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Related Concepts

▶ Spectral Decomposition
▶ Pseudoinverse
▶ Karhunen–Loéve Expansion
▶ Principal Component Analysis
▶ Factorization

Definition

Spectral decomposition is an expression of a symmet-
ric matrix in terms of its eigenvalues and eigen vec-
tors, while singular value decomposition is a similar
expression of a nonzero rectangular matrix in terms
of its singular values and singular vectors.

Background

A linear mapping from Rn to Rm is represented by
an m × n matrix A. It is determined by the images
a1, ..., an ∈ Rm of an orthonormal basis {u1, ..., un}
of Rn in the form

A =

n∑
i=1

aiu
⊤
i . (1)

From the orthogonality ⟨ui,uj⟩ = δij (Kronecker
delta), where ⟨ · , · ⟩ denotes the inner product of vec-
tors, we can confirm that Aui = ai holds indeed.
For an n × n symmetric matrix A, there exist a

real value λ, called eigenvalue, and a nonzero vector
u (̸= 0), called eigenvector , such that

Au = λu. (2)

An n× n symmetric matrix has n eigenvalues λ1, ...,
λn (with possible overlaps), and the corresponding
eigenvectors u1, ..., un can be chosen to be mutually
orthogonal unit vectors. Hence, {u1, ..., un} serve as
an orthonormal basis of Rn. Eigenvalues and eigen-
vectors are easily computed using mathematical soft-
ware [1, 2].
The relationship Aui = λiui, i = 1, ..., n, implies

that A maps an orthonormal basis {u1, ..., un} to
λ1u1, ..., λnun. Letting ai = λiui in (1), we can
write the matrix A in the form

A =

n∑
i=1

λiuiu
⊤
i , (3)

which is called the spectral (or eigenvalue) decompo-
sition of A.

Theory

For a nonzero m × n matrix A (̸= O), there ex-
ists a positive value σ (> 0), called singular value,
a nonzero m-dimensional vector u (̸= 0), called left
singular vector , and a nonzero n-dimensional vector
v ( ̸= 0), called right singular vector , such that

Av = σu, A⊤u = σv. (4)

The left and right singular vectors are referred to sim-
ply as singular vectors.
Multiplying the first and the second equations of

(4) by A⊤ and A, respectively, we can see that

AA⊤u = σ2u, A⊤Av = σ2v. (5)

Namely, u and v are, respectively, the eigenvectors of
the m×m symmetric matrix AA⊤ and of the n× n
symmetric matrix A⊤A for eigenvalue σ2. Hence,
the number of singular values of A equals the num-
ber of nonzero eigenvalues of AA⊤ and A⊤A, which
is equal to the rank r ofA. Singular values and singu-
lar vectors are easily computed using mathematical
software [1, 2].

Since the singular vectors ui and vi are eigenvec-
tors of symmetric matrices, the singular vectors {ui}
and {vi}, i = 1, ..., r, can be chosen as orthonormal
sets. The set {vi}, i = 1, ..., r, can be extended to an
orthonormal basis {vi}, i = 1, ..., n, of Rm, in such
a way that vi, i = r + 1, ..., n, are the null vectors,
i.e., eigenvectors for eigenvalue 0, of A⊤A. Hence,

Avi = 0, i = r + 1, ..., n. (6)

This and (4) imply thatAmaps an orthonormal basis
{v1, ..., vm} to σ1u1, ..., σrur, 0, ..., 0. Hence, from
(1), the matrix A is written as

A =

r∑
i=1

σiuiv
⊤
i , (7)

which is called the singular value decomposition
(SVD) of A.

Pseudoinverse

If an m × n matrix A (̸= O) has the singular value
decomposition (7), its pseudoinverse (or generalized
inverse) of Moore-Penrose type is defined by

A− =

r∑
i=1

viu
⊤
i

σi
. (8)
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Some authors writeA− for general (not necessarily of
Moore-Penrose type) pseudoinverse and specifically
write A+ for the Moore-Penrose type to distinguish
it from others.
Note that inverse is defined only for nonsingular

(hence square) matrices while pseudoinverse is de-
fined for all nonzero (generally rectangular) matri-
ces. The inverse of a nonsingular matrix is defined
so that its product with the original matrix is the
identity. This is not necessarily so for pseudoinverse.
From (7) and (8), we can see that

AA− =

r∑
i=1

uiu
⊤
i (≜ P U ), (9)

A−A =

r∑
i=1

viv
⊤
i (≜ P V). (10)

The matrix P U represents projection onto the sub-
space U spanned by u1, ..., ur. In fact, the orthogo-
nality ⟨ui,uj⟩ = δij implies that P Uu = u for u ∈
U and P Uu = 0 for u ⊥ U . From (7), we see that U
coincides with the subspace spanned by the columns
of A. Similarly, the matrix P V represents projection
onto the subspace V spanned by the rows of A. Thus,
the product of a matrix A with its pseudoinverse A−

is the projection onto the subspace spanned by the
columns or the rows of A. Since the columns and
rows of a nonsingular matrix span the entire space,
for which the identity is the projection onto it, pseu-
doinverse is a natural extension of the inverse to ar-
bitrary rectangular matrices.
Since the columns of A span the subspace U and

the rows span V, the following identities hold:

AA−A = A, A−AA− = A−. (11)

Historically, the first equation is the definition the
general (not necessarily of Moore-Penrose type) pseu-
doinverse, and the Moore-Penrose type is obtained by
requiring the second equation (called reflexivity) and
the condition that AA− and A−A be symmetric.
Since pseudoinverse is defined for any nonzero ma-

trices, it can be defined for vectors, regarded as n×1
and 1× n matrices. For a vector a, the definition of
pseudoinverse implies

a− =
a⊤

∥a∥2
, (a⊤)− =

a

∥a∥2
. (12)

Consider a linear equation

Ax = b, (13)

where A is a nonzero m × n matrix, x is an n-
dimensional unknown vector, and b is a given m-
dimensional vector. The expression

x = A−b (14)

gives a least-squares solution such that (i) it mini-
mizes ∥Ax−b∥2 over all x and (ii) if the minimum is
not unique, it returns x for which ∥x∥2 is the smallest
among them. This procedure is an essential compo-
nent of multiview 3D reconstruction, using redundant
geometric constraints in the presence of noise [3].

Subspace Fitting

Given N points x1, ..., xN in Rn, we consider the
problem of finding an r-dimensional subspace (r <
N) that is the closest to them, where the closeness is
measured by the sum of square distances. We assume
that the coordinate system is translated so that the
origin O coincides with the centroid of the N points.
Let

S =

N∑
α=1

xαx
⊤
α . (15)

This matrix is called by many different names such as
the “moment matrix” and the “scatter matrix” (both
from physics). Here, let us call it, for convenience, the
covariance matrix , a term borrowed from statistics.

The form of (15) implies that it is a positive
semidefinite symmetric matrix, having nonnegative
eigenvalues. Let σ2

i be its eigenvalues, and ui the
corresponding unit eigenvectors, i = 1, ..., n. The
spectral decomposition of S has the form

S =

n∑
i=1

σ2
iuiu

⊤
i . (16)

We can show that u1 is the direction of the line from
which the sum of square distances of the N points is
the smallest; u2 is the direction of the line from which
the sum of square distances of the N points is the
smallest among all directions orthogonal to u1; u3 is
the direction of the line from which the sum of square
distances of the N points is the smallest among all
directions orthogonal to u1 and u2, and so on. Thus,
it is concluded that the r-dimensional subspace that
best approximates the N points is spanned by u1, ...,
ur. They are called the principal directions of the N
points.
Hierarchical construction of such subspaces of di-

mensions r = 1, 2, ... is called the Karhunen–
Loéve (KL) expansion in the domain of signal pro-
cessing, expanding individual signals with respect to
{ui}. The efficiency of transmission and display of
the signal improves by omitting those basis vectors
with small contributions. In statistics, this scheme is
called the principal component analysis (PCA), used
for extracting a small number of statistics that char-
acterize the data well.
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For most vision applications [4], however, we need
not compute the covariance matrix S. In fact, let

X =
(
x1 · · · xN

)
(17)

be the n × N matrix consisting of the data vectors
xα, α = 1, ..., N , as its columns. The covariance
matrix S of (16) equals

S = XX⊤. (18)

The singular value decomposition of X has the form

X =

n∑
i=1

σiuiv
⊤
i , (19)

because, as seen from (5), the eigenvalues of S =
XX⊤ equals the squares of the singular values of
X; ui and vi are the eigenvectors of XX⊤ and
X⊤X, respectively. Hence, the basis of the fitted
r-dimensional subspace is given by the singular vec-
tors u1, ..., ur of X. This approach considerably
reduces the computational complexity, since we need
not compute the covariance matrix S, which requires
O(n2N) operations, and the complexity of eigenanal-
ysis is O(n3), while for singular value decomposition
it is O(n2N) for N ≥ n and O(nN2) for n ≥ N
[1], i.e., the complexity ls linear in the length of the
“shorter side” of the matrix.
Exploiting this fact, we can see that 3D reconstruc-

tion, for example, from hundreds of thousands of data
points, which would require several hours of compu-
tation using spectral decomposition, can reduce to
several seconds using singlar value decomposition [3].

Matrix Product Representation

The spectral decomposition (3) is written as

A =
(
λ1u1 · · · λnun

)u⊤
1
...

u⊤
n


=

(
u1 · · · un

)λ1

. . .

λn


u⊤

1
...

u⊤
n


= UΛU⊤, (20)

where U is the n× n matrix consisting of the eigen-
vectors ui as its columns and Λ = diag(λ1, ..., λn).
Multiplying the above equation by U from right and
U⊤ from left, we obtain U⊤AU = Λ, which is known
as diagonalization of the symmetric matrix A.

Using the same rewriting as (20), we can express
the singular value decomposition (7) in the form

A = UΣV ⊤, (21)

where U and V are the m × r and n × r matri-
ces consisting of the singular vectors ui and vi as
their columns, respectively, and Σ = diag(σ1, ..., σr).
Then, the pseudoinverse (8) is written as

A− = V Σ−1U⊤. (22)

Application

The singular value decomposition in the form of (21)
is utilized in the method of factorization for 3D re-
construction from images [4, 5]. The singular value
decomposition also plays a central role in 3D vision
computation problems including optimal fundamen-
tal matrix estimation, optimal rotation estimation,
and multiview 3D reconstruction computation [3].
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