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ABSTRACT

A new numerical scheme is presented for strictly computing maximum likelihood (ML) of geometric fitting
problems. Intensively studied in the past are those methods that first transform the data into a computationally
convenient form and then assume Gaussian noise in the transformed space. In contrast, our method assumes
Gaussian noise in the original data space. It is shown that the strict ML solution can be computed by iteratively
using existing methods. Then, our method is applied to ellipse fitting and fundamental matrix computation.
Our method is also shown to encompasses optimal correction, computing, e.g., perpendiculars to an ellipse and
triangulating stereo images. While such applications have been studied individually, our method generalizes
them into an application independent form from a unified point of view.

1. INTRODUCTION

This paper presents a unified numerical scheme for computing strict maximum likelihood (ML) for the problem
called geometric fitting .11 By “strict”, we mean Gaussian noise is assumed in the original data space while it
has often been assumed in the conveniently transformed data space.13,15,17 By “unified”, we mean problem-
dependent schemes specifically derived in particular applications can be obtained as special cases of our general
theory. To demonstrate this, we show that our theory reduces to the strict ML ellipse fitting technique of
Kanatani and Sugaya18,20 and the strict ML fundamental matrix computation of Kanatani and Sugaya.19,21 We
also show that our general theory encompasses the problem called optimal correction.11 In the past, specific
algorithms have been proposed for particular problems including triangulation from two views.22 We show that
these are also derived as special cases of our general theory.

We first summarize existing formations in Sect. 2, 3, and 4. Then, we present our new formulation in Sect. 5,
6, and 7, and show its applications in Sect. 8. In Sect. 9, our method is reduced to optimal correction schemes.
We conclude in Sect. 10.

2. GEOMETRIC FITTING

Geometric fitting∗11 is a problem of fitting to noisy vector data xα, α = 1, ..., N , an implicit equation in the
form

F (x;u) = 0, (1)

parameterized by u. Namely, we want to estimate the parameter u in such a way that F (xα;u) ≈ 0 for all α.
Many computer vision problems are formulated in this way;10,11 one can infer the shapes and the positions of
objects seen in images from the thus computed u.

The function F (x;u) in Eq. (1) is generally nonlinear in the data vector x. However, it is often linear in
the parameter u or can be made linear by an appropriate reparameterization. In such a case, Eq. (1) can be
rewritten as

(ξ(x), u) = 0, (2)
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where and throughout this paper we denote by (a, b) the inner product of vectors a and b. The ith component
ξi(x) of the vector ξ(x) consists of (generally nonlinear) terms in x that are multiplied by ui. If terms that
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∗In statistics, it is also called the Gauss-Helmert model as opposed to the Gauss-Markoff model for which Eq. (1) can

be explicitly solved for x in terms of u.6,24
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Figure 1. (a) Fitting an ellipse to a point sequence. (b) Computing the fundamental matrix from corresponding points
between two images.

do not involve u are added, they are regarded as multiplied by an unknown, which we identify with the final
component un of u. Then, we should obtain a solution such that un = 1, but because Eq. (2) is homogeneous
in u, we can determine u only up to scale. It follows that an arbitrary normalization can be imposed on u, such
as ‖u‖ = 1.

Example 1 (Ellipse fitting). We want to fit to a point sequence (xα, yα), α = 1, ..., N , an ellipse in the
form

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0. (3)

(Fig. 1(a)). If we define ξ(x, y) and u by

ξ(x, y) = (x2 2xy y2 2x 2y 1)>, u = (A B C D E F )>, (4)

then Eq. (3) has the form of Eq. (2).17

Example 2 (Fundamental matrix computation). Consider two images of the same scene viewed from
different positions. If point (x, y) in the first image corresponds to (x′, y′) in the second, the following epipolar
equation is satisfied10 (Fig. 1(b)):

(

x
y
1

 ,F

 x′

y′

1

) = 0. (5)

Here, F is a matrix of rank 2, called the fundamental matrix , which does not depend on the scene we are looking
at; it depends only on the relative positions of the two cameras and their intrinsic parameters. By computing
the fundamental matrix F from point correspondences, we can reconstruct the 3-D shape of the scene and the
camera positions.14 If we define

ξ(x, y, x′, y′) = (xx′ xy′ x yx′ yy′ y x′ y′ 1)>, u = (F11 F12 F13 F21 F22 F23 F31 F32 F33)>, (6)

then Eq. (5) has the form of Eq. (2).15

3. GAUSSIAN NOISE IN THE ξ-SPACE

For statistical inference from noisy data, we need to specify two things:

• Noise model: What kind of property do we assume noise to have?
• Criterion of optimality: What kind of solution do we regard as optimal?

The standard noise model is independent Gaussian noise of mean 0, for which we have two alternatives: Gaussian
noise in the original data xα and Gaussian noise in the transformed data ξα = ξ(xα). The aim of this paper is
to compare the effect of these two. The covariance matrix V [xα] of xα and the covariance matrix V [ξα] of ξα

are related, up to high (fourth to be exact) order terms in the noise magnitude, by

V [ξα] =
( ∂ξ

∂x

)
α
V [xα]

( ∂ξ

∂x

)>

α
, (7)

where ∂ξ/∂x is the Jacobian matrix of the mapping ξ(x), and (∂ξ/∂x)α means x = xα is substituted.
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Example 3 (Ellipse fitting). If each point (xα, yα) has independent noise of mean 0 and standard
deviation σ in its x and y coordinates, the covariance matrix V [ξα] is written as follows:17

V [ξα] = 4σ2


x2

α xαyα 0 xα 0 0
xαyα x2

α + y2
α xαyα yα xα 0

0 xαyα y2
α 0 yα 0

xα yα 0 1 0 0
0 xα yα 0 1 0
0 0 0 0 0 0

. (8)

Example 4 (Fundamental matrix computation). If each correspondence pair (xα, yα) and (x′
α, y′

α) has
independent noise of mean 0 and standard deviation σ in its x and y coordinates, the covariance matrix V [ξα]
is written as follows:15

V [ξα] = σ2



x2
α + x′2

α x′
αy′

α x′
α xαyα 0 0 xα 0 0

x′
αy′

α x2
α + y′2

α y′
α 0 xαyα 0 0 xα 0

x′
α y′

α 1 0 0 0 0 0 0
xαyα 0 0 y2

α + x′2
α x′

αy′
α x′

α yα 0 0
0 xαyα 0 x′

αy′
α y2

α + y′2
α y′

α 0 yα 0
0 0 0 x′

α y′
α 1 0 0 0

xα 0 0 yα 0 0 1 0 0
0 xα 0 0 yα 0 0 1 0
0 0 0 0 0 0 0 0 0


. (9)

4. ML IN THE ξ-SPACE

The standard criterion for optimality is maximum likelihood (ML): the likelihood function obtained by substi-
tuting observed data into the probability density of the noise model is maximized, or equivalently its negative
logarithm is minimized. It is known that the resulting solution achieves the theoretical accuracy bound called
the KCR lower bound3,11,12 up to higher order noise terms.

If Gaussian noise is assumed in the ξ-space, ML reduces to minimization of the square sum of the Mahalanobis
distances

J =
N∑

α=1

(ξα − ξ̄α, V [ξα]−1(ξα − ξ̄α)) subject to (ξ̄α, u) = 0, α = 1, ..., N, (10)

with respect to ξ̄α and u. Since the constraint is linear in ξ̄α, it can be eliminated by introducing Lagrange
multipliers, reducing Eq. (10) to the following expression†.13

J =
N∑

α=1

(ξα, u)2

(u, V [ξα]u)
. (11)

This formulation is favored because various numerical schemes are available for minimizing Eq. (11).13 Typical
ones include the FNS (Fundamental Numerical Scheme) of Chojnacki et al.,4 the HEIV (Heteroscedastic Errors
In Variables) of Leedan and Meer,23 and the projective Gauss-Newton iterations of Kanatani and Sugaya.15,17

These apply when no special constraint (scale normalization aside) is imposed on u. For computing the funda-
mental matrix, however, it has an additional constraint that it has rank 2. The FNS of Chojnacki et al.4 can
be extended to incorporate such constraints in the form of the CFNS ‡ (Constrained FNS ) of Chojnacki et al.5

and the EFNS (Extended FNS ) of Kanatani and Sugaya.16

†If ξ has constant components as in Eqs. (4) and (6), the covariance matrix V [ξα] becomes singular as seen in Eqs. (8)
and (9). In such a case, we replace V [ξα]−1 in Eq. (10) by the pseudoinverse, which means we focus only on those
components of ξα that can vary. Still, Eq. (11) holds.11

‡It was pointed out that CFNS does not necessarily compute a correct solution.16
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5. ML IN THE x-SPACE

The preceding formulation suits numerical computation and accuracy analysis.13 However, the assumed noise
model may not always be natural. For ellipse fitting, for example, it is very natural to assume that each point
(xα, yα) has independent Gaussian noise in its x and y coordinates. If we nonlinearly change variables as in
Eqs. (4), the noise in the transformed ξα is, strictly, no longer Gaussian. Similarly, it is natural to assume that
each corresponding pair (xα, yα) and (x′

α, y′
α) has independent Gaussian noise in its x and y coordinates, but

the noise in the nonlinearly transformed ξα as in Eqs. (6) is, strictly, no longer Gaussian.

Whether we assume Gaussian noise in the ξ-space or in the x-space may not make much difference as long
as the noise is small, but some difference may arise when the noise is large. Studying this is the purpose of
this paper. If Gaussian noise is assumed in the x-space, ML reduces to minimization of the square sum of the
Mahalanobis distances§

E =
N∑

α=1

(xα − x̄α, V [xα]−1(xα − x̄α)), (12)

subject to the “implicit” constraint
(ξ(x̄α), u) = 0, α = 1, ..., N, (13)

with respect to x̄α and u. Let us call Eq. (12) the reprojection error (see footnote ¶).

In the past, this problem has been solved for particular applications by problem-dependent methods. For
ellipse fitting, for example, auxiliary variables such as the center, the radii and the orientations of the major
and minor axes, and the angles of individual points seen from the center are introduced, and the resulting
high dimensional parameter space is searched by various numerical schemes.2,7, 8, 25 For fundamental matrix
computation, auxiliary variables are introduced by tentatively reconstructing the 3-D positions of the observed
points from an assumed fundamental matrix, which is a function of the camera parameters (the relative positions
of the cameras and its intrinsic parameters), and the resulting high dimensional space of these auxiliary variables
is searched so that the image positions obtained by “reprojecting” the reconstructed 3-D points are as close to
the observed points as possible¶.1 Such an approach is called bundle adjustment .26

Once we obtain an “explicit” function of unknown parameters by introducing appropriate auxiliary variables
in a problem-dependent way, we can minimized it by various means such as the Levenberg-Marquardt method.
However, the resulting parameter space is usually very high dimensional, so we need a clever implementation
(e.g., preprocessing of sparse matrices) by considering the particularities of the problem. Recently, Kanatani
and Sugaya18,20 presented a new ML scheme for ellipse fitting in the xy plane, and Kanatani and Sugaya19,21

presented a new ML scheme for fundamental matrix computation in the joint xyx′y′ space. This paper generalizes
their methods and presents a problem-independent procedure for directly minimizing Eq. (12) subject to the
implicit constraint of Eq. (13). No auxiliary variables are necessary.

For the problems in which the constraint has the general form of Eq. (1), Mikhail and Ackermann6,24 described
a numerical procedure based on Taylor expansion of Eq. (1) with respect to x and u, which iteratively solves
simultaneous linear equations in the increments of u and xα, α = 1, ..., N . Our method exploits the form of
Eq. (13) and restricts the computation within the low dimensional space of the unknown u.

6. FIRST APPROXIMATION

Instead of directly estimating x̄α, we may write

x̄α = xα − ∆xα, (14)

and estimate the correction term ∆xα. Then, Eq. (12) becomes

E =
N∑

α=1

(∆xα, V [xα]−1∆xα). (15)

§The following argument holds if V [xα] is singular. All we need is to replace V [xα]−1 by its pseudoinverse and
appropriately use projection operations.11

¶From this, Eq. (13) comes to be known as the “reprojection error”.
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Equation (13) is now
(ξ(xα − ∆xα),u) = 0. (16)

Letting ξα = ξ(xα), substituting the Taylor expansion ξ(xα − ∆xα) = ξα − (∂ξ/∂x)α∆xα + · · ·, and ignoring
second order term in ∆xα, we obtain

(
( ∂ξ

∂x

)
α
∆xα, u) = (ξα, u), (17)

where, as in Eq. (7), (∂ξ/∂x)α denotes the Jacobian matrix of the mapping ξ(x) followed by substitution of x
= xα. In order to eliminate the constraint of Eq. (17), we introduce Lagrange multipliers λα in the form

N∑
α=1

(∆xα, V [xα]−1∆xα) −
N∑

α=1

λα

(
(
( ∂ξ

∂x

)
α
∆xα, u) − (ξα, u)

)
. (18)

Differentiating this with respect to ∆xα and putting the result to 0, we obtain

2V [xα]−1∆xα − λα

( ∂ξ

∂x

)>

α
u = 0, (19)

from which we have

∆xα =
λα

2
V [xα]

( ∂ξ

∂x

)>

α
u. (20)

Substitution of this into Eq. (17) yields

λα

2
(
( ∂ξ

∂x

)
α
V [xα]

( ∂ξ

∂x

)>

α
u, u) = (ξα, u). (21)

If we recall the identity in Eq. (7), λα has the following form:

λα =
2(ξα, u)

(u, V [ξα]u)
. (22)

Substituting Eq. (20) into Eq. (15), we obtain

E =
1
4

N∑
α=1

λ2
α(V [xα]

( ∂ξ

∂x

)>

α
u,

( ∂ξ

∂x

)>

α
u) =

1
4

N∑
α=1

λ2
α(u,

( ∂ξ

∂x

)
α
V [xα]

( ∂ξ

∂x

)>

α
u) =

1
4

N∑
α=1

λ2
α(u, V [ξα]u). (23)

If Eq. (22) is substituted, this becomes

E =
N∑

α=1

(ξα,u)2

(u, V [ξα]u)
, (24)

which has the same form as Eq. (11). This means that the first approximation of ML in the x-space coincides
with the strict ML in the ξ-space. Hence, Eq. (24) can be minimized by an existing method such as FNS. Let û
be the solution. From Eqs. (14), (20), and (22), the true value x̄ is estimated to be

x̂α = xα − (ξα, û)V [xα]
(û, V [ξα]û)

( ∂ξ

∂x

)>

α
û. (25)

7. HIGHER ORDER CORRECTION

The value x̂α obtained by Eq. (25) is only a first approximation of the true value x̄α. We now put, instead of
Eq. (14),

x̄α = x̂α − ∆x̂α (26)
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and estimate the true value x̄α by computing the correction term ∆x̂α. Since x̂α is a first approximation of x̄α,
the correction term ∆x̂α is of higher order than the correction term ∆xα in Eq. (14). Substituting Eq. (26) into
Eq. (12), we can express the reprojection error E in the form

E =
N∑

α=1

(x̃α + ∆x̂α, V [xα]−1(x̃α + ∆x̂α)), (27)

where we put
x̃α = xα − x̂α. (28)

Eq. (13) is written as
(ξ(x̂α − ∆x̂α), u) = 0. (29)

Substituting the Taylor expansion of ξ(x̂α − ∆x̂α) and ignoring second order term in the high order quantity
∆x̂α, we obtain

(
( ∂ξ̂

∂x

)
α
∆x̂α, u) = (ξ̂α, u), (30)

where we put ξ̂α = ξ(x̂α) and (∂ξ̂/∂x)α is the Jacobian matrix of the mapping ξ(x) followed by substitution of
x = x̂α. Since ∆x̂α in Eq. (26) is of higher order than ∆xα in Eq. (14), Eq. (30) is a better approximation of
Eq. (13) than Eq. (17).

In order to eliminate the constraint in Eq. (30), we introduce Lagrange multipliers λα in the form

N∑
α=1

(x̃α + ∆x̂α, V [xα]−1(x̃α + ∆x̂α)) −
N∑

α=1

λα

(
(
( ∂ξ̂

∂x

)
α
∆x̂α, u) − (ξ̂α, u)

)
. (31)

Differentiating this with respect to ∆x̂α and putting the result to 0, we obtain

2V [xα]−1(x̃α + ∆x̂α) − λα

( ∂ξ̂

∂x

)>

α
u = 0, (32)

from which we have

∆x̂α =
λα

2
V [xα]

( ∂ξ̂

∂x

)>

α
u − x̃α. (33)

Substitution of this into Eq. (30) yields

(
λα

2

( ∂ξ̂

∂x

)
α
V [xα]

( ∂ξ̂

∂x

)>

α
u −

( ∂ξ̂

∂x

)
α
x̃α, u) = (ξ̂α,u), (34)

which determines λα in the form

λα =
2(ξ̂α, u) + 2(u, (∂ξ̂/∂x)αx̃α)

(u, V [ξ̂α]u)
=

2(ξ̂
∗
α, u)

(u, V [ξ̂α]u)
, (35)

where V [ξ̂α] is the matrix obtained by replacing xα by x̂α in V [ξα] in Eq. (7), and we define ξ̂
∗
α to be

ξ̂
∗
α = ξ̂α +

( ∂ξ̂

∂x

)
α
x̃α. (36)

Substituting Eq. (33) into Eq. (27), we obtain

E =
N∑

α=1

λ2
α

4
(V [xα]

( ∂ξ̂

∂x

)>

α
u, V [xα]−1V [xα]

( ∂ξ̂

∂x

)>

α
u) =

1
4

N∑
α=1

λ2
α(u, V [ξ̂α]u). (37)
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Substituting Eq. (35) into this, we can express the reprojection error E in the form

E =
N∑

α=1

(ξ̂
∗
α,u)2

(u, V [ξ̂α]u)
. (38)

Again, this has the same form as Eq. (11). Hence, it can be minimized by an existing method such as FNS. Let
û be the solution. From Eqs. (26), (28), (33), and (35), the true value x̄ is estimated to be

ˆ̂xα = x̂α − λα

2
V [xα]

( ∂ξ̂

∂x

)>

α
û + x̃α = xα − (ξ̂

∗
α, û)V [xα]

(û, V [ξ̂α]û)

( ∂ξ̂

∂x

)>

α
û. (39)

The resulting ˆ̂xα is a better approximation to x̄α than x̂α in Eq. (25). Regarding ˆ̂xα as x̂α, we repeat the same
process until it converges. In the end, ∆x̂α in Eq. (29) becomes 0. This means that strict ML in the x-space
coincides with ML in the modified ξ̂

∗
-space; the mapping from x to ξ̂

∗
is defined dynamically in the course of

iterations.

8. EXAMPLES OF STRICT ML

We apply the above procedure to typical examples, where we assume that the x and y coordinates of each point
has independent Gaussian noise of mean 0 and variance σ2. However, the noise variance σ2 need not be known,
because minimization of Eq. (12) is not affected by multiplication of V [xα] by an arbitrary positive constant.
So, we regard σ to be 1 in the computation.

Example 5 (Ellipse fitting). The procedure for fitting the ellipse parameter u in Eq. (4) to a point
sequence (xα, yα), α = 1, ..., N , is given as follows‖, where we remove the scale indeterminacy of u by normalizing
it to ‖u‖ = 1:

1. Let E0 = ∞ (a sufficiently large number), x̂α = xα, ŷα = yα, and x̃α = ỹα = 0, α = 1, ..., N .
2. Computing the following ξ∗

α, α = 1, ..., N .

ξ∗
α =


x̂2

α + 2x̂αx̃α

2(x̂αŷα + ŷαx̃α + x̂αỹα)
ŷ2

α + 2ŷαỹα

2(x̂α + x̃α)
2(ŷα + ỹα)
1

. (40)

3. Let V [ξ̂α], α = 1, ..., N , be the matrices obtained by letting σ = 1 and replacing xα and yα in V [ξα] in
Eq. (8) by x̂α and ŷα, respectively.

4. Compute the 6-D unit vector u = (ui) that minimizes the following function (e.g., by FNS17):

E(u) =
N∑

α=1

(u, ξ∗
α)2

(u, V [ξ̂α]u)
. (41)

5. Update x̃α, ỹα, x̂α, and ŷα by(
x̃α

ỹα

)
← 2(u, ξ∗

α)

(u, V [ξ̂α]u)

(
u1 u2 u4

u2 u3 u5

)(
x̂α

ŷα

1

)
, x̂α ← xα − x̃α, ŷα ← yα − ỹα. (42)

6. Compute the reprojection error E =
∑N

α=1(x̃
2
α + ỹ2

α). If E ≈ E0, return u and stop∗∗. Else, let E0 ← E
and go back to Step 2.

‖The source code is available at: http://www.iim.ics.tut.ac.jp/~sugaya/public-e.html
∗∗Alternatively, we can stop when u is sufficiently close to the value in the previous iteration up to sign.
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Figure 2. (a) 10 points on an ellipse. (b) RMS error of the fitted ellipse over 1000 trials vs. the noise level σ (from
Kanatani and Sugaya18,20). Solid line: ML in the x-space. Dashed line: ML in the ξ-space (overlapped by the solid line
and invisible). Dotted line: KCR lower bound.

The value of u obtained in Step 4 in the first iteration corresponds to the ML solution in the ξ-space, minimizing
Eq. (11). Its accuracy is numerically examined by Kanatani and Sugaya.17 The above strict ML scheme was
obtained by Kanatani and Sugaya18,20 by a specific analysis for ellipse fitting. Here, it is derived as a special
case of our general theory.

As pointed out by Kanatani and Sugaya,18,20 however, the resulting accuracy is practically the same as the
ML solution in the ξ-space; the difference is only in the last few of the significant digits. Figure 2(a) shows 10
points on an ellipse, and Fig. 2(b) shows the RMS error of the fitted ellipse over 1000 trials with independent
Gaussian noise of mean 0 and standard deviation σ (pixels) added to the x and y coordinates of each point (from
Kanatani and Sugaya18,20). The horizontal axis is extended to an unrealistically large value of σ for the sake
of comparison, and the solid line plots the result of ML in the x-space. The corresponding result of ML in the
ξ-space is drawn in dashed line but is completely overlapped by the solid line, so it is invisible in the plot. The
dotted line shows the theoretical accuracy limit (KCR lower bound3,11,12).

Example 6 (Fundamental matrix computation). The vector u in Eq. (6) that encodes the fundamental
matrix F of rank 2 is computed from corresponding points (xα, yα) and (x′

α, y′
α), α = 1, ..., N , as follows‖, where

we remove the scale indeterminacy of u by normalizing it to ‖u‖ = 1:

1. Let E0 = ∞ (a sufficiently large number), x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α, and x̃α = ỹα = x̃′
α = ỹ′

α

= 0, α = 1, ..., N .
2. Compute the following ξ∗

α, α = 1, ..., N .

ξ∗
α =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

x̂α + x̃α

ŷαx̂′
α + x̂′

αỹα + ŷαx̃′
α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

ŷα + ỹα

x̂′
α + x̃′

α

ŷ′
α + ỹ′

α

1


. (43)

3. Let V [ξ̂α], α = 1, ..., N , be the matrices obtained by letting σ = 1 and replacing xα, yα, x′
α, and y′

α in
V [ξα] in Eq. (9) by x̂α, ŷα, x̂′

α, and ŷ′
α, respectively.

4. Compute the 9-D unit vector u = (ui) that minimizes the following function subject to the constraint that
the resulting fundamental matrix F has rank 2 (e.g., by EFNS16):

E(u) =
N∑

α=1

(u, ξ∗
α)2

(u, V [ξ̂α]u)
. (44)
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Figure 3. (a) Planer grid patterns viewed from two angles. (b) RMS error of the fitted fundamental matrix over 1000
trials vs. the noise level σ (from Kanatani and Sugaya19,21). Solid line: ML in the x-space. Dashed line: ML in the
ξ-space (overlapped by the solid line and invisible). Dotted line: KCR lower bound.

5. Update x̃α, ỹα, x̃′
α, and ỹ′

α by(
x̃α

ỹα

)
← (u, ξ∗

α)

(u, V [ξ̂α]u)

(
u1 u2 u3

u4 u5 u6

)(
x̂′

α

ŷ′
α

1

)
,

(
x̃′

α

ỹ′
α

)
← (u, ξ∗

α)

(u, V [ξ̂α]u)

(
u1 u4 u7

u2 u5 u8

)(
x̂α

ŷα

1

)
. (45)

6. Update x̂α, ŷα, x̂′
α, and ŷ′

α by

x̂α ← xα − x̃α, ŷα ← yα − ỹα, x̂′
α ← x′

α − x̃′
α, ŷ′

α ← y′
α − ỹ′

α. (46)

7. Compute the reprojection error E =
∑N

α=1(x̃
2
α + ỹ2

α + x̃′2
α + ỹ′2

α ). If E ≈ E0, return u and stop††. Else, let
E0 ← E and go back to Step 2.

As in the ellipse fitting case, the value of u obtained in Step 4 in the first iteration corresponds to the ML
solution in the ξ-space, minimizing Eq. (11). Its accuracy is numerically examined by Kanatani and Sugaya.15

The above strict ML scheme was obtained by Kanatani and Sugaya19,21 by a specific analysis for fundamental
matrix computation. Here, it is derived as a special case of our general theory.

As pointed out by Kanatani and Sugaya,19,21 however, the resulting accuracy is practically the same as the
ML solution in the ξ-space; the difference is only in the last few of the significant digits. Figure 3(a) shows two
planar grid patterns viewed from two angles, and Fig. 3(b) shows the RMS error of the computed fundamental
matrix over 1000 trials with independent Gaussian noise of mean 0 and standard deviation σ (pixels) added to
the x and y coordinates of each grid point (from Kanatani and Sugaya19,21). The horizontal axis is extended
to an unrealistically large value of σ for the sake of comparison, and the solid line plots the result of ML in the
x-space. The corresponding result of ML in the ξ-space is drawn in dashed line but is completely overlapped by
the solid line, so it is invisible in the plot. The dotted line shows the KCR lower bound.

9. APPLICATION TO OPTIMAL CORRECTION
Our strict ML computation encompasses optimal correction:11 we optimally correct the datum x so as to satisfy
the constraint

F (x;u) = 0, (47)

where the parameter u is given and fixed. Rewriting Eq. (43) in the form of Eq. (2), we state the problem as
minimization of the reprojection error

E = (x − x̄, V [x]−1(x − x̄)) subject to the constraint (ξ(x̄),u) = 0. (48)

Thus, the optimal correction procedure is obtained by simply removing the computation of u in the procedure
described in Sect. 7.

Example 7 (Perpendicular to an ellipse). Given a point (x, y) and an ellipse in the form of Eq. (3),
we want to compute the foot (x̂, ŷ) of the perpendicular from (x, y) (Fig. 4(a)). It is computed as follows‖ (u is
defined by Eq. (4)):

††Alternatively, we can stop when u is sufficiently close to the value in the previous iteration up to sign.
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Figure 4. (a) Drawing a perpendicular to an ellipse. (b) Computing the 3-D position from noisy correspondence pair.

1. Let E0 = ∞ (a sufficiently large number), x̂ = x, ŷ = y, and x̃ = ỹ = 0.
2. Compute the following ξ∗:

ξ∗ =


x̂2 + 2x̂x̃
2(x̂ŷ + ŷx̃ + x̂ỹ)
ŷ2 + 2ŷỹ
2(x̂ + x̃)
2(ŷ + ỹ)
1

. (49)

3. Let V [ξ̂] be the matrix obtained by letting σ = 1 and replacing xα and yα in V [ξα] in Eq. (8) by x̂ and ŷ,
respectively.

4. Update x̃, ỹ, x̂, and ŷ by(
x̃
ỹ

)
← 2(u, ξ∗)

(u, V [ξ̂]u)

(
u1 u2 u4

u2 u3 u5

)(
x̂
ŷ
1

)
, x̂ ← x − x̃, ŷ ← y − ỹ. (50)

5. Compute the reprojection error E = x̃2 + ỹ2. If E ≈ E0, return (x̂, ŷ) and stop. Else, let E0 ← E and go
back to Step 2.

As is well known, the perpendicular to an ellipse can be obtained by solving simultaneous algebraic equations. It
seems, however, the the above simple procedure has not been known. Usually, the computation converges after
3 or 4 iterations, but even the first solution has sufficient accuracy for practical use.

Example 8 (Triangulation). When the fundamental matrix F is known and a noisy correspondence
pair (x, y) and (x′, y′) is given, we can optimally reconstruct its 3-D position by minimally correcting (x, y) and
(x′, y′) so as to satisfy the epipolar equation‡‡ in Eq. (5) determined by F (Fig. 4(b)). The optimally corrected
positions (x̂, ŷ) and (x̂′, ŷ′) that minimize the sum of square distances from (x, y) and (x′, y′) are computed as
follows‖ (u is defined by Eq. (6)):

1. Let E0 = ∞ (a sufficiently large number), x̂ = x, ŷ = y, x̂′ = x′, and ŷ′ = y′, x̃ = ỹ = x̃′ = ỹ′ = 0.
2. Compute the following ξ∗:

ξ∗ =



x̂x̂′ + x̂′x̃ + x̂x̃′

x̂ŷ′ + ŷ′x̃ + x̂ỹ′

x̂ + x̃
ŷx̂′ + x̂′ỹ + ŷx̃′

ŷŷ′ + ŷ′ỹ + ŷỹ′

ŷ + ỹ
x̂′ + x̃′

ŷ′ + ỹ′

1


. (51)

3. Let V [ξ̂] be the matrix obtained by letting σ = 1 and replacing xα, yα, x′
α, and y′

α in V [ξα] in Eq. (9) by
x̂, ŷ, x̂′, and ŷ′, respectively.

‡‡The lines of sight determined by points (x, y) and (x′, y′) intersect in the scene if and only if the epipolar equation in
Eq. (5) holds.10
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4. Update x̃, ỹ, x̃′, and ỹ′ by(
x̃
ỹ

)
← (u, ξ∗)

(u, V [ξ̂]u)

(
u1 u2 u3

u4 u5 u6

)(
x̂′

ŷ′

1

)
,

(
x̃′

ỹ′

)
← (u, ξ∗)

(u, V [ξ̂]u)

(
u1 u4 u7

u2 u5 u8

)(
x̂
ŷ
1

)
. (52)

5. Update x̂, ŷ, x̂′, and ŷ′ by

x̂ ← x − x̃, ŷ ← y − ỹ, x̂′ ← x′ − x̃′, ŷ′ ← y′ − ỹ′. (53)

6. Compute the reprojection error E = x̃2 + ỹ2 + x̃′2 + ỹ′2. If E ≈ E0, return (x̂, ŷ) and (x̂′, ŷ′) and stop.
Else, let E0 ← E and go back to Step 2.

This procedure is nothing but the optimal stereo triangulation of Kanatani et al.22 A popular method for optimal
triangulation is due to Hartley and Sturm,9 who determined the epipolar lines of the corresponding points by
algebraically solving a 6-degree polynomial. Their method is widely regarded as a standard tool for triangulation.
Kanatani et al.22 experimentally confirmed that their solution is identical to that of Hartley and Sturm9 yet the
computation is significantly faster.

10. CONCLUDING REMARKS

This paper has presented a unified numerical scheme for strict ML computation for geometric fitting problems.
While methods assuming Gaussian noise in the transformed data space (ξ-space) have intensively been studied
in the past, we assume Gaussian noise in the original data space (x-space). We have shown that strict ML in
the x-space reduces to iterations of ML in the dynamically defined ξ∗-space. The computation is done in the
low dimensional space of the unknown u, and the true values x̄α of the data xα are also ML estimated.

The strict ML schemes have already been derived specifically for ellipse fitting18,20 and fundamental matrix
computation.19,21 They are regarded as special cases of our general theory. We have also shown that our
theory encompasses optimal correction problems: compact schemes for computing perpendiculars to an ellipse
and optimally triangulating stereo images are obtained as special cases. Thus, our general theory provides a
unified problem-independent point of view. At the moment, however, it is difficult to say whether or not our
unified method is more efficient than problem-dependent computation in a high dimensional parameter space,
since the efficiency of the latter heavily depends on how the particularities of the problem are exploited in the
implementation.

As experimentally pointed out by Kanatani and Sugaya,18–21 however, ML in the x-space practically coincides
with ML in the ξ-space. This means that as long as the covariance is correctly evaluated, regarding not strictly
Gaussian noise in the ξ-space as Gaussian practically does not affect the final solution. In the present stage, the
role of our theory is limited to comparing the accuracy of existing methods and evaluating the effect of various
approximations involved. In the future, however, various new applications are expected based on our theory.
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