 \times 10^{-6}}$	1.9591×10^{-5}
8	2.4397×10^{-6}	3.5198×10^{-6}	1.9411×10^{-5}

これは GPS で採用されている WGS84 (World Geodetic System 1984) と呼ぶ地球を基準とする座標系によるものであるが,これを地表を基準とする座標系に変換してGMT (Generic Mapping Tools)²と呼ぶ作図ツールで地表の動きとして表示したものが Fig. 4 である.ただし,動きを1000 倍に拡大している.このアフィン変換が残差を最小にするものであり,その部分群を当てはめるとモデルの自由度が小さくなるので,必然的に残差が増加する.モデル選択はこの残差の増加と自由度とのバランスを測るものである.各部分群に対して計算した残差 J とG-AIC, G-BIC (= G-MDL)の値を Table 3 に示す.下線は選ばれたモデルを示す.

これを見ると分かるように幾何学的 AIC は,例えば相 似変換よりもずっと残差の大きいにもかかわらず,単に 並進が起こったと判断している.それに対して,幾何学的 BIC と幾何学的 MDL は地盤はまったく動いていないと 判定している.幾何学的 BIC と幾何学的 MDL は幾何学

²ハワイ大学マノア校 (http://gmt.soest.hawaii.edu/) が提供している.

Figure 5: Land movement between January 2011 and January 2012 (1000 times magnified).

Table 4: The residual J, G-AIC, and G-BIC (= G-MDL) of each model for the deformation between January 2011 and January 2012. The models selected by these criteria are indicated by underlines.

model	J	G-AIC	G-BIC/MDL
0	4.3727×10^{-5}	3.0609×10^{-4}	3.4988×10^{-3}
1	3.6948×10^{-3}	3.9207×10^{-3}	6.6700×10^{-3}
2	4.5971×10^{-3}	4.8157×10^{-3}	7.4762×10^{-3}
3	5.3537×10^{-1}	5.3557×10^{-1}	5.3805×10^{-1}
4	4.4057×10^{-3}	4.6098×10^{-3}	7.0930×10^{-3}
5	5.3544×10^{-1}	5.3564×10^{-1}	5.3816×10^{-1}
6	5.4640×10^{-3}	5.6608×10^{-3}	8.0553×10^{-3}
7	5.4541×10^{-1}	5.4559×10^{-1}	5.4781×10^{-1}
8	5.4563×10^{-1}	5.4581×10^{-1}	5.4794×10^{-1}

的 AIC に比べて自由度の少ないモデルを選ぶ傾向が高い ことが知られているが、ここにもそれが現れている.い ずれにしても、この時期は地盤が非常に安定していて、例 え動いたとしてもわずかな並進のみであると結論される. 一方、2011年1月と2012年1月のデータに対して同 様に計算すると、最適なアフィン変換は次のようになる.

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1.001228379683353 & -0.000959897405742 \\ 0.000950467968687 & 0.999279166869626 \\ 0.000338476069078 & -0.000240252011947 \\ -0.001235998473807 \\ -0.000926414154749 \\ 0.999671735382466 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 12668.80530537805 \\ 9615.24810701143 \\ 3365.90110431844 \end{pmatrix}$$
(51)

これを Fig. 4 と同様にして表示したものが Fig. 5 である (1000 倍に拡大). これを見ると地盤は南東の震源(Fig. 2 の右下の星印)の方向に向かって一様に並進しているよう に思える.しかし,幾何学的モデル選択を行うと,Table 4 から分かるように幾何学的 AIC も幾何学的 BIC も幾何 学的 MDL もアフィン変換そのものを選んでいる.すな わち,この地盤の動きはどの部分群によっても説明でき ないと判定している.これは2011 年 3 月 11 日にこの地 方で起きたマグニチュード 9.0 の大地震を反映するもの である.

10. まとめ

本論文ではセンサーによって計測した二組の3次元デー タがどのように並進,回転,スケール変化しているのか, あるいはしていないのかを判断するモデル選択のために, データにさまざまな運動モデルを最適に当てはめる新し い方法を提案した.本論文の方法は3次元アフィン変換 の部分群がパラメータにさまざまな内部拘束を指定して 得られることに着目して,内部拘束をもつ3次元アフィ ン変換を拡張 FNS 法によって計算するものである.これ により,従来のように運動のタイプごとに別々のパラメー タを導入する必要がなく,すべての部分群が同一の方法 で計算できる.そして,これを用いて GPS で計測した地 盤の移動のデータを解析し,東日本大震災による地盤の 変形がどのようなものかを判定する幾何学的モデル選択 の具体的な実施例を示した.

謝辞: GPS 計測および測地学に関する有益なご意見を頂いたト ルコ Istanbul 工科大学の Orhan Akyilmaz 准教授に感謝しま す.本研究の一部は日本学術振興会科学研究費(挑戦的萌芽研 究 24650086)の助成によった.

References

- H. Akaike, A new look at the statistical model identification, *IEEE Trans. Autom. Control.* 26-6 (1974-12), 716-723.
- [2] W. Chojnacki, M. J. Brooks, A. van den Hengel and D. Gawley, On the fitting of surfaces to data with covariances, *IEEE Trans. Patt. Anal. Mach. Intell.*, **22**-11 (2000-11), 1294–1303.
- [3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., Cambridge University Press, Cambridge, U.K., 2004.
- [4] K. Kanatani, Statistical Optimization for Geometric Computation: Theory and Practice, Elsevier Science, Amsterdam, the Netherlands, 1996; Reprinted, Dover, New York, NY, U.S.A., 2005.
- [5] K. Kanatani, Geometric information criterion for model selection, Int. J. Comput. Vis., 26-3 (1998-02/03), 171– 189.
- [6] K. Kanatani, Uncertainty modeling and model selection for geometric inference, *IEEE Trans. Patt. Anal. Mac. Intell.*, 26-10 (2004-10), 1307–1319.
- [7] K. Kanatani, Geometric BIC, *IEICE Trans. Inf. & Syst.*, Vol. E93-D-1 (2010-1), 144–151.
- [8] K. Kanatani and H. Niitsuma, Optimal computation of 3-D similarity: Gauss-Newton vs. Gauss-Helmert. *Comp. Stat. Data Anal.*, 56-12 (2012-12), 4470–4483.
- [9] K. Kanatani and Y. Sugaya, Performance evaluation of iterative geometric fitting algorithms. *Comp. Stat. Data Anal.* 52-2 (2007-10), 1208–1222.
- [10] K. Kanatani and Y. Sugaya, Compact fundamental matrix computation, IPSJ Trans. Comput. Vis. Appl. 2 (2010-3), 59–70.
- [11] 原裕貴,新妻弘崇,金谷健一,不均一な誤差分布をもつ空間 データからの3次元相似変換の最適計算,情報処理学会研 究報告,2011-CVIM-176-15 (2011-3),1-8.
- [12] 松永力,2次元/3次元幾何学的変換の統一的な最適計算 第18回画像センシングシンポジウム講演論文集,2012年 6月,横浜,IS4-04, pp. 1-8.
- [13] H. Niitsuma and K. Kanatani, Optimal computation of 3-D rotation under inhomogeneous anisotropic noise, *Proc. 12th IAPR Conf. Machine Vis. Appl. June* 13–15, 2011, Nara, Japan, pp. 112–115.
- [14] J. Rissanen, Stochastic Complexity in Statistical Inquiry, World Scientific, Singapore, 1989.
- [15] G. Schwarz, Estimating the dimension of a model, Annals Statis., 6-2 (1987-7), 461–464.