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STRESS-STRAIN RELATIONSHIP OF SOILS AS
ANISOTROPIC BODIES UNDER THREE DIFFERENT
PRINCIPAL STRESSES*

"+ Discussioni by Ken-icHi KANATANP¥* - -
.( 4 ; . . -
- The author asserts that the: dnlatancy of soil is a phenomenon caused by amsotropy

The purpose of this discussion is to point out that the authors formulatlon is for a
nonlinear isotropic materlals .

1. What is dilatancy and shearmg stress? o . T
The dilatancy of soil 1s usually regarded as the volume change due to shearing stress.
What is shearingstress ' ‘exactly? From the viewpoint of mathematlcs, the shearmg
‘stress is nothing ‘but the deviatoric part of the stress tensor The stress tensor & is
resolved into the scalar. part and {he deviatoric part as '
: ' : ﬂu—'—.wu‘l'ﬁur e e (24)
.where @ and », are respectwely the stress devxator and the hydrostatlc pressure defmed
by S . . S
. N qu-du (drm/3)3u» P=”_o'kk/3 e TR (25) =
The summation conventlon is.-adopted, and 5,, is the Kronecket delta., ‘This _definition
of shearing stress by & is the only one that is invariant to coordinate transformations
(e.g., Kanatani, 1980). The author claims that't'his“iS'his/ new idea, but it is a well estab-
llshed fact in contmuum mechanlcs.n o
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'2 Dzlatancy does not occur in ailinear material whether it be zsotropzc or amsotropzc
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As is well known the constrtutwe equatlon of & linear |sotrop1c materlal is

L. eu= fdu (”/(1'*'”))0»::511]/2#: : "f (25)
where pis the shear modulus, v the. ,Pleson ratio and e, the straln tensor If we take
the scalar part and the deviatoric” part of the both sides of Eq. (25), we obtam

L v=Lplk7 By=dyl2u, @7
where v=e, is.the rate.of volume, increase, s=(1—2)/2;u(1+v) is: the bulk modulus
and € is the stram devxatog i-e., the shearing strain (e.g., Kanatani, 1980).". The volume
change v is determlned by the hydrostatlc pressure p alone, and the shearmg straln éis
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determined by the shearing stress & alone: - Hence," dilatancy does ' not ‘occur in-a lmear
isotropic material. Then,® what about a hnear "anisotropic material ? :

If the material is anisotropic, then: non- zero volume increase v (30) may p0551bly be
observed under shearing stress @ If it is the case, however, the linearity 1mplles that
the volume increase by —v should be observed under =&, i.e., the shearing in the opposit
direction (Fig.10). In other words, v(&) is a linear function as is schematically described
in Fig.10. This phenomenon is not what is usually called “dilatancy”. It is merely an
anisotropic deformation. "

The dilatancy actually observed is schematically shown in Fig.11, and thus it is
essentially a nonlinear phenomenon. If the material is isotropic, then v,=v, and the

curve v(@) is symmetric with respect to the v-axis. I it is anisotropic, then %7, in

general and the curve v»(&) is nonsymmetric in general.
a/

(a) o R (- I : . (b) :

. ~'Fig. 11. (a) Nonlinear deformation. If the
Fig. 10. (a) Linear anisotropic deforma- . material is isotropic, then v,=v, . (b).
tion (b) Lmear volnmetnc strain ‘ . Dilatancy, relation. If the material is,
relation S . ~ isotropic, the curve is symmetric with

respect to the v-axis .

3. How can the nonlinear isotropy be described ?
The material is isotropic if and only if the strain e is determined by the present stres’s
o alone, i.e, e=e(g). (Here, we do not consider rheology and history dependence.)
According to the Hamilton-Cayley theorem of linear algebra, the powers o% @*, 6% ::-‘are
all expressed in terms of a,0® and the three scalar mvanants Jl, J, and J, of o. Thus,
the most general constitutive equation is : :
e,y=0a, 0yt a0yt as0120ss (28)
where a,, a; and a; are scalar functions of the three invariants J,,J, and J;. From this,
we can conclude that' thé principal stress axes coincide with those of strain!/- Taking
the common principal axes as the coordinate system and numbering the axes so that
¢,>0,>0; we can express Eq. (28) in the form of N
e,=e,(0,, 05, 73), ez—ez(dno'z»aa)y es=e;(0y, 03, 0). (29)
Determination of the three function forms for e, e, and e is equivalent to determining
the three function forms for a, a, and «; in Egs. (28). Thus, any material whose
constitutive relation is expressed in the form:6f:Egs..(29) is necessarily isotropic. Indeed,
we are claiming that Egs. (29) are valid no matter how the principal axes are directed
relative to the materzal ’
If the materxal |s amsotroplc, we must have

e= e(a,C), J (30)

5o
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where C is a tensor mtrms:cally determmed by the materzal ztself (not by the stress)

Hence, the prmcnpal. stress axes do rot necessarily" coincide with’ those  of stress, “and
we cannot have expressions like Egs. (29)?-"If the material has orthogonal anisoticopy,
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and if the external loading happens to be such that the principal stress axes coincide
with the material axes of anisotropy, we cah write down the results in the form of
Eqs.(29). However, they do not describe the constitutive relation because they do not
hold for a general stress state specified by the: principal components ¢y, 0; and ¢;. The
constitutive equation must necessarily be given by the form of Eq. (30).

4. Conclusions

(1) The author’s results are expressed in the form of Egs. (29), i.e., the strain is
completely determined by the principal stress components ¢,, o, and ¢; alone without any
reference to the material axes of anisotropy. In other words, the author is claiming
that his results hold for any stress state which has g, 0, and ¢; as the principal com-
ponents. This means that his formulation is for a (nonlinear) isotropic material. (2)
The author assumes that the axes of the internal soil structure, which he calls “aniso-
tropy”, are not fixed by the material itself but are determined by and coincide with
the principal stress axes. This is nothing but the very criterion of isotropy itself. (3) The
author obtained the numerical data by triaxial compression tests. The triaxial compres-
sion test essentially requires the assumption of isotropy. For example, the principal
strain axes are usually assumed to coincide with the principal stress axes. Moreover,
the equipment is usually cylindrical or cubic, not spherical. Hence, some amount of
anisotropy is always introduced due to the shape of the equipment. This anisotropy is
not the pure characteristics of the material but rather those of the equipment. In order
to distinguish the anisotropy induced by the equipment from that of the material, one
must rotate the material inside the equipment to test whether the material axes of
anisotropy exist or not. But again the author does not refer to the material axes of
anisotropy at all.

In view of these facts altogether, it is concluded that the author’s formulation is for
a nonlinear isotropic material.
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A STRESS-STRAIN RELATIONSHIP OF NORMALLY
CONSOLIDATED COHESIVE SOIL UNDER GENERAL
STRESS CONDITION*

Discussion by V.K. Toku**

The writer appreciates the work of Ohmaki in developing a stress-strain relationship
which is applicable to normally consolidated soils under general stress system from param-
eters which are obtained solely from triaxial test. The writer wishes to make a contri-
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