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14.1 Introduction

Statistical inference from images is one of the key components of computer
vision research today. Traditionally, statistical methods have been used for
recognition and classification purposes. Recently, however, there are many
studies of statistical analysis for geometric inference based on geometric prim-
itives such as points and lines extracted by image processing operations.

However, the term “statistical” has somewhat a different meaning for such
geometric inference problems than for the traditional recognition and classi-
fication purposes. This difference has often been overlooked, causing contro-
versies over the validity of the statistical approach to geometric problems in
general. In Sect. , we take a close look at this problem, tracing back the origin
of feature uncertainty to image processing operations. In Sect. , we discuss
the implications of asymptotic analysis in reference to geometric fitting and
geometric model selection. In Sect. , we point out that a correspondence exists
between the standard statistical analysis and the geometric inference problem.
We also compare the capability of the geometric AIC and the geometric MDL
in detecting degeneracy. In Sect. , we review recent progress in geometric fit-
ting techniques for linear constraints, describing the FNS method, the HEIV
method, the renormalization method, and other related techniques. In Sect. ,
we discuss the Neyman–Scott problem and semiparametric models in relation
to geometric inference. Sect. presents our concluding remarks.

14.2 What Is Geometric Inference?

14.2.1 Ensembles for Geometric Inference

The goal of statistical methods is not to study the properties of observed
data themselves but to infer the properties of the ensemble from which we
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Fig. 1. a A feature point in an image of a building. b Its enlargement and the
uncertainty of the feature location

regard the observed data as sampled. The ensemble may be a collection of
existing entities (e.g., the entire population), but often it is a hypothetical
set of conceivable possibilities. When a statistical method is employed, the
underlying ensemble is often taken for granted. However, this issue is very
crucial for geometric inference based on feature points.

Suppose, for example, we extract feature points, such as corners of walls
and windows, from an image of a building and want to test if they are collinear.
The reason why we need a statistical method is that the extracted feature
positions have uncertainty. So, we have to judge the extracted feature points
as collinear if they are sufficiently aligned. We can also evaluate the degree of
uncertainty of the fitted line by propagating the uncertainty of the individual
points. What is the ensemble that underlies this type of inference?

This question reduces to the question of why the uncertainty of the feature
points occurs at all. After all, statistical methods are not necessary if the data
are exact. Using a statistical method means regarding the current feature
position as sampled from a set of its possible positions. But where else could
it be if not in the current position?

14.2.2 Uncertainty of Feature Extraction

Many algorithms have been proposed for extracting feature points, including
the Harris operator [12] and SUSAN [46], and their performance has been
extensively compared [4, 41, 45]. However, if we use, for example, the Harris
operator to extract a particular corner of a particular building image, the
output is unique (Fig. 1). No matter how many times we repeat the extraction,
we obtain the same point because no external disturbances exist and the
internal parameters (e.g., thresholds for judgment) are unchanged. It follows
that the current position is the sole possibility. How can we find it elsewhere?

If we closely examine the situation, we are compelled to conclude that
other possibilities should exist because the extracted position is not necessarily
correct. But if it is not correct, why did we extract it? Why didn’t we extract
the correct position in the first place? The answer is: we cannot .
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14.2.3 Image Processing for Computer Vision

The reason why there exist so many feature extraction algorithms, none of
them being definitive, is that they are aiming at an intrinsically impossible
task. If we were to extract a point around which, say, the intensity varies to
the largest degree in such and such a measure, the algorithm would be unique;
variations may exist in intermediate steps, but the final output should be the
same.

However, what we want is not “image properties” but “3-D properties”
such as corners of a building, but the way a 3-D property is translated into
an image property is intrinsically heuristic. As a result, as many algorithms
can exist as the number of heuristics for its 2-D interpretation. If we specify
a particular 3-D feature to extract, say a corner of a window, its appearance
in the image is not unique. It is affected by many properties of the scene,
including the details of its 3-D shape, the viewing orientation, the illumina-
tion condition, and the light reflectance properties of the material. A slight
variation of any of them can result in a substantial difference in the image.

Theoretically, exact extraction would be possible if all the properties of the
scene were exactly known, but to infer them from images is the very task of
computer vision. It follows that we must make a guess in the image processing
stage. For the current image, some guesses may be correct, but others may
be wrong. The exact feature position could be found only by an (nonexisting)
“ideal” algorithm that could guess everything correctly.

This observation allows us to interpret the “possible feature positions” to
be the positions that would be located by different (nonideal) algorithms based
on different guesses. It follows that the set of hypothetical positions should
be associated with the set of hypothetical algorithms. The current position is
regarded as produced by an algorithm sampled from it. This explains why
one always obtains the same position no matter how many times one repeats
extraction using that algorithm. To obtain a different position, one has to
sample another algorithm.

Remark 1. We may view the statistical ensemble in the following way. If we
repeat the same experiment, the result should always be the same. But if we
declare that the experiment is the “same” if such and such are the same while
other things can vary, then those variable conditions define the ensemble. The
conventional view is to regard the experiment as the same if the 3-D scene we
are viewing is the same while other properties, such as the lighting condition,
can vary. Then, the resulting image would be different for each (hypothetical)
experiment, so one would obtain a different output each time, using the same
image processing algorithm. The expected spread of the outputs measures the
robustness of that algorithm. Here, however, we are viewing the experiment as
the same if the image is the same. Then, we could obtain different results only
by sampling other algorithms. The expected spread of the outputs measures
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the uncertainty of feature detection from that image. We take this view be-
cause we are analyzing the reliability of geometric inference from a particular
image, while the conventional view is suitable for assessing the robustness of
a particular algorithm.

14.2.4 Covariance Matrix of a Feature Point

The performance of feature point extraction depends on the image properties
around that point. If, for example, we want to extract a point in a region with
an almost homogeneous intensity, the resulting position may be ambiguous
whatever algorithm is used. In other words, the positions that potential algo-
rithms would extract should have a large spread. If, on the other hand, the
intensity greatly varies around that point, any algorithm could easily locate it
accurately, meaning that the positions that the hypothetical algorithms would
extract should have a strong peak. It follows that we may introduce for each
feature point its covariance matrix that measures the spread of its potential
positions.

Let V[pα] be the covariance matrix of the αth feature point pα. The above
argument implies that we can estimate the qualitative characteristics of un-
certainty but not its absolute magnitude. So, we write the covariance matrix
V[pα] in the form

V[pα] = ε2V0[pα], (1)

where ε is an unknown magnitude of uncertainty, which we call the noise level .
The matrix V0[pα], which we call the (scale) normalized covariance matrix ,
describes the relative magnitude and the dependence on orientations.

Remark 2. The decomposition of V[pα] into ε2 and V0[pα] involves scale am-
biguity. We assume that the decomposition is made unique by an appropriate
scale normalization such as trV0[pα] = 2. However, the subsequent analysis
does not depend on particular normalizations, so we do not explicitly specify
it except that it should be done in such a way that ε is much smaller than the
data themselves. Note that mathematically, modeling the covariance matrix
by a common scale factor ε2 and the individual matrix part V0[pα] is rather
restrictive. However, this model is sufficient for most practical applications,
as we describe in the following.

14.2.5 Covariance Matrix Estimation

If the intensity variations around pα are almost the same in all directions, we
can think of the probability distribution as isotropic, a typical equiprobability
line, known as the uncertainty ellipses, being a circle (Fig. 1b). On the other
hand, if pα is on an object boundary, distinguishing it from nearby points
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should be difficult whatever algorithm is used, so its covariance matrix should
have an elongated uncertainty ellipse along that boundary.

However, existing feature extraction algorithms are usually designed to
output those points that have large image variations around them, so points
in a region with an almost homogeneous intensity or on object boundaries
are rarely chosen. As a result, the covariance matrix of a feature point ex-
tracted by such an algorithm can be regarded as nearly isotropic. This has
also been confirmed by experiments [26], justifying the use of the identity as
the normalized covariance matrix V0[pα].

Remark 3. The intensity variations around different feature points are usually
unrelated, so their uncertainty can be regarded as statistically independent.
However, if we track feature points over consecutive video frames, it has been
observed that the uncertainty has strong correlations over the frames [47].

Remark 4. Many interactive applications require humans to extract feature
points by manipulating a mouse. Extraction by a human is also an “algo-
rithm”, and it has been shown by experiments that humans are likely to
choose “easy-to-see” points such as isolated points and intersections, avoiding
points in a region with an almost homogeneous intensity or on object bound-
aries [26]. In this sense, the statistical characteristics of human extraction are
very similar to machine extraction. This is no surprise if we recall that image
processing for computer vision is essentially a heuristic that simulates human
perception. It has also been reported that strong microscopic correlations ex-
ist when humans manually select corresponding feature points over multiple
images [34].

14.2.6 Image Quality and Uncertainty

The uncertainty of feature points has often been identified with “image noise”,
giving a misleading impression as if the feature locations were perturbed by
random intensity fluctuations. Of course, we may obtain better results using
higher-quality images whatever algorithm is used. However, the task of com-
puter vision is not to analyze image properties but to study the 3-D properties
of the scene. As long as the image properties and the 3-D properties do not
correspond one to one, any image processing inevitably entails some degree
of uncertainty, however high the image quality may be, and the result must
be interpreted statistically. The underlying ensemble is the set of hypothetical
(inherently imperfect) algorithms of image processing. Yet, the performance of
image processing algorithms has often been evaluated by adding independent
Gaussian noise to individual pixels.

Remark 5. This also applies to edge detection, whose goal is to find the bound-
aries of 3-D objects in the scene. In reality, all existing algorithms seek edges,
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Fig. 2. a For the standard statistical analysis, it is desired that the accuracy in-
creases rapidly as the number of experiments n → ∞, because admissible accuracy
can be reached with a smaller number of experiments. b For geometric inference,
it is desired that the accuracy increases rapidly as the noise level ε → 0, because
larger data uncertainty can be tolerated for admissible accuracy

i.e., lines and curves across which the intensity changes discontinuously. Yet,
this is regarded by many as an objective image processing task, and the de-
tection performance is often evaluated by adding independent Gaussian noise
to individual pixels. From the above considerations, we conclude that edge
detection is also a heuristic, and hence no definitive algorithm will ever be
found.

14.3 Asymptotic Analysis for Geometric Inference

14.3.1 What Is Asymptotic Analysis?

As stated earlier, statistical estimation refers to estimating the properties of
an ensemble from a finite number of samples, assuming some knowledge, or a
model , about the ensemble. If the uncertainty originates from external condi-
tions, as in experiments in physics, the estimation accuracy can be increased
by controlling the measurement devices and environments. For internal uncer-
tainty, on the other hand, there is no way of increasing the accuracy except by
repeating the experiment and doing statistical inference. However, repeating
experiments usually entails costs, and in practice the number of experiments
is often limited.

Taking account of this, statisticians usually evaluate the performance of
estimation asymptotically , analyzing the growth in accuracy as the number n
of experiments increases. This is justified because a method whose accuracy
increases more rapidly as n → ∞ can reach admissible accuracy with fewer
experiments (Fig. 2a).

In contrast, the ensemble for geometric inference is, as we have seen, the
set of potential feature positions that could be located if other (hypotheti-
cal) algorithms were used. As noted earlier, however, we can choose only one
sample from the ensemble as long as we use a particular image processing
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algorithm. In other words, the number n of experiments is 1. Then, how can
we evaluate the performance of statistical estimation?

Evidently, we want a method whose accuracy is sufficiently high even for
large data uncertainty . This implies that we need to analyze the growth in
accuracy as the noise level ε decreases, because a method whose accuracy
increases more rapidly as ε → 0 can tolerate larger data uncertainty for ad-
missible accuracy (Fig. 2b).

14.3.2 Geometric Fitting

We now illustrate the above consideration in more specific terms. Let {pα}, α
= 1, ..., N , be the extracted feature points. Suppose each point should satisfy
a parameterized constraint

F (pα,u) = 0 (2)

when no uncertainty exists. In the presence of uncertainty, Eq. (2) may not
hold exactly. Our task is to estimate the parameter u from observed positions
{pα} in the presence of uncertainty.

A typical problem of this form is to fit a line or a curve to given N points
in the image, but this can be straightforwardly extended to multiple images.
For example, if a point (xα, yα) in one image corresponds to a point (x′α, y′α) in
another, we can regard them as a single point pα in a four-dimensional joint
space with coordinates (xα, yα, x′α, y′α). If the camera imaging geometry is
modeled as perspective projection, constraint (2) corresponds to the epipolar
equation; the parameter u is the fundamental matrix [13]. This is discussed
in more detail in Sect. .

14.3.2.1 General Geometric Fitting

The above problem can be stated in abstract terms as geometric fitting as
follows. We view a feature point in the image plane or a set of feature points
in the joint space as an m-dimensional vector x; we call it a “datum”. Let
{xα}, α = 1, ..., N , be observed data. Their true values {x̄α} are supposed
to satisfy r constraint equations

F (k)(x̄α,u) = 0, k = 1, ..., r, (3)

parameterized by a p-dimensional vector u. We call Eq. (3) the (geometric)
model . The domain X of the data {xα} is called the data space; the domain
U of the parameter u is called the parameter space. The number r of the
constraint equations is called the rank of the constraint. The r equations
F (k)(x,u) = 0, k = 1, ..., r, are assumed to be mutually independent, defining
a manifold S of codimension r parameterized by u in the data space X .
Equation (3) requires that the true values {x̄α} be all in the manifold S. Our
task is to estimate the parameter u from the noisy data {xα} (Fig. 3a).
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Fig. 3. a Fitting a manifold S to the data {xα}. b Estimating {x̄α} and u by
minimizing the sum of squared Mahalanobis distance with respect to the normalized
covariance matrices V0[xα]

14.3.2.2 Maximum Likelihood Estimation

Let
V[xα] = ε2V0[xα] (4)

be the covariance matrix of xα, where ε and V0[xα] are the noise level and the
normalized covariance matrix, respectively. If the distribution of uncertainty
is Gaussian, which we assume hereafter, the probability density of the data
{xα} is given by

P ({xα}) = C

N∏
α=1

e−(xα−x̄α,V[xα]−1(xα−x̄α))/2, (5)

where C is a normalization constant. Throughout this chapter, we denote the
inner product of vectors a and b by (a,b).

Maximum likelihood estimation (MLE) is finding the values of {x̄α} and
u that maximize the likelihood , i.e., Eq. (6) into which the data {xα} are
substituted, or equivalently minimize the sum of the squared Mahalanobis
distances in the form

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)) (6)

subject to the constraint (3) (Fig. 3b). The solution is called the maximum
likelihood (ML) estimator . If the uncertainty is small, which we assume here-
after, constraint (3) can be eliminated by introducing Lagrange multipliers
and applying first-order approximation. After some manipulations, we obtain
the following form [14]:

J =
N∑

α=1

r∑

k,l=1

W (kl)
α F (k)(xα,u)F (l)(xα,u). (7)



14 Uncertainty Modeling and Geometric Inference 469

Here, W
(kl)
α is the (kl) element of the inverse of the r × r matrix whose (kl)

element is (∇xF
(k)
α , V0[xα]∇xF

(l)
α ). We symbolically write

(
W (kl)

α

)
=

(
(∇xF (k)

α ,V0[xα]∇xF (l)
α )

)−1

, (8)

where ∇xF (k) is the gradient of the function F (k) with respect to x. The
subscript α means that x = xα is substituted.

Remark 6. The data {xα} may be subject to some constraints. For example,
each xα may be a unit vector. The above formulation still holds if the inverse
V0[xα]−1 in Eq. (6) is replaced by the Moore–Penrose generalized (or pseudo)
inverse V0[xα]− [14]. Similarly, the r constraints in Eq. (3) may be redundant,
say only r′ (< r) of them are independent. The above formulation still holds
if the inverse in Eq. (8) is replaced by the generalized inverse of rank r′ with
all but r′ largest eigenvalues replaced by zero [14].

14.3.2.3 Accuracy of the ML Estimator

It can be shown [14] that the covariance matrix of the ML estimator û has
the form

V[û] = ε2M(û)−1 + O(ε4), (9)

where

M(u) =
N∑

α=1

r∑

k,l=1

W (kl)
α ∇uF (k)

α ∇uF (k)>
α . (10)

Here, ∇uF (k) is the gradient of the function F (k) with respect to u. The
subscript α means that x = xα is substituted.

Remark 7. It can be proved that no other estimators could reduce the co-
variance matrix further than Eq. (9) except for the higher-order term O(ε4)
[14, 17]. The ML estimator is optimal in this sense. Recall that we are focusing
on the asymptotic analysis for ε → 0. Thus, what we call the “ML estimator”
should be understood to be a first approximation to the true ML estimator
for small ε.

Remark 8. The p-dimensional parameter vector u may be constrained. For
example, it may be a unit vector. If it has only p′ (< p) degrees of freedom,
the parameter space U is a p′-dimensional manifold in Rp. In this case, the
matrix M(u) in Eq. (9) is replaced by PuM(u)Pu, where Pu is the projection
matrix onto the tangent space to the parameter space U at u [14]. The inverse
M(û)−1 in Eq. (9) is replaced by the generalized inverse M(û)−1 of rank p′

[14].
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14.3.3 Geometric Model Selection

Geometric fitting is to estimate the parameter u of a given model. If we have
multiple candidate models

F
(k)
1 (x̄α,u1) = 0, F

(k)
2 (x̄α,u2) = 0, F

(k)
3 (x̄α,u3) = 0, ..., (11)

from which we are to select an appropriate one for the observed data {xα},
the problem is (geometric) model selection [14, 16, 18].

Suppose, for example, we want to fit a curve to given points in two di-
mensions. If they are almost collinear, a straight line may fit fairly well, but
a quadratic curve may fit better, and a cubic curve even better. Which curve
should we fit? A naive idea is to compare the residual (sum of squares), i.e.,
the minimum value Ĵ of J in Eq. (6); we select the one that has the smallest
residual Ĵ . This does not work, however, because the ML estimator û is so
determined as to minimize the residual Ĵ , and the residual Ĵ can be made
arbitrarily smaller if the model is equipped with more parameters to adjust.
So, the only conclusion would be to fit a curve of a sufficiently high degree
passing through all the points.

14.3.3.1 Geometric AIC

The above observation leads to the idea of compensating for the negative
bias of the residual caused by substituting the ML estimator. This is the
principle of the Akaike information criterion (AIC) [1], which is derived from
the asymptotic behavior of the Kullback–Leibler information (or divergence)
as the number n of experiments goes to infinity. Doing a similar analysis to
Akaike’s and examining the asymptotic behavior as the noise level ε goes to
zero, we can obtain the following geometric AIC [14, 15]:

G-AIC = Ĵ + 2(Nd + p)ε2 + O(ε4). (12)

Here, d is the dimension of the manifold S defined by the constraint (3) in
the data space X , and p is the dimension of u (i.e., the number of unknowns).
The model for which Eq. (12) is the smallest is regarded as the best. The
derivation of Eq. (12) is based on the following facts [14, 15]:

• The ML estimator û converges to its true value as ε → 0.
• The ML estimator û obeys a Gaussian distribution under linear con-

straints, because the noise is assumed to be Gaussian. For nonlinear con-
straints, linear approximation can be justified in the neighborhood of the
solution if ε is sufficiently small.

• A quadratic form in standardized Gaussian random variables is subject to
a χ2 distribution, whose expectation is equal to its degree of freedom.
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14.3.3.2 Geometric MDL

Another well-known criterion for model selection is Rissanen’s minimum de-
scription length (MDL) [42, 43, 44], which measures the goodness of a model
by the minimum information theoretic code length of the data and the model.
The basic idea is simple, but the following difficulties must be resolved to
apply it in practice:

• Encoding a problem involving real numbers requires an infinitely long code
length.

• The probability density, from which a minimum length code can be ob-
tained, involves unknown parameters.

• The exact form of the minimum code length is very difficult to compute.

Rissanen [42, 43, 44] avoided these difficulties by quantizing the real num-
bers in a way that does not depend on individual models and substituting the
ML estimators for the parameters. They, too, are real numbers, so they are
also quantized. The quantization width is so chosen as to minimize the total
description length (two-stage encoding). The resulting code length is evalu-
ated asymptotically as the data length n goes to infinity. If we analyze the
asymptotic behavior of encoding the geometric fitting problem as the noise
level ε goes to zero, we obtain the following geometric MDL [20]:

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2

+ O(ε2). (13)

Here, L is a reference length chosen so that its ratio to the magnitude of data
is O(1), e.g., L can be taken to be the image size for feature point data. Its
exact determination requires an a priori distribution that specifies where the
data are likely to appear (we discuss this more in Sect. ), but it has been
observed that the model selection is not very much affected by L as long as
it is within the same order of magnitude [20].

14.4 Standard Statistical Analysis vs. Geometric
Inference

We now point out that a correspondence exists between the standard sta-
tistical analysis and the geometric inference problem. We also compare the
capability of the geometric AIC and the geometric MDL in detecting degen-
eracy.

14.4.1 Standard Statistical Analysis

The asymptotic analysis in Sect. bears a strong resemblance to the stan-
dard statistical estimation problem: after observing n data x1, x2, ..., xn, we
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want to estimate the parameter θ of the probability density P (x|θ) called the
(stochastic) model , according to which each datum is assumed to be sampled
independently.

Maximum likelihood estimation (MLE) is to find the value θ that
maximizes

∏n
i=1 P (xi|θ), or equivalently minimizes its negative logarithm

−∑n
i=1 log P (xi|θ). It can be shown that the covariance matrix V[θ̂] of the re-

sulting ML estimator θ̂ converges, under a mild condition, to O as the number
n of experiments goes to infinity (consistency) in the form

V[θ̂] = I(θ)−1 + O
( 1

n2

)
, (14)

where we define the Fisher information matrix I(θ) by

I(θ) = nE[(∇θ log P (x|θ))(∇θ log P (x|θ))>]. (15)

The operation E[ · ] denotes expectation with respect to the density P (x|θ).
The first term in the right-hand side of Eq. (14) is called the Cramer–Rao lower
bound (CRLB), describing the minimum degree of fluctuations in all estima-
tors. Thus, the ML estimator is optimal if n is sufficiently large (asymptotic
efficiency).

If we have multiple candidate models

P1(x|θ1), P2(x|θ2), P3(x|θ3), ..., (16)

from which we are to select an appropriate one for the observations x1, x1, ...,
xn, the problem is (stochastic) model selection. Akaike’s AIC has the following
form:

AIC = −2
N∑

i=1

log P (xi|θ̂) + 2k + O
( 1

n

)
. (17)

The model for which this quantity is the smallest is regarded as the best. The
derivation of Eq. (17) is based on the following facts [1]:

• The maximum likelihood estimator θ̂ converges to its true value as n →
∞ (the law of large numbers).

• The maximum likelihood estimator θ̂ asymptotically obeys a Gaussian
distribution as n → ∞ (the central limit theorem).

• A quadratic form in standardized Gaussian random variables is subject to
a χ2 distribution, whose expectation is equal to its degree of freedom.

Rissanen’s MDL has the following form [43, 44]:

MDL = −
n∑

i=1

log P (xi|θ̂) +
k

2
log

n

2π
+ log

∫

T

√
|I(θ)|dθ + O(1). (18)

Here, θ̂ is the ML estimator; the symbol O(1) denotes terms of order 0 in n
in the limit n → ∞. In order that the integration in the right-hand side of
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Eq. (18) exists, the domain T of the parameter θ must be compact. In other
words, we must specify in the k-dimensional space of θ a finite region T in
which the true value of θ is likely to exist. This is nothing but the Bayesian
standpoint that requires a prior distribution for the parameter to estimate. If
it is not known, we must introduce an appropriate expedient to suppress an
explicit dependence on the prior. Such an expedient is also necessary for the
geometric MDL, i.e., the introduction of the reference length L in Eq. (18).

14.4.2 Dual Interpretations of Asymptotic Analysis

Thus, we have seen that the limit n →∞ for the standard statistical analysis
corresponds to the limit ε → 0 for geometric inference. For example, the
covariance matrix of the ML estimator agrees with the Cramer–Rao lower
bound up to O(1/n2) for n → ∞ (see Eq. (14)), while for geometric inference
it agrees with the lower bound up to O(ε4) for ε → 0 (see Eq. (9)). It follows
that 1/

√
n for the standard statistical analysis plays the same role as ε for

geometric inference.
The same correspondence exists for model selection, too. The unknowns for

geometric inference are the p parameters of the constraint plus the N true posi-
tions specified by the d coordinates of the d-dimensional manifold S defined by
the constraint. If Eq. (12) is divided by ε2, we have Ĵ/ε2 +2(Nd + p)+O(ε2),
which is (−2 times the logarithmic likelihood)+2(the number of unknowns),
the same form as Akaike’s AIC given by Eq. (17). The same holds for Eq. (13),
which corresponds to Rissanen’s MDL given by Eq. (18) if ε is replaced by
1/
√

n [20].
This correspondence can be interpreted as follows. Since the underlying

ensemble is hypothetical, we can actually observe only one sample as long as
a particular algorithm is used. Suppose we hypothetically sample n different
algorithms to find n different positions. The optimal estimate of the true po-
sition under the Gaussian model is their sample mean. The covariance matrix
of the sample mean is 1/n times that of the individual samples. Hence, this
hypothetical estimation is equivalent to dividing the noise level ε in Eq. (4)
by
√

n.
In fact, there were attempts to generate a hypothetical ensemble of al-

gorithms by randomly varying the internal parameters (e.g., the thresholds
for judgments), not adding random noise to the image [5, 6]. Then, one can
compute their means and covariance matrix. Such a process as a whole can
be regarded as one operation that effectively achieves higher accuracy.

Thus, the asymptotic analysis for ε → 0 is equivalent to the asymptotic
analysis for n → ∞, where n is the number of hypothetical observations. As
a result, the expression · · · + O(1/

√
nk) in the standard statistical analysis

turns into · · ·+ O(εk) in geometric inference.
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14.4.3 Noise Level Estimation

In order to use the geometric AIC or the geometric MDL, we need to know the
noise level ε. If not known, it must be estimated. Here arises a sharp contrast
between the standard statistical analysis and our geometric inference.

For the standard statistical analysis, the noise magnitude is a model pa-
rameter , because “noise” is defined to be the random effects that cannot be
accounted for by the assumed model . Hence, the noise magnitude should be
estimated, if not known, according to the assumed model . For geometric in-
ference, on the other hand, the noise level ε is a constant that reflects the
uncertainty of feature detection. So, it should be estimated independently of
individual models.

If we know the true model, it can be estimated from the residual Ĵ using
the knowledge that Ĵ/ε2 is subject to a χ2 distribution with rN−p degrees of
freedom in the first-order [14]. Specifically, we obtain an unbiased estimator
of ε2 in the form

ε̂2 =
Ĵ

rN − p
. (19)

The validity of this formula has been confirmed by many simulations.
One may wonder if model selection is necessary at all when the true model

is known. In practice, however, a typical situation where model selection is
called for is degeneracy detection. In 3-D analysis from images, for example,
the constraint (3) corresponds to our knowledge about the scene such as rigid-
ity of motion. However, the computation fails if degeneracy occurs (e.g., the
motion is zero). Even if exact degeneracy does not occur, the computation may
become numerically unstable in near-degeneracy conditions. In such a case,
the computation can be stabilized by switching to a model that describes the
degeneracy [16, 21, 24, 25, 31, 39, 53].

Degeneracy means addition of new constraints, such as some quantity
being zero. It follows that the manifold S degenerates into a submanifold
S ′ of it. Since the general model still holds irrespective of the degeneracy, i.e.,
S ′ ⊂ S, we can estimate the noise level ε from the residual Ĵ of the general
model S using Eq. (19).

Remark 9. Equation (19) can be intuitively understood as follows. Recall that
Ĵ is the sum of the square distances from {xα} to the manifold Ŝ defined by
the constraint F (k)(x,u) = 0, k = 1, ..., r. Since Ŝ has codimension r (the
dimension of the orthogonal directions to it), the residual Ĵ should have ex-
pectation rNε2. However, Ŝ is fitted by adjusting its p-dimensional parameter
u, so the expectation of Ĵ reduces to (rN − p)ε2.

Remark 10. It may appear that the residual Ĵ of the general model cannot be
stably computed in the presence of degeneracy. However, what is unstable is
model specification, not the residual. For example, if we fit a planar surface to
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Fig. 4. Fitting a space line and a plane to points in space

almost collinear points in 3-D, it is difficult to specify the fitted plane stably;
the solution is very susceptible to noise. Yet, the residual is stably computed,
since unique specification of the fit is difficult because all the candidates have
almost the same residual .

Remark 11. Note that the noise level estimation from the general model S by
Eq. (19) is still valid even if degeneracy occurs, because degeneracy means
shrinkage of the model manifold S ′ within S, which does not affect the data
deviations in the “orthogonal” directions (in the Mahalanobis sense) to S that
account for the residual Ĵ .

14.4.4 Comparing the Geometric AIC and the Geometric MDL

We now illustrate the different characteristics of the geometric AIC and
the geometric MDL in detecting degeneracy. Consider a rectangular region
[0, 10] × [−1, 1] on the x–y-plane in the x–y–z-space. We randomly take 11
points in it and magnify the region A times in the y-direction. Adding Gaus-
sian noise of mean 0 and variance ε2 to the x, y, and z coordinates of each
point independently, we fit a space line and a plane in a statistically optimal
manner (Fig. 4). The rectangular region degenerates into a line segment as A
→ 0.

A space line is a one-dimensional model with four degrees of freedom; a
plane is a two-dimensional model with three degrees of freedom. Their geo-
metric AIC and geometric MDL are

G-AICl = Ĵl+2(N+4)ε2, G-AICp = Ĵp+2(2N+3)ε2,

G-MDLl = Ĵl−(N+4)ε2 log
( ε

L

)2

, G-MDLp = Ĵp−(2N+3)ε2 log
( ε

L

)2

,

(20)

where the subscripts l and p refer to lines and planes, respectively. For each A,
we compare the geometric AIC and the geometric MDL of the fitted line and
plane and choose the one that has the smaller value. We used the reference
length L = 1.

Figure 5a shows the percentage of choosing a line for ε = 0.01 after 1000
independent trials for each A. If there were no noise, it should be 0% for A
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Fig. 5. The rate (%) of detecting a space line by the geometric AIC (solid lines with
+) and the geometric MDL (dotted lines with ×) with a the true noise level and b
the estimated noise level

6= 0 and 100% for A = 0. In the presence of noise, the geometric AIC has a
high capability of distinguishing a line from a plane, but it judges a line to be
a plane with some probability. In contrast, the geometric MDL judges a line
to be a line almost 100%, but it judges a plane to be a line over a wide range
of A.

In Fig. 5a, we used the true value of ε2. Figure 5b shows the corresponding
result using its estimate obtained from the general plane model by Eq. (19).
We observe somewhat degraded but similar performance characteristics.

Thus, we can observe that the geometric AIC has a higher capability for
detecting degeneracy than the geometric MDL, but the general model is cho-
sen with some probability when the true model is degenerate. In contrast, the
percentage for the geometric MDL to detect degeneracy when the true model
is really degenerate approaches 100% as the noise decreases. This is exactly
the dual statement to the well-known fact, called the consistency of the MDL,
that the percentage for Rissanen’s MDL to identify the true model converges
to 100% in the limit of an infinite number of observations. Rissanen’s MDL
is regarded by many as superior to Akaike’s AIC because the latter lacks this
property.

At the cost of this consistency, however, the geometric MDL regards a
wide range of nondegenerate models as degenerate. This is no surprise, since
the penalty −(Nd + p)ε2 log(ε/L)2 for the geometric MDL in Eq. (13) is
heavier than the penalty 2(Nd + p)ε2 for the geometric AIC in Eq. (12). As
a result, the geometric AIC is more faithful to the data than the geometric
MDL, which is more likely to choose a degenerate model. This contrast has
also been observed in many applications [23, 31].

Remark 12. Despite the fundamental difference of geometric model selection
from the standard (stochastic) model selection, many attempts have been
made in the past to apply Akaike’s AIC and their variants to computer vision
problems based on the asymptotic analysis of n→∞, where the interpretation
of n is different from problem to problem [48, 49, 50, 51, 52]. Rissanen’s MDL
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is also used in computer vision applications. Its use may be justified if the
problem has the standard form of linear/nonlinear regression [3, 32]. Often,
however, the solution having a shorter description length was chosen with a
rather arbitrary definition of the complexity [11, 27, 33].

Remark 13. Note that one cannot compare different model selection criteria
in general terms, because each is based on its own logic. Not only that, one
cannot prove that a particular criterion works at all. In fact, although Akaike’s
AIC and Rissanen’s MDL are based on rigorous mathematics, there is no
guarantee that they work well in practice. The mathematical rigor is in their
reduction from their starting principles (the Kullback–Leibler information and
the minimum description length principle), which are beyond proof. What one
can tell is which criterion is more suitable for a particular application when
used in a particular manner. The geometric AIC and the geometric MDL
have shown to be effective in many computer vision applications [19, 22, 23,
24, 25, 31, 39, 53], but other criteria may be better in other applications.
The important thing is, however, to understand the underlying logic of each
criterion.

14.5 Linear Geometric Fitting

Now, we consider a special type of geometric fitting problem that most fre-
quently arises in computer vision applications: the constraint is linear in both
data and unknowns. We systematically review existing methods.

14.5.1 Linear Constraints

In many geometric inference problems of computer vision, the constraint (3)
has the form

(ξ(x̄α),u) = 0, (21)

where ξ( · ) is generally a nonlinear mapping from an m-dimensional vector
to a p-dimensional vector. Evidently, the magnitude of u is unconstrained, so
we normalize it to a unit vector: ‖u‖ = 1.

Example 1. Suppose we are given N points {(xα, yα)}, α = 1, ..., N , in two
dimensions. Their true positions {(x̄α, ȳα)} are assumed to be on a conic
(a circle, an ellipse, a parabola, a hyperbola, or their degeneracy). Our task
is to estimate the curve from the noisy data {(xα, yα)}. The constraint on
{(x̄α, ȳα)} is

Ax̄2
α + 2Bx̄αȳα + Cȳ2

α + 2(Dx̄α + Eȳα) + F = 0 (22)
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for some coefficients A, B, ..., D, not all being zero. This constraint reduces
to Eq. (21) if we put

ξ(x, y) =
(
x2 2xy y2 2x 2y 1

)>
, u =

(
A B C D E F

)>
. (23)

The data space X is a two-dimensional manifold in the six-dimensional space
R6; the parameter space U is the five-dimensional unit sphere S6 centered on
the origin of R6.

Example 2. Suppose N points in a 3-D scene are projected to (xα, yα) in the
first image and (x′α, y′α) in the second, α = 1, ..., N . If the camera imaging
geometry is perspective projection, there exists a matrix F of determinant 0
such that

(




x̄α

ȳα

1


 , F




x̄′α
ȳ′α
1


) = 0, (24)

which is called the epipolar equation [13]. The matrix F is known as the funda-
mental matrix . For 3-D reconstruction from the images, we need to estimate
the fundamental matrix F from the noisy data {(xα, yα)} and {(x′α, y′α)}.
Equation (24) reduces to Eq. (21) if we put

ξ(x, y, x′, y′) =
(
xx′ xy′ x yx′ yy′ y x′ y′ 1

)>
,

u =
(
F11 F12 F13 F21 F22 F23 F31 F32 F33

)>
. (25)

The data space X is a four-dimensional manifold in the nine-dimensional space
R9; the parameter space U is a seven-dimensional manifold defined by det F

= 0 and ‖F‖ = 1, where the matrix norm is define by ‖F‖ =
√∑3

i,j=1 F 2
ij .

For the linear constraint (21), the function J in Eq. (7) reduces to

J =
N∑

α=1

(ξα,u)2

(u,V0[ξα]u)
, (26)

where V0[ξα] is the normalized covariance matrix of ξα; we use the abbrevia-
tion ξα = ξ(xα). The matrix V0[ξα] can be expressed to a first approximation
in the form

V0[ξα] = ∇xξ|>x=xα
V0[xα]∇xξ|x=xα , (27)

where ∇xξ is the m× p Jacobian matrix of ξ(x):

∇xξ =




∂ξ1/∂x1 · · · ∂ξp/∂x1

...
...

∂ξ1/∂xm · · · ∂ξp/∂xm


 . (28)

The covariance matrix V[û] of the ML estimator û given by Eq. (9) now reads
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V[û] = ε2
( N∑

α=1

Puξαξ>α Pu

(u,V0[ξα]u)

)−
+ O(ε4), (29)

where the superscript − denotes the Moore–Penrose generalized inverse. The
matrix Pu denotes projection onto the tangent space to the parameter space
U at u (cf. Remark 8). Since the leading term is the lower bound on the
covariance matrix of any estimation (Remark 7), the ML estimator is optimal
up to higher-order terms in ε.

Remark 14. Since we are focusing on the asymptotic analysis for ε → 0, what
we call the “ML estimator” is a first approximation to the true ML estimator
for small ε (Remark 7). Note that if the parameter u is not constrained, the
generalized inverse in Eq. (29) can be replaced by the usual inverse, and the
projection matrix Pu is not necessary. However, u is at least constrained to
be a unit vector, and often additional constraints exist, e.g., detF = 0 on
the fundamental matrix F. If no constraints exist other than ‖u‖ = 1, the
covariance matrix V[û] has rank p− 1, and its null space is in the direction of
u. The projection matrix Pn in this case is

Pu = I− uu>. (30)

14.5.2 Least-Squares Method

If u is constrained, the minimization of Eq. (26) should be carried out subject
to the constraint, but this is very difficult in many cases. A practical approach
to this is to ignore all the constraints except the normalization ‖u‖ = 1 and do
minimization over the (p− 1)-dimensional sphere Sp−1 in Rp. This expedient
is motivated by the fact that if the data {xα} are exact, the solution should
automatically satisfy the remaining constraints. It follows that if the data
uncertainty is very small, which we always assume, the resulting solution û
should satisfy all the constraints up to higher-order terms in ε.

However, the minimization of Eq. (26) is still nonlinear even if all con-
straints other than ‖u‖ = 1 are ignored. The simplest approach is to solve
Eq. (21) directly by (total) least squares, minimizing

JLS =
N∑

α=1

(ξα,u)2. (31)

If we define the second-order moment matrix

M =
N∑

α=1

ξαξ>α , (32)

Eq. (31) is rewritten as
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JLS = (u, Mu). (33)

The unit vector u that minimizes this is the unit eigenvector of M for the
smallest eigenvalue. The resulting least-squares (LS) solution ûLS is a very
crude approximation to the ML estimator û. However, because of the ease of
the computation, it is often used as an initial guess for computing the ML
estimator û by iterations.

14.5.3 Naive Method

If we define

M(u) =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

, (34)

Eq. (26) is written as
J = (u, M(u)u). (35)

This inspires the following iterations for computing the ML estimator:

1. Guess an appropriate initial value u0, say the LS solution ûLS.
2. Assuming that ui−1 is obtained (initially i = 1), let ui be the unit eigen-

vector of M(ui−1) for the smallest eigenvalue.
3. Return ui if ui is sufficiently close to ui−1 except for the sign. Otherwise,

let ui−1 ← ui, and go back to step 2.

This scheme does not work, however, because the resulting solution û is the
value u that minimizes (u, M(û)u), not (u, M(u)u). In other words,

(û,M(û)û) < (û + ∆u,M(û)(û + ∆u)) (36)

for any nonzero perturbation ∆u, but not

(û, M(û)û) < (û + ∆u, M(û + ∆u)(û + ∆u)). (37)

A detailed analysis shows that û is biased by O(ε2) [14]. Namely, if the fluc-
tuations of the data {xα} are centered on their true values {x̄α}, the corre-
sponding fluctuations of û are around a value different from its true value by
O(ε2). This causes inadmissible errors in many practical applications.

14.5.4 FNS Method

If the constraint on u is ignored, the solution that minimizes Eq. (26) is
obtained by solving ∇uJ = 0. Since

∇uJ =
N∑

α=1

2(ξα,u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα,u)2V0[ξα]u
(u, V0[ξα]u)2

, (38)
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the equation ∇uJ = 0 is written in the form

X(u)u = 0, (39)

where

X(u) =
N∑

α=1

ξαξ>α
(u,V0[ξα]u)

−
N∑

α=1

(ξα,u)2V0[ξα]
(u, V0[ξα]u)2

. (40)

From this, we have the following scheme for solving Eq. (39):

1. Guess an appropriate initial value u0, say the LS solution ûLS.
2. Assuming that ui−1 is obtained (initially i = 1), solve the eigenvalue

problem
X(ui−1)u = λu. (41)

Let ui be the unit eigenvector for the eigenvalue λ closest to 0.
3. Return ui if ui is sufficiently close to ui−1 except for the sign. Otherwise,

let ui−1 ← ui, and go back to step 2.

The resulting solution û satisfies Eq. (39). In fact, the value û produced by
the above iterations should satisfy

X(û)û = λû (42)

for some λ. Taking the inner product of û and both sides, we have

(û,X(û)û) = λ. (43)

Equation (40) implies that

(û,X(û)û) =
N∑

α=1

(û, ξα)2

(û, V0[ξα]û)
−

N∑
α=1

(ξα, û)2(û, V0[ξα]û)
(û,V0[ξα]û)2

= 0, (44)

meaning that λ = 0. Thus, û is indeed the solution of Eq. (39). This method
was proposed by Chojnacki et al. [7] and is called the fundamental numerical
scheme (FNS) method . Usually, the iterations converge very quickly.

Remark 15. Equation (44) is a consequence of the fact that the right-hand
side of Eq. (26) is a homogeneous function of degree 0 in u. Since multiplying
u by any nonzero constant does not change the value of J , the gradient ∇uJ
is necessarily orthogonal to u. Thus, (u,∇uJ) = 2(u, X(u)u) is identically 0.

14.5.5 HEIV Method

Equation (39) can also be written as

M(u)u = L(u)u, (45)
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where

M(u) =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

, L(u) =
N∑

α=1

(ξα,u)2V0[ξα]
(u, V0[ξα]u)2

. (46)

This implies the following scheme:

1. Guess an appropriate initial value u0, say the LS solution ûLS.
2. Assuming that ui−1 is obtained (initially i = 1), solve the generalized

eigenvalue problem
M(ui−1)u = λL(ui−1)u. (47)

Let ui be the generalized eigenvector for the generalized eigenvalue closest
to 1. The norm of ui is normalized to be

(ui, L(ui−1)ui) = 1. (48)

3. Return ui if ui is sufficiently close to ui−1 except for the sign. Otherwise,
let ui−1 ← ui, and go back to step 2.

The resulting solution û should satisfy

M(û)û = λL(û)û, (49)

for some λ. Taking the inner product of û and both sides, we have

(û, M(û)û) = λ, (50)

because of the normalization convention given in Eq. (48), which implies from
the second of Eqs. (46) that

1 = (û, L(û)û) =
N∑

α=1

(ξα,u)2(û, V0[ξα]û)
(u,V0[ξα]u)2

=
N∑

α=1

(ξα,u)2

(u, V0[ξα]u)
. (51)

From the first of Eqs. (46), we see that

(û,M(û)û) =
N∑

α=1

(û, ξα)2

(u, V0[ξα]u)
= 1, (52)

meaning that λ = 1. Thus, û is indeed the solution of Eq. (45). However,
the matrix L(u) is usually singular, because the matrix V0[xα] in the second
of Eqs. (46) is likely to degenerate. This is easily seen from Eq. (27): the
dimension p of ξα is generally larger than the dimension m of xα. Hence, the
generalized eigenvalue problem in Eq. (47) needs to be reduced to subproblems
of smaller dimensions. The reduced form (we omit the details, see [9]) was
proposed by Leedan and Meer [28] and Matei and Meer [30] and called the
heteroscedastic errors-in-variables (HEIV) method .
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14.5.6 Renormalization Method

The reason why the solution of the naive method of Sect. is biased is that
the matrix M(u) in Eq. (34) is biased. If we decompose the datum ξα into its
true value ξ̄α and the noise term ∆ξα, the expectation of Eq. (34) is

E[ξαξ>α ] = E[(ξ̄α + ∆ξα)(ξ̄α + ∆ξα)>] = E[ξ̄αξ̄
>
α ] + E[ξ̄α∆ξ>α ]

+E[∆ξαξ̄
>
α ] + E[∆ξα∆ξ>α ] = ξ̄αξ̄

>
α + V0[ξα]. (53)

Thus,
E[M(u)] = M̄(u) + ε2N(u) + O(ε4), (54)

where M̄(u) is the value of M(u) evaluated using the true values {ξ̄α} and

N(u) =
N∑

β=1

V0[ξβ ]
(u, V0[ξβ ]u)

. (55)

Equation (54) implies that an unbiased solution can be obtained if the matrix
M(u) in Eq. (35) is replaced by

M̂(u) = M(u)− ε2N(u). (56)

The square noise level ε2 is unknown, but if we note that the smallest eigen-
value of M̄(u) is 0, we can estimate ε2 so that the smallest eigenvalue of M̂(u)
is 0. Thus, we obtain the following scheme:

1. Guess an appropriate initial value u0, say the LS solution ûLS, and let c0

= 0.
2. Assuming that ui−1 and ci−1 are obtained (initially i = 1), solve the

eigenvalue problem

(M(ui−1)− ci−1N(ui−1))u = λu. (57)

Let ui be the unit eigenvector for the smallest eigenvalue λ.
3. Return ui if λ is sufficiently close to 0. Otherwise, let

ci = ci−1 +
λ

(ui, N(ui−1)ui)
. (58)

4. Let ui−1 ← ui, and go back to step 2.

Equations (57) and (58) imply that if ci is close to 0 we have

(M(ui−1)− ciN(ui−1))ui = 0. (59)

In fact, the inner product of ui and the left-hand side is
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(ui, (M(ui−1)− ciN(ui−1))ui)

= (ui, (M(ui−1)− ci−1N(ui−1))ui)− λ(ui, N(ui−1)ui)
(ui,N(ui−1)ui)

= λ− λ = 0. (60)

If ci is close to 0, the matrix M(ui−1)− ciN(ui−1) is positive semidefinite, so
Eq. (60) implies that ui is included in the null space of M(ui−1)− ciN(ui−1),
proving Eq. (59). Hence, the solution satisfies

(M(û)− cN(û))û = 0, (61)

and c gives an estimate of ε2. This scheme was proposed by Kanatani [14] and
called renormalization.

Remark 16. Historically, this method was proposed first; the HEIV and FNS
methods were proposed as refinements to it. However, the renormalization
solution and the HEIV/FNS solution (FNS and HEIV produce the same value)
are both optimal in the sense that their covariance matrices differ only in
the term O(ε4) in Eq. (29) [14]. This is confirmed by numerical simulations
[7, 8, 9].

Remark 17. Renormalization tries to eliminate the bias term in Eq. (54) by
“subtraction” in the form of Eq. (56). An alternative strategy would be to re-
move the bias by “division”. In fact, if we let M̃(u) = N(u)−1/2M(u)N(u)−1/2

(the negative square root is defined by replacing all its eigenvalues λ by 1/
√

λ
in the canonical form), E[M̄(u)] and M̃(u) share the same eigenvectors up to
O(ε4). If ũ is an eigenvector of M̃(u), the corresponding eigenvector of M(u)
is N(u)−1/2ũ. This implies that an unbiased solution is obtained by applying
the naive method of Sect. to M̃(u). This strategy is known as equilibration
or whitening . However, the matrix N(u) is often singular due to the degener-
acy of V0[ξα] (cf. Sect. ), so N(u)−1/2 cannot be computed. Still, it has been
applied to a few problems for which N(u) does not degenerate [29, 35, 36].

14.5.7 Optimal Correction

In deriving the FNS, HEIV, and renormalization methods, we ignored all
constraints on u except ‖u‖ = 1. Let the remaining constraints be

φ(k)(u) = 0, k = 1, ..., r. (62)

From Eq. (29), the normalized covariance of the ML estimator û is given by

V0[û] =
(
PûM(û)Pû

)−
, (63)
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where M(u) is defined in Eq. (34) (or in Eqs. (46)). The maximum likelihood
solution of u that satisfies the constraint (62) is obtained to a first approxi-
mation by minimizing

J = (û− u, V0[û]−(û− u)) (64)

subject to Eq. (62). Introducing Lagrange multipliers and first-order approx-
imation, we obtain the following solution [14]:

u∗ = û− V0[û]
r∑

k,l=1

w(kl)φ̂(k)∇uφ̂(l). (65)

Here, w(kl) is the (kl) element of the inverse of the r × r matrix whose (kl)
element is (∇uφ̂(k),V0[û]∇uφ̂(l)), i.e.,

(
w(kl)

)
=

(
(∇uφ̂(k), V0[û]∇uφ̂(l))

)−1

. (66)

The hat means that the ML estimator û is substituted for u. The normalized
covariance matrix of the corrected value u∗ of Eq. (65) is

V0[u∗] = V0[û]−
r∑

k,l=1

w(kl)(V0[û]∇uφ̂(k))(V0[û]∇uφ̂(k))> (67)

up to O(ε2) [14]. For a single constraint, Eqs. (65) and (67) reduce to

u∗ = û− φ̂V0[û]∇uφ̂

(∇uφ̂, V0[û]∇uφ̂)
, (68)

V0[u∗] = V0[û]− (V0[û]∇uφ̂)(V0[û]∇uφ̂)>

(∇uφ̂, V0[û]∇uφ̂)
. (69)

Remark 18. If the r constraints in Eq. (62) are redundant, say only r′ (< r) of
them are independent, the inverse in Eq. (66) is replaced by the generalized
inverse of rank r′ (cf. Remark 6).

Remark 19. If all the r constraints in Eq. (62) are independent, the rank of
the matrix V0[u∗] given by Eq. (65) is smaller than V0[û] by r. Intuitively,
the ellipsoid that represents the uncertainty of u in Rp “collapses” in the r
directions in which the constraint (62) is violated, while it keeps its shape in
the directions orthogonal to them. Hence, the optimality of the ML estimator
is not affected by doing this type of posterior correction [14].

Remark 20. Equation (65) enforces all the constraints only to a first approx-
imation, so φ(k)(u∗), k = 1, ..., r, may not exactly be 0, and u∗ may not
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exactly be a unit vector. Such higher-order discrepancies can be eliminated
by iterating Eqs. (68) and (69) in the form

u∗ ← N [û− φ̂V0[û]∇uφ̂

(∇uφ̂, V0[û]∇uφ̂)
], (70)

V0[u∗] ← Pu∗
(
V0[û]− (V0[û]∇uφ̂)(V0[û]∇uφ̂)>

(∇uφ̂, V0[û]∇uφ̂)
,
)
Pu∗ , (71)

where N [ · ] denotes normalization to a unit vector (N [v] = v/‖v‖), and Pu∗

is the projection matrix defined by Eq. (30). Equation (71) makes the null
space of the V0[u∗] exactly compatible with u∗.

14.6 Nuisance Parameters and Semiparametric Model

Finally, we discuss some new topics related to the use of statistical methods
for geometric inference.

14.6.1 Asymptotic Parameters

The number n that appears in the standard statistical analysis is the number of
experiments. It is also called the number of trials, the number of observations,
and the number of samples. Evidently, the properties of the ensemble are
revealed more precisely as more data are sampled from it.

However, the number n is often called the number of data, which has
caused considerable confusion. For example, if we observe a 100-dimensional
vector datum in one experiment, one may think that the “number of data” is
100, but this is wrong: the number n of experiments is 1. We are observing 1
sample from an ensemble of 100-dimensional vectors.

For character recognition, the underlying ensemble is the set of possible
character images, and the learning process concerns the number n of training
steps necessary to establish satisfactory responses. This is independent of
the dimension N of the vector that represents each character. The learning
performance is evaluated asymptotically as n → ∞, not N → ∞.

For geometric inference, however, many researchers have taken the dimen-
sion of the data as the “number of data” perhaps because the ensemble is
hypothetical and one cannot sample more than one datum from it. However,
if we extract, for example, 50 feature points, they constitute a 100-dimensional
vector consisting of their x and y coordinates. If no other information, such
as the image intensity, is used, the image is completely characterized by that
vector. Applying a statistical method means regarding it as a sample from a
hypothetical ensemble of 100-dimensional vectors.
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14.6.2 Neyman–Scott Problem

In the past, many computer vision researchers have analyzed the asymptotic
behavior as N → ∞ without explicitly mentioning what the underlying en-
semble is. This is perhaps motivated by a similar formulation in the statistical
literature. Suppose, for example, a rodlike structure lies on the ground in the
distance. We emit a laser beam toward it and estimate its position and ori-
entation by observing the reflection of the beam, which is contaminated by
noise. We assume that the laser beam can be emitted in any orientation any
number of times, but the emission orientation is measured with noise. The
task is to estimate the position and orientation of the structure as accurately
as possible by emitting as small a number of beams as possible. Naturally, the
estimation performance should be evaluated in the asymptotic limit n → ∞
with respect to the number n of emissions.

The underlying ensemble is the set of all response times for all possible di-
rections of emission. Usually, we are interested in the position and orientation
of the structure but not the exact orientation of each emission, so the variables
for the former are called the structural parameters, which are fixed in number,
while the latter are called the nuisance parameters, which increase indefinitely
as the number n of experiments increases [2]. Such a formulation is called the
Neyman–Scott problem [37]. Since the constraint is an implicit function in the
form of Eq. (3), we are considering an errors-in-variables model [10]. If we
linearize the constraint by changing variables, the noise characteristics differs
for each data component, so the problem is heteroscedastic [28].

To solve this problem, one can introduce a parametric model for the distri-
bution of possible laser emission orientations, regarding the actual emissions
as random samples from it. This formulation is called a semiparametric model
[2]. An optimal solution can be obtained by finding a good estimating function
[2, 40].

14.6.3 Semiparametric Model for Geometric Inference

Since the semiparametric model has something different from the geometric
inference problem described in Sect. , a detailed analysis is required for exam-
ining if application of a semiparametric model to geometric inference will yield
a desirable result [38, 40]. In any event, one should explicitly state what kind
of ensemble (or ensemble of ensembles) is assumed before doing statistical
analysis.

This is not merely a conceptual issue. It also affects the performance eval-
uation of simulation experiments. In doing a simulation, one can freely change
the number N of feature points and the noise level ε. If the accuracy of method
A is higher than method B for particular values of N and ε, one cannot con-
clude that method A is superior to method B, because opposite results may



488 Kenichi Kanatani

come out for other values of N and ε. Here, we have two alternatives for per-
formance evaluation: fixing ε and varying N to see if admissible accuracy is
attained for a smaller number of feature point; fixing N and varying ε to see
if larger data uncertainty can be tolerated for admissible accuracy. These two
types of evaluation have different meanings. Our conclusion is that the results
of one type of evaluation cannot directly be compared with the results of the
other.

14.7 Conclusions

We have investigated the meaning of “statistical methods” for geometric in-
ference based on image feature points. Tracing back the origin of feature
uncertainty to image processing operations, we discussed the implications of
asymptotic analysis in reference to geometric fitting and geometric model se-
lection. We pointed out that a correspondence exists between the standard
statistical analysis and the geometric inference problem. We also compared
the capability of the geometric AIC and the geometric MDL in detecting de-
generacy. Next, we reviewed recent progress in geometric fitting techniques for
linear constraints, describing the FNS method, the HEIV method, the renor-
malization method, and other related techniques. Finally, we discussed the
Neyman–Scott problem and semiparametric models in relation to geometric
inference.

From these discussions, we conclude that applications of statistical meth-
ods require careful consideration about the nature of the problem in question
and that different statistical theories are necessary for different classes of prob-
lems. In this sense, there is much room for new statistical theories to emerge
as the scope of computer vision research expands. The important thing is,
however, to always make clear the underlying hypotheses and assumptions,
and to not simply use the methods in the statistical literature.
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