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Abstract. Many techniques have been proposed for segmenting feature
point trajectories tracked through a video sequence into independent
motions. It has been found, however, that methods that perform very
well in simulations perform very poorly for real video sequences. This
paper resolves this mystery by analyzing the geometric structure of the
degeneracy of the motion model. This leads to a new segmentation algo-
rithm: a multi-stage unsupervised learning scheme first using the degen-
erate motion model and then using the general 3-D motion model. We
demonstrate by simulated and real video experiments that our method
is superior to all existing methods in practical situations.

1 Introduction

Segmenting feature point trajectories tracked through a video sequence into in-
dependent motions is a first step of many video processing applications. Already,
many techniques have been proposed for this task.

Costeira and Kanade [1] proposed a segmentation algorithm based on the
shape interaction matrix. Gear [3] used the reduced row echelon form and graph
matching. Ichimura [4] used the discrimination criterion of Otsu [13]. He also used
the QR decomposition [5]. Inoue and Urahama [6] introduced fuzzy clustering.
Kanatani [8, 9, 10] incorporated model selection by the geometric AIC [7] and
robust estimation by LMedS [15]. Wu et al. [21] introduced orthogonal subspace
decomposition.

According to our experiments, however, many methods that exhibit high
accuracy in simulations perform very poorly for real video sequences. In this
paper, we show that this inconsistency is caused by the degeneracy of the motion
model on which the segmentation is based. The existence of such degeneracy was
already pointed out by Costeira and Kanade [1]. Here, we report a new type of
degeneracy, which we call parallel 2-D plane degeneracy, that, according to our
experience, most frequently occurs in realistic scenes.

This discovery leads to a new segmentation algorithm, which we call multi-
stage unsupervised learning : it operates first using our degeneracy model and
then using the general motion model. We demonstrate that our method is supe-
rior to all existing methods in practical situations.
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In Sec. 2, we describe the geometric constraints that underlie our method. In
Sec. 3, we analyze the degeneracy of motion model. Sec. 4 describes our multi-
stage learning scheme. In Sec. 5, we show synthetic and real video examples.
Sec. 6 concludes this paper.

2 Geometric Constraints

Suppose we track N feature points over M frames. Let (xκα, yκα) be the coordi-
nates of the αth point in the κth frame. Stacking all the coordinates vertically,
we represent the entire trajectory by the following 2M -D trajectory vector :

pα = (x1α y1α x2α y2α · · · xMα yMα)�. (1)

For convenience, we identify the frame number κ with “time” and refer to
the κth frame as “time κ”.

We regard the XY Z camera coordinate system as a reference, relative to
which multiple objects are moving. Consider a 3-D coordinate system fixed to
one moving object, and let tκ and {iκ, jκ,kκ} be, respectively, its origin and
basis vectors at time κ. Let (aα, bα, cα) be the coordinates of the αth point that
belong to that object. Its position with respect to the reference frame at time κ
is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

We assume an affine camera, which generalizes orthographic, weak perspec-
tive, and paraperspective projections [12, 14]: the 3-D point rκα is projected onto
the image position (

xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2 × 3 matrix and a 2-D vector determined
by the position and orientation of the camera and its internal parameters at time
κ. Substituting Eq. (2), we have

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-D vectors determined by the position and
orientation of the camera and its internal parameters at time κ. From Eq. (4),
the trajectory vector pα in Eq. (1) can be written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -D vectors obtained by stacking m̃0κ,
m̃1κ, m̃2κ, and m̃3κ vertically over the M frames, respectively.

Eq. (5) implies that the trajectories of the feature points that belong to one
object are constrained to be in the 4-D subspace spanned by {m0, m1, m2,
m3} in R2M . It follows that multiple moving objects can be segmented into
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individual motions by separating the trajectories vectors {pα} into distinct 4-D
subspaces. This is the principle of the method of subspace separation [8, 9].

In addition, the coefficient of m0 in Eq. (5) is identically 1 for all α. This
means that the trajectories are in a 3-D affine space within that 4-D subspace1.
It follows that multiple moving objects can be segmented into individual motions
by separating the trajectory vectors {pα} into distinct 3-D affine spaces. This is
the principle of the method of affine space separation [10].

Theoretically, the segmentation accuracy should be higher if we use stronger
constraints. Indeed, it is reported that in simulation the affine space separation
performs better than the subspace separation except in the case in which perspec-
tive effects are very strong and the noise is small [10]. For real video sequences,
however, we have found that the affine space separation accuracy is often lower
than that of the subspace separation [18, 19]. To resolve this inconsistency is the
first goal of this paper.

3 Structure of Degeneracy

The motions we most frequently encounter are such that the objects and the
background are translating and rotating 2-dimensionally in the image frame
with varying sizes. For such a motion, we can choose the basis vector kκ in
Eq. (2) in the Z direction (the camera optical axis is identified with the Z-axis).
Under the affine camera model, motions in the Z direction do not affect the
projected image except for its size. Hence, the term cαm̃3κ in Eq. (4) vanishes;
the scale changes of the projected image are absorbed by the scale changes of
m̃1κ and m̃2κ over time κ.

It follows that the trajectory vector pα in Eq. (5) belongs to the 2-D affine
space passing through m0 and spanned by m1 and m2 [18, 19]. All existing seg-
mentation methods based on the shape interaction matrix of Costeira and Kanade
[1] assume that the trajectories of different motions belong to independent 3-D
subspaces [8, 9]. Hence, degenerate motions cannot be correctly segmented.

If, in addition, the objects and the background do not rotate, we can fix the
basis vectors iκ and jκ in Eq. (2) to be in the X and Y directions, respectively.
Thus, the basis vectors iκ and jκ are common to all objects and the background,
so the vectors m1 and m2 in Eq. (5) are also common. Hence, the 2-D affine
spaces, or “planes”, of all the motions are parallel (Fig. 1(a)).

Note that parallel 2-D planes can be included in a 3-D affine space. Since
the affine space separation method attempts to segment the trajectories into
different 3-D affine spaces, it does not work if the objects and the background
undergo this type of degenerate motions. This explains why the accuracy of the
affine space separation is not as high as expected for real video sequences.

1 Customarily, m0 is identified with the centroid of {pα}, and Eq. (5) is written as(
p′

1 · · · p′
N

)
=

(
m1 m2 m3

)(
a1 · · · aN
b1 · · · bN
c1 · · · cN

)
or W = MS, where p′

α = pα − m0.

However, our formulation is more convenient for the subsequent analysis [12].
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Fig. 1. (a) If the motions of the objects and the background are degenerate, their

trajectory vectors belong to mutually parallel 2-D planes. (b) The data distributions

inside the individual 2-D planes are modeled by Gaussian distributions

4 Degeneracy-Tuned Learning

We now define an unsupervised learning scheme [16] tuned to the parallel 2-D
plane degeneracy. We assume that the noise in the coordinates of the feature
points is an independent Gaussian random variable of mean 0 and a constant
variance. We also model the data distributions inside the individual 2-D planes
by Gaussian distributions (Fig.1(b)).

Let n = 2M . Suppose N n-dimensional trajectory vectors {pα} are already
classified into m classes by some means. Initially, we define the weight W

(k)
α of

the vector pα by

W (k)
α =

{
1 if pα belongs to class k
0 otherwise (6)

Then, we iterate the following procedures A, B, and C in turn until all the
weights {W (k)

α } converge2.

A. Do the following computation for each class k = 1, ..., m.

1. Compute the fractional size w(k) and the centroid p
(k)
C of the class k:

w(k) =
1
N

N∑
α=1

W (k)
α , p

(k)
C =

∑N
α=1 W

(k)
α pα∑N

α=1 W
(k)
α

. (7)

2. Compute the n × n (second-order) moment matrix M (k):

M (k) =
∑N

α=1 W
(k)
α (pα − p

(k)
C )(pα − p

(k)
C )�∑N

α=1 W
(k)
α

. (8)

2 We stopped the iterations when the increments in W
(k)
α are all smaller than 10−10.
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B. Do the following computation.

1. Compute the total n × n moment matrix

M =
m∑

k=1

w(k)M (k). (9)

2. Let λ1 ≥ λ2 be the largest two eigenvalues of the matrix M , and u1 and u2

the corresponding unit eigenvectors.
3. Compute the common n × n projection matrices (I denotes the n × n unit

matrix):

P =
2∑

i=1

uiu
�
i , P⊥ = I − P . (10)

4. Estimate the noise variance in the direction orthogonal to all the affine spaces
by

σ̂2 = max[
tr[P⊥MP⊥]

n − 2
, σ2], (11)

where tr[ · ] denotes the trace and σ is an estimate of the tracking accuracy3.
5. Compute the n × n covariance matrix of the class k by

V (k) = PM (k)P + σ̂2P⊥. (12)

C. Do the following computation for each trajectory vector pα , α = 1, ..., N .

1. Compute the conditional likelihood P (α|k), k = 1, ..., m, by

P (α|k) =
e−(pα−p

(k)
C

,V (k)−1(pα−p
(k)
C

))/2√
det V (k)

. (13)

2. Recompute the weights {W (k)
α }, k = 1, ..., m, by

W (k)
α =

w(k)P (α|k)∑m
l=1 w(l)P (α|l) . (14)

After the iterations of A, B, and C have converged, the αth trajectory is
classified into the class k that maximizes W

(k)
α , k = 1, ..., N .

In the above iterations, we fit 2-D planes of the same orientation to all classes
by computing the common basis vectors u1 and u2 from all the data. We also
estimate a common outside noise variance from all the data. Regarding the
fraction w(k) (the first of Eqs. (7)) as the a priori probability of the class k, we
compute the probability4 P (α|k) of the trajectory vector pα conditioned to be in
the class k (Eq. (13)). Then, we apply Bayes’ theorem (Eq. (14)) to compute the
a posterior probability W

(k)
α , according which all the trajectories are reclassified.

3 The value σ = 0.5 (pixels) is suggested in [17] as a reasonable estimate.
4 Multipliers independent of α and k are omitted. They cancel out in Eq. (14).
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Note that W
(k)
α is generally a fraction, so one trajectory belongs to multiple

classes with fractional weights until the final classification is made.
This type of learning5 is widely used for clustering, and the likelihood is

known to increase monotonously by iterations [16]. It is also well known, however,
that the iterations are very likely to be trapped at a local maximum. So, correct
segmentation cannot be obtained by this type of iterations alone unless we start
from a very good initial value.

5 Multi-stage Learning

If we know that degeneracy exists, we can apply the above procedure for im-
proving the segmentation. However, we do not know if degeneracy exists. If the
trajectories were segmented into individual classes, we might detect degeneracy
by checking the dimensions of the individual classes, but we cannot do correct
segmentation unless we know whether or not degeneracy exists.

We resolve this difficulty by the following multi-stage learning. First, we use
the affine space separation assuming 2-D affine spaces, which effectively assumes
planar motions with varying sizes. For this, we use the Kanatani’s affine space
separation [10], which combines the shape interaction matrix of Costeira and
Kanade [1], model selection by the geometric AIC [7], and robust estimation
by LMedS [15]. segmentation by using the parallel plane degeneracy model, as
described in the preceding section.

The resulting solution should be very accurate if such a degeneracy really
exists. However, rotations may exist to some extent. So, we relax the constraint
and optimize the solution again by using the general 3-D motion model. This is
motivated by the fact that if the motions are really degenerate, the solution op-
timized by the degenerate model is not affected by the subsequent optimization,
because the degenerate constraints also satisfy the general constraints.

In sum, our scheme consists of the following three stages:

1. Initial segmentation by the affine space separation using 2-D affine spaces.
2. Unsupervised learning using the parallel 2-D plane degeneracy model.
3. Unsupervised learning using the general 3-D motion model.

The last stage is similar to the second except that 3-D affine spaces are sep-
arately fitted to individual classes. The outside noise variance is also estimated
separately for each class. The procedure goes as follows.

Initializing the weight W
(k)
α by Eq. (6), we iterate the following procedures

A and B in turn until all {W (k)
α } converge6:

5 This scheme is often referred to as the EM algorithm [2], because the mathematical
structure is the same as estimating parameters from “incomplete data” by maxi-
mizing the logarithmic likelihood marginalized by the posterior of the missing data
specified by Bayes’ theorem.

6 The convergence condition is the same as in Sec. 4: see footnote 2.
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A. Do the following computation for each class k = 1, ..., m.

1. Compute the fraction w(k) and the centroid p
(k)
C by Eqs. (7).

2. Compute the n × n moment matrix M (k) by Eq. (8).
3. Let λ1 ≥ λ2 ≥ λ3 be the largest three eigenvalues of the matrix M (k), and

u
(k)
1 , u

(k)
2 , and u

(k)
3 the corresponding unit eigenvectors.

4. Compute the n × n projection matrices

P (k) =
3∑

i=1

u
(k)
i u

(k)�
i , P

(k)
⊥ = I − P (k). (15)

5. Estimate the noise variance in the direction orthogonal to the affine space
of the class k by

σ̂2
k = max[

tr[P (k)
⊥ M (k)P

(k)
⊥ ]

n − 3
, σ2]. (16)

6. Compute the n × n covariance matrix of the class k by

V (k) = P (k)M (k)P (k) + σ̂2
kP

(k)
⊥ . (17)

B. Do the following computation for each trajectory vector pα, α = 1, ..., N .

1. Compute the conditional likelihood P (α|k), k = 1, ..., m, by Eq. (13).
2. Recompute the weights W

(k)
α , k = 1, ..., m, by Eq. (14).

After the iterations of A and B have converged, pα is classified into the class
k that maximizes W

(k)
α , k = 1, ..., m.

6 Other Issues

We assume that the number m of motions is specified by the user. For example,
if a single object is moving in a static background, both moving relative to the
camera, we have m = 2. Many studies have been done for estimating the number
of motions automatically [1, 3, 6], but none of them seems successful enough. This
is because the number of motions is not well-defined [9]: one moving object can
also be viewed as multiple objects moving similarly, and there is no rational
way to unify similarly moving objects into one from motion information alone,
except using heuristic thresholds or ad-hoc criteria. If model selection such as the
geometric AIC [7] and the geometric MDL [11] is used7, the resulting number
of motions depends on criteria as reported in [9]. In order to determine the
number m of motions, one needs high-level processing using color, shape, and
other information.

The feature point trajectories tracked through video frames are not neces-
sarily correct, so we need to remove outliers. If the trajectories were segmented

7 The program is available at: http://www.suri.it.okayama-u.ac.jp/e-program.html

http://www.suri.it.okayama-u.ac.jp/e-program.html
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(a)

(b)

(c)

Fig. 2. Simulated image sequences of 14 object points and 20 background points: (a)

almost degenerate motion; (b) nearly degenerate motion; (c) general 3-D motion

into individual classes, we could remove, for example, those that do not fit to
the individual affine spaces. In the presence of outliers, however, we cannot do
correct segmentation, and hence we do not know the affine spaces.

This difficulty can be resolved if we note that if the trajectory vectors {pα}
belong to m d-D subspaces, they should be constrained to be in a dm-D subspace
and if they belong to m d-D affine spaces, they should be in a ((d + 1)m − 1)-D
affine space. So, we robustly fit a dm-D subspace or a ((d + 1)m − 1)-D affine
space to {pα} by RANSAC and remove those that do not fit to it [17]. Thus, out-
liers can be removed without knowing the segmentation results . Theoretically, the
resulting trajectories may not necessarily be all correct. However, we observed
that all apparent outliers were removed by this method8, although some inliers
were also removed for safety [17].

7 Simulation Experiments

Fig. 2 shows three sequences of five synthetic images (supposedly of 512 × 512
pixels) of 14 object points and 20 background points; the object points are
connected by line segments for the ease of visualization. To simulate real cir-
cumstances better, all the points are perspectively projected onto each frame
with 30◦ angle of view, although the underlying theory is based on the affine
camera model without perspective effects.

8 The program is available at: http://www.suri.it.okayama-u.ac.jp/e-program.html

http://www.suri.it.okayama-u.ac.jp/e-program.html
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Fig. 3. Misclassification ratio for the sequences (a), (b), and (c) in Fig. 2: 1) Costeira-

Kanade; 2) Ichimura; 3) optimized subspace separation; 4) optimized affine space sep-

aration; 5) multi-stage learning

In all the these sequences, the object moves toward the viewer in one direction
(10◦ from the image plane), while the background moves away from the viewer
in another direction (10◦ from the image plane). In (a), the object and the
background are simply translating in different directions. In (b) and (c), they
are additionally rotating by 2◦ per frame in opposite senses around different axes
making 10◦ from the optical axis in (b) and 60◦ in (b). Thus, all the three motions
are not strictly degenerate (with perspective effects), but the motion is almost
degenerate in (a), nearly degenerate in (b), and a general 3-D motion in (c).

Adding independent Gaussian random noise of mean 0 and standard devia-
tion σ to the coordinates of all the points, we segmented them into two groups.
Fig. 3 plots the average misclassification ratio over 500 trials using different
noise. We compared 1) the Costeira-Kanade method [1], 2) Ichimura’s method
[4], 3) the subspace separation [8, 9] followed by unsupervised learning (we call
this optimized subspace separation for short), 4) the affine space separation [10]
followed by unsupervised learning (optimized affine space separation for short),
and 5) our multi-stage learning.

For the almost degenerate motion in Fig. 2(a), the optimized subspace and
affine space separations do not work very well. Also, the latter is not superior
to the former (Fig. 3(a)). Since our multi-stage learning is based on this type of
degeneracy, it achieves 100% accuracy over all the noise range.

For the nearly degenerate motion in Fig. 2(b), the optimized subspace and
affine space separations work fairly well (Fig. 3(b)). However, our method still
attains almost 100% accuracy.

For the general 3-D motion in Fig. 2(c), the optimized subspace and affine
space separations exhibit relatively high performance (Fig. 3(c)), but our method
performs much better with nearly 100% accuracy again.

Although the same learning procedure is used in the end, the multi-stage
learning performs better than the optimal affine space separation, because the
former starts from a better initial value than the latter. For all the motions,
the Costeira-Kanade method performs very poorly. The accuracy is not 100%
even in the absence of noise (σ = 0) because of the perspective effects. Ichimura’s
method is not effective, either. It works to some extent for the general 3-D motion
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Fig. 4. Comparison of misclassification ratios: (a) Effects of unsupervised learning: 1)

subspace separation; 2) optimized subspace separation; 3) affine space separation; 4)

optimized affine space separation. (b) Stage-wise effect of multi-stage learning: 1) affine

space separation using 2-D affine spaces; 2) unsupervised learning using the parallel

2-D plane degeneracy model; 3) unsupervised learning using the general 3-D motion

model

in Fig. 2(c), but it does not compare with the optimized subspace or affine space
separation, much less with our multi-stage optimization method.

Fig. 4(a) shows the effects of learning for Fig. 2(c). We can see that the learn-
ing works effectively. As compared with them, however, our multi-stage learning
is far better. Fig. 4(b) shows the stage-wise effects of our multi-stage learning
for Fig. 2(c). For this general 3-D motion, the learning using the parallel 2-D
plane degeneracy model does not perform so very well indeed, but the subse-
quent learning based on the general 3-D motion model successfully restores the
accuracy up to almost 100%. The interesting fact is that the accuracy increases
as the noise increases. This reflects the characteristics of the initial affine space
separation, whose accuracy deteriorates if perspective projection is affinely ap-
proximated for accurate data [10].

8 Real Video Experiments

Fig. 5 shows five decimated frames from three video sequences A, B, and C
(320 × 240 pixels). For each sequence, we detected feature points in the initial
frame and tracked them using the Kanade-Lucas-Tomasi algorithm [20]. The
marks � indicate their positions.

Table 1(a) lists the number of frames, the number of inlier trajectories, and
the computation time for our multi-stage learning. The computation time is re-
duced by compressing the trajectory data into 8-D vectors [18]. We used Pentium
4 2.4GHz for the CPU with 1GB main memory and Linux for the OS. Table 1(b)
lists the accuracies of different methods (“opt” stands for “optimized”) measured
by (the number of correctly classified points)/(the total number of points) in per-
centage. Except for the Costeira-Kanade and Ichimura methods, the percentage
is averaged over 50 trials, since the subspace and affine space separations inter-
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A:

B:

C:

Fig. 5. Three video sequences and successfully tracked feature points

Table 1. (a) The computation time for the multi-stage learning of the sequences in

Fig. 5. (b) Segmentation accuracy (%) for the sequences in Fig. 5

(a) (b)

A B C

# of frames 30 17 100

# of points 136 63 73

CPU time (sec) 2.50 0.51 1.49

A B C

Costeira-Kanade 60.3 71.3 58.8

Ichimura 92.6 80.1 68.3

subspace separation 59.3 99.5 98.9

affine space separation 81.8 99.7 67.5

opt. subspace separation 99.0 99.6 99.6

opt. affine space separation 99.0 99.8 69.3

multi-stage learning 100.0 100.0 100.0

nally use random sampling for robust estimation and hence the result is slightly
different for each trial.

As we can see, the Costeira-Kanade method fails to produce meaningful seg-
mentation. Ichimura’s method is effective for sequences A and B but not so ef-
fective for sequence C. For sequence A, the affine space separation is superior to
the subspace separation. For sequence B, the two methods have almost the same
performance. For sequence C, the subspace separation is superior to the affine
space separation, suggesting that the motion in sequence C is nearly degenerate.

The effect of learning is larger for sequence A than for sequences B and C,
for which the accuracy is already high before the learning. Thus, the effect of
learning very much depends on the quality of the initial segmentation. For all
the three sequences, our multi-stage learning achieves 100% accuracy.
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9 Conclusions

In this paper, we analyzed the geometric structure of the degeneracy of the
motion model that underlies the subspace and affine space separation methods
[8–10] and resolved the apparent inconsistency that the affine space separation
accuracy is often lower than that of the subspace separation for real video se-
quences. Our conclusion is that this is due to the occurrence of a special type of
degeneracy, which we call parallel 2-D plane degeneracy.

Exploiting this finding, we proposed a multi-stage learning scheme first using
the parallel 2-D plane degeneracy model and then using the general 3-D motion
model. Doing simulations and real video experiments, we demonstrated that our
method is superior to all existing methods in realistic circumstances.

The reason for this superiority is that our method is tuned to realistic circum-
stances, where the motions of objects and backgrounds are almost degenerate,
whereas most existing methods implicitly assume that objects and backgrounds
undergo general 3-D motions. As a result, they perform very poorly for simple
motions such as in Fig. 5, while our method9 has very high performance without
compromising the accuracy for considerably non-degenerate motions.
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