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Abstract. We present a highly accurate least-squares
(LS) alternative to the theoretically optimal maximum
likelihood (ML) estimator for homographies between two
images. Unlike ML, our estimator is non-iterative and
yields a solution even in the presence of large noise. By
rigorous error analysis, we derive a “hyperLS” estimator
which is unbiased up to second order noise terms. We also
introduce a computational simplification, which we call
“Taubin approximation”, without incurring an accuracy
loss. We experimentally demonstrate that our estimator
far surpasses the standard LS and is nearly comparable to
the ML and the theoretical accuracy limit (the KCR lower
bound).

1. Introduction

Computing a homography between two images
(Fig. 1) is the first step in many computer vision appli-
cations including panoramic image generation, camera
calibration using reference planes, 3-D reconstruction
of objects that have planar faces, and detecting obsta-
cles on a planar surface.

The simplest and most widely used method for esti-
mating homographies is the least squares (LS), which
minimizes the sum of squares of the constraint equa-
tions, known as the “algebraic distance” [3]. However,
its accuracy is limited in the presence of noise. A more
accurate solution can be obtained by maximum like-
lihood (ML), which under independent and isotropic
Gaussian noise reduces to minimizing of the “repro-
jection error”, or the “geometric distance”, subject
to the homography constraint. This is also known as
the “Gold standard” [3]. However, all ML-based es-
timators are iterative and may not converge for very
large noise. In addition, an appropriate initial guess
is needed to start the iterations. Thus, an accurate
algebraic estimator which yields analytical solutions
is desired, even if it is not strictly optimal.

Similar circumstances arise in other problems in-
cluding fitting a circle/ellipse to a noisy point sequence
and estimating fundamental matrices from noisy point
correspondences. For these problems, the Taubin es-
timator [16] has emerged as an algebraic alternative
with accuracy comparable to ML [6, 9]. However,
the Taubin estimator is defined only for a single con-
straint, such as the circle/ellipse equation and the
epipolar equation, while a homography is described
by multiple equations. It was only recently that Ran-
garajan and Papamichalis [14] revealed the existence
of a “Taubin-like” estimator for homographies, but
they failed to rigorously analyze the accuracy of their
estimator.

On the other hand, Al-Sharadqah and Chernov [1],
Rangarajan and Kanatani [13], and Kanatani and
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Figure 1 Computing a homography be-
tween two images.

Rangarajan [8] recently proposed a very accurate LS
estimator for circle and ellipse fitting based on the
perturbation theory of Kanatani [6]; it eliminates the
bias of the fitted circle/ellipse up to second order
noise terms. In this paper, we extend their technique
to homographies. The major difference between cir-
cle/ellipse fitting and homography estimation is, as we
show later, that a circle is represented by a quadratic
polynomial, while a homography is represented by a
set of bilinear polynomials. Consequently, the bias
due to the nonlinearity of the constraint is smaller for
homographies than for circles and ellipses.

The purpose of this paper is not to introduce a new
method with higher accuracy than existing iterative
ML-based methods. Rather, we present a best method
within the framework of algebraic distance minimiza-
tion that does not require iterations. By numerical
experiments, we show that our method, which we call
hyperLS , has accuracy nearly as high as, if not higher
than, ML-based methods. In practice, our solution is
best suited to initialize iterations of ML-based meth-
ods, greatly improving the convergence properties.

We summarize mathematical fundamentals in Sec. 2
and describe the principle of algebraic distance min-
imization in Sec. 3. In Sec. 4 and 5, we do rigorous
error analysis of algebraic distance minimization by
invoking the perturbation theory of Kanatani [6]. We
evaluate the covariance and the bias of the solution in
Sec. 6 and derive our hyperLS in Sec. 7. In Sec. 8,
we do numerical simulation and demonstrate that our
hyperLS is far more accurate than the standard LS.
We also show the accuracy of our estimator is close to
that of ML-based methods and the theoretical accu-
racy limit called the KCR lower bound [4, 5, 6].

2. Homography

A homography is an image mapping in the form

x′=f0
h11x+h12y+h13f0

h31x+h32y+h33f0
, y′=f0

h21x+h22y+h23f0

h31x+h32y+h33f0
,

(1)
where f0 is a scale constant chosen so that all terms
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have nearly an equal magnitude; its absence would in-
cur serious accuracy loss in finite precision numerical
computation. If we define 3-D homogeneous coordi-
nate vectors

x =

x/f0

y/f0

1

 , x′ =

 x′/f0

y′/f0

1

 , (2)

Eqs. (1) can be equivalently written as

x′ ∼= Hx, (3)

where H is a 3 × 3 matrix with elements hij , and ∼=
denotes equality up to a nonzero constant. Equation
(3) states that vectors x′ and Hx are parallel, so we
can equivalently write this as

x′ × Hx = 0. (4)

If we define 9-D vectors

ξ(1) =
(
0 0 0 −f0x −f0y −f2

0 xy′ yy′ f0y
′ )> ,

ξ(2) =
(
f0x f0y f2

0 0 0 0 −xx′ −yx′ −f0x
′ )> ,

ξ(3) =
(
−xy′ −yy′ −f0y

′ xx′ yx′ f0x
′ 0 0 0

)>
, (5)

the three components of Eq. (4) are, after multiplica-
tion of f2

0 ,

(ξ(1), h) = 0, (ξ(2), h) = 0, (ξ(3), h) = 0, (6)

where h is a 9-D vector with components h11, h12,
..., h99. Throughout this paper, we denote the inner
product of vectors a and b by (a, b).

3. LS estimators

Let ξ(k)
α be the value of ξ(k), k = 1, 2, 3, for

{(xα, yα), (x′
α, y′

α)}, α = 1, ..., N . Our task is to
estimate an h such that (ξ(k)

α , h) ≈ 0, k = 1, 2, 3, α =
1, ..., N . An LS estimator is the value of h that min-
imizes the sum of squares of the constraint equations,
also known as the algebraic distance,

J =
1
N

N∑
α=1

3∑
k=1

(ξ(k)
α , h)2 =

1
N

N∑
α=1

3∑
k=1

h>ξ(k)
α ξ(k)>

α h

= (h, Mh), (7)

where we define the 9 × 9 matrix M by

M =
1
N

N∑
α=1

3∑
k=1

ξ(k)
α ξ(k)>

α . (8)

Evidently, we need scale normalization on h; other-
wise, Eq. (7) is minimized by h = 0. A frequently
used convention is h33 = 1. Also,

∑3
i,j=1 h2

ij = 1 is
widely used. However, the crucial fact is that the
value depends on the normalization. Al-Sharadqah
and Chernov [1], Rangarajan and Kanatani [13], and
Kanatani and Rangarajan [8] exploited this freedom
for circle/ellipse fitting and “optimized” the normal-
ization so that the resulting estimator has high accu-
racy. In this paper, we do this for homography esti-
mation.

Following [1, 8, 13], we consider the class of normal-
izations in the form

(h, Nh) = constant, (9)

for some 9× 9 symmetric matrix N . If we let N = I
(unit matrix), we are requiring ‖h‖ = constant. We
call this the “standard LS”. If N is positive definite,
Eq. (9) is positive, so no generality is lost by setting it
to 1. Like [1, 8, 13], however, we do not restrict N to
be positive definite. As is well known, the solution h
that minimizes Eq. (7) subject to Eq. (9) is obtained
by solving the generalized eigenvalue problem

Mh = λNh. (10)

The solution h has scale indeterminacy, so we normal-
ize it to ‖h‖ = 1 rather than Eq. (9). Our task is to
select an appropriate N that gives the best solution
h, applying the perturbation theory of Kanatani [6]
to Eq. (10).

4. Error Analysis

We assume that the observed positions (xα, yα) and
(x′

α, y′
α) are perturbations of their true values (x̄α, ȳα)

and (x̄′
α, ȳ′

α) by independent Gaussian noise ∆xα,
∆yα, ∆x′

α, and ∆y′
α of expectation 0 and standard

deviation σ (pixels). The error terms ∆ξ(k)
α of ξ(k)

α

are
∆ξ(k)

α = ∆1ξ
(k)
α + ∆2ξ

(k)
α , (11)

where ∆1 and ∆2 denote, respectively, terms of orders
1 and 2 in ∆xα, ∆yα, ∆x′

α, and ∆y′
α. If we define the

9 × 4 Jacobi matrices T (k)
α of ξ(k)

α by

T (1)
α =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0
0 0 0 0
0 0 0 0

−f0 0 0 0
0 −f0 0 0
0 0 0 0
ȳ′

α 0 0 x̄α

0 ȳ′
α 0 ȳα

0 0 0 f0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, T (2)
α =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

f0 0 0 0
0 f0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−x̄′
α 0 −x̄α 0

0 −x̄′
α −ȳα 0

0 0 −f0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

,

T (3)
α =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

−ȳ′
α 0 0 −x̄α

0 −ȳ′
α 0 −ȳα

0 0 0 −f0

x̄′
α 0 x̄α 0
0 x̄′

α ȳα 0
0 0 f0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, (12)

the first order terms ∆1ξ
(k)
α are written as

∆1ξ
(k)
α = T (k)

α

0

B

B

@

∆xα

∆yα

∆x′
α

∆y′
α

1

C

C

A

. (13)

Using this, we define the covariance matrices of ξ(k)
α

by
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E[∆1ξ
(k)
α ∆1ξ

(l)
α ] =

T (k)
α E

[0
B

B

@

∆x2
α ∆xα∆yα ∆xα∆x′

α ∆xα∆y′
α

∆yα∆xα ∆y2
α ∆yα∆x′

α ∆yα∆y′
α

∆x′
α∆xα ∆x′

α∆yα ∆x′2
α ∆x′

α∆y′
α

∆y′
α∆xα ∆y′

α∆yα ∆y′
α∆x′

α ∆y′2
α

1

C

C

A

]
T (l)>

α

= T (k)
α (σ2I)T (l)>

α =σ2T (k)
α T (l)>

α =σ2V
(kl)
0 [ξα], (14)

where E[ · ] denotes expectation and we put

V
(kl)
0 [ξα] ≡ T (k)

α T (l)>
α . (15)

The second order error terms ∆2ξ
(k)
α are given by

∆2ξ
(1)
α =

(
0 0 0 0 0 0 ∆xα∆y′

α ∆yα∆y′
α 0

)>
,

∆2ξ
(2)
α =

(
0 0 0 0 0 0 −∆x′

α∆xα −∆x′
α∆yα 0

)>
,

∆2ξ
(3)
α =

(
−∆y′

α∆xα −∆y′
α∆yα 0 ∆x′

α∆xα

∆x′
α∆yα 0 0 0 0

)>
. (16)

5. Perturbation Analysis

Substituting Eq. (11) into Eq. (8), we obtain

M =
1
N

N∑
α=1

3∑
k=1

(ξ̄(k)
α +∆1ξ

(k)
α +∆2ξ

(k)
α )(ξ̄(k)

α +∆1ξ
(k)
α

+∆2ξ
(k)
α )> = M̄ + ∆1M + ∆2M + · · · , (17)

where M̄ is the noise-free term, and · · · denotes terms
of order 3 or higher in noise. The first and second
order terms ∆1M and ∆2M are

∆1M =
1
N

N∑
α=1

3∑
k=1

(ξ̄(k)
α ∆1ξ

(k)>
α + ∆1ξ

(k)
α ξ̄

(k)>
α ),

(18)

∆2M =
1
N

N∑
α=1

3∑
k=1

(ξ̄(k)
α ∆2ξ

(k)>
α + ∆1ξ

(k)
α ∆1ξ

(k)>
α

+∆2ξ
(k)
α ξ̄

(k)>
α ). (19)

Accordingly, we expand h and λ in Eq. (10) in the
form

h= h̄+∆1h+∆2h+· · · , λ= λ̄+∆1λ+∆2λ+· · · . (20)

Substituting Eqs. (17) and (20) into Eq. (10), we have

(M̄ +∆1M +∆2M +· · · )(h̄+∆1h+∆2h+· · · )
= (λ̄+∆1λ+∆2λ+· · · )N(h̄+∆1h+∆2h+· · · ).(21)

Equating terms of equal degrees in noise, we obtain

M̄h̄ = λ̄Nh̄, (22)

M̄∆1h + ∆1Mh̄ = λ̄N∆1h + ∆1λNh̄, (23)

M̄∆2h + ∆1M∆1h + ∆2Mh̄

= λ̄N∆2h + ∆1λN∆1h + ∆2λNh̄. (24)

Since (ξ̄(k)
α , h̄) = 0 for noise-free data, we have M̄h̄ =

0 and hence λ̄ = 0 from Eq. (22). We see from Eq. (18)

that (h̄, ∆1Mh̄) = 0. Computing the inner product
of h̄ and Eq. (23), we see that ∆1λ = 0. Multiplying
Eq. (23) by the pseudoinverse M̄

− from left, we obtain

∆1h = −M̄
−∆1Mh̄, (25)

where we have noted that h̄ is a null vector of M̄
and hence P h̄ ≡ M̄

−
M̄ is the projection matrix in

the direction of h̄. We have also noted that ∆1h is
orthogonal to h̄ and hence P h̄∆1h = ∆1h; this is
easily seen by picking out first order terms from ‖h̄ +
∆1h + ∆2h + · · · ‖2 = 1 [6].

Substituting Eq. (25) into Eq. (24), we see that ∆2λ
is given by

∆2λ=
(h̄,∆2Mh̄)−(h̄,∆1MM̄

−∆1Mh̄)
(h̄,Nh̄)

=
(h̄,T h̄)
(h̄,Nh̄)

,

(26)
where we define

T ≡ ∆2M − ∆1MM̄
−∆1M . (27)

Next, we consider the second order error ∆2h. Since
the magnitude of h is fixed to 1, we are only interested
in the component orthogonal to h̄, which we denote
by

∆⊥
2 h = P h̄∆2h (= M̄

−
M̄∆2h). (28)

Multiplying Eq. (24) by M̄
− from left and substitut-

ing Eq. (25), we obtain

∆⊥
2 h = ∆2λM̄

−
Nh̄+M̄

−∆1MM̄
−∆1Mh̄

−M̄
−∆2Mh̄

=
(h̄, T h̄)
(h̄,Nh̄)

M̄
−

Nh̄ − M̄
−

T h̄. (29)

6. Covariance and Bias

From Eq. (25), the leading term of the covariance
matrix of the solution h is given by

V [h] = E[∆1h∆1h
>]

=
1

N2
M̄

−
E[(∆1Mh)(∆1Mh)>]M̄−

=
1

N2
M̄

−
E

[ N∑
α=1

3∑
k=1

(∆ξ(k)
α ,h)ξ̄(k)

α

N∑
β=1

3∑
l=1

(∆ξ
(l)
β , h)ξ̄(l)>

β

]
M̄

−

=
1

N2
M̄

−
N∑

α,β=1

3∑
k,l=1

(h, E[∆ξ(k)
α ∆ξ

(l)>
β ]h)ξ̄(k)

α ξ̄
(l)>
β M̄

−

=
σ2

N2
M̄

−
( N∑

α=1

3∑
k,l=1

(h, V
(kl)
0 [ξα]h)ξ̄(k)

α ξ̄
(l)>
α

)
M̄

−

=
σ2

N
M̄

−
M̄

′
M̄

−
, (30)

where we define

M̄
′ =

1
N

N∑
α=1

3∑
k,l=1

(h̄, V
(kl)
0 [ξα]h)ξ̄(k)

α ξ̄
(l)>
α . (31)
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In the above derivation, we have used our assumption
that the noise in ξα is independent for each α and that
E[∆1ξ

(k)
α ∆1ξ

(l)>
β ] = δαβσ2V

(kl)
0 [ξα], where δαβ is the

Kronecker delta. The important observation is that
V [h] does not depend on the normalization weight N .
So, all LS estimators have the same covariance matrix
in the leading order . Thus, we are unable to reduce
the covariance of h by adjusting N . This leads us to
focus on the bias.

Since E[∆1h] = 0, the leading bias is E[∆⊥
2 h]. To

evaluate this, we first compute the expectation E[T ]
of T in Eq. (27). From Eq. (19), E[∆2M ] becomes

E[∆2M ] =
1
N

N∑
α=1

3∑
k=1

(
ξ̄

(k)
α E[∆2ξ

(k)
α ]>

+E[∆1ξ
(k)
α ∆1ξ

(k)>
α ] + E[∆2ξ

(k)
α ]ξ̄(k)>

α

)
=

σ2

N

N∑
α=1

3∑
k=1

V
(kk)
0 [ξα] = σ2NT, (32)

where we put

NT =
1
N

3∑
k=1

V
(kk)
0 [ξα]. (33)

The term E[∆1MM̄
−∆1M ] is evaluated as follows

(see Appendix A for the derivation):

E[∆1MM̄
−∆1M ]

=
σ2

N2

N∑
α=1

3∑
k,l=1

(
tr[M̄−

V
(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α ,M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]

+2S[V (kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

)
. (34)

Here, tr[ · ] denotes the trace, and S[ · ] means sym-
metrization (S[A] = (A + A>)/2). From Eqs. (32)
and (34), the expectation of T in Eq. (27) is written
as

E[T ]=σ2
(
NT−

1
N2

N∑
α=1

3∑
k,l=1

(
tr[M̄−

V
(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]+2S[V (kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

))
.

(35)
Hence, the expectation of ∆⊥

2 h in Eq. (29) is

E[∆⊥
2 h] = M̄

−
( (h̄, E[T ]h̄)

(h̄, Nh̄)
Nh̄ − E[T ]h̄

)
. (36)

7. HyperLS estimator

Careful observation of Eqs. (35) and (36) reveals
that if we choose N to be

N = NT − 1
N2

N∑
α=1

3∑
k,l=1

(
tr[M̄−

V
(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]+2S[V (kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

)
,

(37)

Figure 2 Simulated images of a planar sur-
face.

then E[T ] = σ2N from Eq. (35), and hence Eq. (36)
becomes

E[∆⊥
2 h] = σ2M̄

−
( (h̄, Nh̄)

(h̄, Nh̄)
N − N

)
h̄ = 0. (38)

Since Eq. (37) contains the true values ξ̄
(k)
α and M̄ ,

we evaluate them by replacing the true values (x̄α, ȳα)
and (x̄′

α, ȳ′
α) in their definitions by the observations

(xα, yα) and (x′
α, y′

α), respectively. This does not af-
fect the result, because expectations of odd-order er-
ror terms vanish and hence the error in Eq. (38) is at
most O(σ4). Thus, the second order bias is exactly 0.
After Al-Sharadqah and Chernov [1], Rangarajan and
Kanatani [13], and Kanatani and Rangarajan [8], we
call this hyperLS .

Standard linear algebra routines for solving gener-
alized eigenvalue problems in the form of Eq. (10) as-
sume that N is positive definite, but the matrix N
in Eq. (37) is not guaranteed to be positive definite.
However, this poses no problem, as Eq. (10) can be
rewritten as

Nh = (1/λ)Mh. (39)

Since the matrix M in Eq. (8) is positive definite for
noisy data, we can solve Eq. (39) instead of Eq. (10).
If the smallest eigenvalue of M happens to be 0, it
indicates that the data are all exact; any method,
e.g., the standard LS, gives an exact solution. The
perturbation analysis of Kanatani [6] is based on the
assumption that λ ≈ 0, so we compute the unit gen-
eralized eigenvector for λ with the smallest absolute
value.

The second term on the right-hand side of Eq. (37)
is O(1/N) and hence is expected to be small when N
is large. We call the omission Taubin approximation.

8. Experiments

Figure 2 shows simulated images of a planar surface
viewed from different directions. The image size is
assumed to be 800 × 800 pixels with focal length f
= 600 pixels. We added independent Gaussian noise
of mean 0 and standard deviation σ (pixels) to the x
and y coordinates of the grid points and computed the
homography h from them. We measured the error of
the computation by

∆⊥h = P h̄ĥ, P h̄ ≡ I − h̄h̄
>

, (40)

where ĥ and h̄ are the computed and the true values,
respectively, and P h̄ is the projection matrix onto the
direction orthogonal to h̄; we are only interested in
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Figure 3 RMS error of the computed ho-
mography vs. the standard deviation σ of the
added noise. 1. Standard LS. 2. HyperLS. 3.
Taubin approximation. 4. ML. The halfway
termination of the ML plot means that it did
not converge beyond that noise level. The
dotted line indicates the KCR lower bound.

h

∆ h

h

O

Figure 4 The error component ∆⊥h of the
computed value ĥ orthogonal to the true
value h̄.

the error of ĥ, which is a unit vector, orthogonal to
h̄ (Fig. 4). For each σ, we evaluated the root-mean-
square (RMS) error E of ∆⊥h over 1000 independent
trials,

E =

√√√√ 1
1000

1000∑
a=1

‖∆⊥h(a)‖2, (41)

where the superscript (a) indicates the ath value. Fig-
ure 3 plots, for σ on the horizontal axis, the RMS error
E of different methods: 1. standard LS, 2. hyperLS,
3. Taubin approximation, and 4. ML, for which we
derived a new method by extending the FNS of Choj-
nacki [2] (see Appendix B). The dotted line shows the
KCR lower bound [4, 5, 6]. The interrupted plot of
ML means that the iterations failed to converge for σ
larger than that (we used the standard LS to start the
ML iterations).

We can see from Fig. 3 that the standard LS per-
forms very poorly. In contrast, our hyperLS and its
Taubin approximation almost compare with ML. Be-
ing algebraic, they do not fail for whatever noise. The
accuracy of our hyperLS and ML (if it converges) are
both close to the KCR lower bound. In practice, our
hyperLS can be used to initialize ML iterations. In
fact, we have observed that using our hyperLS, rather
than the standard LS, to start the ML iterations in the
experiment of Fig. 3 considerably extends the conver-
gence range.

9. Conclusions

We presented a highly accurate LS alternative to
the theoretically optimal ML estimator for homogra-
phies. Unlike ML, our hyperLS and its Taubin ap-
proximation are non-iterative and yield solutions even
in the presence of large noise where ML computation
may fail. Our approach is to adjust the normalization
weight N so that the solution is unbiased up to sec-
ond order noise terms. By numerical simulation, we
demonstrated that our hyperLS outperforms the stan-
dard LS and has nearly comparable accuracy to ML,
hence is suitable for initializing ML iterations.
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Appendix

A. Derivation of Eq. (34)

The term E[∆1MM̄
−∆1M ] is computed as fol-

lows:

E[∆1MM̄
−∆1M ]

= E[
1
N

N∑
α=1

3∑
k=1

(
ξ̄

(k)
α ∆1ξ

(k)>
α +∆1ξ

(k)
α ξ̄

(k)>
α

)
M̄

−

1
N

N∑
β=1

3∑
l=1

(
ξ̄

(l)
β ∆1ξ

(l)>
β +∆1ξ

(l)
β ξ̄

(l)>
β

)
]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[(ξ̄(k)
α ∆1ξ

(k)>
α +∆1ξ

(k)
α ξ̄

(k)>
α )M̄−

(ξ̄(l)
β ∆1ξ

(l)>
β +∆1ξ

(l)
β ξ̄

(l)>
β )]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[ξ̄(k)
α ∆1ξ

(k)>
α M̄

−
ξ̄

(l)
β ∆1ξ

(l)>
β

+ξ̄
(k)
α ∆1ξ

(k)>
α M̄

−∆1ξ
(l)
β ξ̄

(l)>
β

+∆1ξ
(k)
α ξ̄

(k)>
α M̄

−
ξ̄

(l)
β ∆1ξ

(l)>
β

+∆1ξ
(k)
α ξ̄

(k)>
α M̄

−∆1ξ
(l)
β ξ̄

(l)>
β ]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[ξ̄(k)
α (∆1ξ

(k)
α , M̄

−
ξ̄

(l)
β )∆1ξ

(l)>
β

+ξ̄
(k)
α (∆1ξ

(k)
α ,M̄

−∆1ξ
(l)
β )ξ̄(l)>

β

+∆1ξ
(k)
α (ξ̄(k)

α ,M̄
−

ξ̄
(l)
β )∆1ξ

(l)>
β

+∆1ξ
(k)
α (ξ̄(k)

α ,M̄
−∆1ξ

(l)
β )ξ̄(l)>

β ]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[(∆1ξ
(k)
α , M̄

−
ξ̄

(l)
β )ξ̄(k)

α ∆1ξ
(l)>
β

+(∆1ξ
(k)
α , M̄

−∆1ξ
(l)
β )ξ̄(k)

α ξ̄
(l)>
β

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
β )∆1ξ

(k)
α ∆1ξ

(l)>
β

+∆1ξ
(k)
α (M̄−∆1ξ

(l)
β , ξ̄

(k)
α )ξ̄(l)>

β ]

=
1

N2

N∑
α,β=1

3∑
k,l=1

E[ξ̄(k)
α ((M̄−

ξ̄
(l)
β )>∆1ξ

(k)
α )∆1ξ

(l)>
β

+tr[M̄−∆1ξ
(l)
β ∆1ξ

(k)>
α ]ξ̄(k)

α ξ̄
(l)>
β

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
β )∆1ξ

(k)
α ∆1ξ

(l)>
β

+∆1ξ
(k)
α (∆1ξ

(l)>
β M̄

−
ξ̄

(k)
α )ξ̄(l)>

β ]

=
1

N2

N∑
α,β=1

3∑
k,l=1

(
ξ̄

(k)
α ξ̄

(l)>
β M̄

−
E[∆1ξ

(k)
α ∆1ξ

(l)>
β ]

+tr[M̄−
E[∆1ξ

(l)
β ∆1ξ

(k)>
α ]]ξ̄(k)

α ξ̄
(l)>
β

+(ξ̄(k)
α , M̄

−
ξ̄

(l)
β )E[∆1ξ

(k)
α ∆1ξ

(l)>
β ]

+E[∆1ξ
(k)
α ∆1ξ

(l)>
β ]M̄−

ξ̄
(k)
α ξ̄

(l)>
β

)
=

σ2

N2

N∑
α,β=1

3∑
k,l=1

(
ξ̄

(k)
α ξ̄

(l)>
β M̄

−
δαβV

(kl)
0 [ξα]

+tr[M̄−
δαβV

(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
β

+(ξ̄(k)
α ,M̄

−
ξ̄

(l)
β )δαβV

(kl)
0 [ξα]

+δαβV
(kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
β

)
=

σ2

N2

N∑
α=1

3∑
k,l=1

(
ξ̄

(k)
α ξ̄

(l)>
α M̄

−
V

(kl)
0 [ξα]

+tr[M̄−
V

(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α ,M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]

+V
(kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α

)
=

σ2

N2

N∑
α=1

3∑
k,l=1

(
tr[M̄−

V
(kl)
0 [ξα]]ξ̄(k)

α ξ̄
(l)>
α

+(ξ̄(k)
α ,M̄

−
ξ̄

(l)
α )V (kl)

0 [ξα]

+2S[V (kl)
0 [ξα]M̄−

ξ̄
(k)
α ξ̄

(l)>
α ]

)
. (42)

Thus, Eq. (34) is obtained.

B. ML Homography Estimation

B.1 Formulation

If we assume that noise in ξ(k)
α , k = 1, 2, 3, α = 1, ...,

N , is independent, isotropic, and Gaussian, then max-
imum likelihood (ML) of homography estimation re-
duces to minimizing the Mahalanobis distance, which
equals the negative logarithm of the likelihood func-
tion up to a positive multiplicative constant and an
additive constant. Thus, we minimize

JML =
1
N

N∑
α=1

( ξ(1)
α −ξ̄

(1)
α

ξ(2)
α −ξ̄

(2)
α

ξ(3)
α −ξ̄

(3)
α

 ,

 V
(11)
0 [ξα] V

(12)
0 [ξα] V

(13)
0 [ξα]

V
(21)
0 [ξα] V

(22)
0 [ξα] V

(23)
0 [ξα]

V
(31)
0 [ξα] V

(32)
0 [ξα] V

(33)
0 [ξα]


−

4

 ξ(1)
α −ξ̄

(1)
α

ξ(2)
α −ξ̄

(2)
α

ξ(3)
α −ξ̄

(3)
α

)
,

(43)

where V
(kl)
0 [ξα] are the covariance matrices of ∆ξ(k)

α in
Eq. (15). The notation ( · )−4 denotes pseudoinverse of
rank 4 with eigenvalues except the largest four being
0: The 27× 27 matrix in Eq. (43) has rank 4 because
the independent variables in ∆ξ(k)

α , k = 1, 2, 3, are
only xα, yα, x′

α, and y′
α. We minimize Eq. (43) for

ξ(k)
α , k = 1, 2, 3, α = 1, ..., N , and h subject to the

constraint
(ξ̄(k)

α , h) = 0. (44)

The procedure for this computation was prescribed
by Scoleri et al. [15], but their description is rather
abstract, using Kronecker products and symbolic dif-
ferentiations. Here, we evaluate all derivatives directly
and write down all equations explicitly, using only
standard arithmetics. This will more clearly reveal the
underlying mathematical structure of the problem.

If we define 27-D vectors ξα and 9 × 27 matrices
I(1), I(2), and I(3) by
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ξα =

 ξ(1)
α

ξ(2)
α

ξ(3)
α

 , (45)

I(1) =

 I
O
O

 , I(2) =

 O
I
O

 , I(3) =

 O
O
I

 ,

(46)
where I is the 9× 9 unit matrix, Eq. (44) is rewritten
as

(ξ̄α, I(1)h) = 0, (ξ̄α, I(2)h) = 0, (ξ̄α, I(3)h) = 0.
(47)

Equation (43) is now rewritten as

JML =
1
N

N∑
α=1

(ξα − ξ̄α, V0[ξα]−4 (ξα − ξ̄α)), (48)

where V0[ξα]−4 is the 27 × 27 matrix in Eq. (43). In-
troducing Lagrange multipliers λ

(k)
α to Eqs. (47), dif-

ferentiating

1
2
NJML −

3∑
k=1

λ(k)
α (ξ̄α, I(k)h), (49)

with respect to ξ̄α, and setting the result to 0, we
obtain

−V0[ξα]−4 (ξα − ξ̄α) −
3∑

k=1

λ(k)
α I(k)h = 0. (50)

Multiplying this with V0[ξα] from left, we have

−(ξα − ξ̄α) −
3∑

k=1

λ(k)
α V0[ξα]I(k)h = 0, (51)

where we have noted that the perturbation ξα − ξ̄α

due to noise takes place within the domain of the co-
variance matrix V0[ξα] and hence is invariant to the
projection V0[ξα]V0[ξα]−4 onto the domain of V0[ξα].
Substituting the expression of V0[ξα]−4 (ξα − ξ̄α) ob-
tained from Eq. (50) and the expression of ξα − ξ̄α

obtained from Eq. (51) into Eq. (48), we can write
JML in the form

JML =
1
N

N∑
α=1

(
3∑

k=1

λ(k)
α V0[ξα]I(k)h,

3∑
l=1

λ(l)
α I(l)h)

=
1
N

N∑
α=1

3∑
k,l=1

λ(k)
α λ(l)

α (h, I(kl)>V0[ξα]I(k)h)

=
1
N

N∑
α=1

3∑
k,l=1

λ(k)
α λ(l)

α (h, V
(kl)
0 [ξα]h)

=
1
N

N∑
α=1

3∑
k,l=1

λ(k)
α λ(l)

α V (kl)
α , (52)

where we put

V (kl)
α = (h, V

(kl)
0 [ξα]h). (53)

If we substitute the expression of ξ̄α obtained from
Eq. (51) into Eqs. (47), we have

3∑
l=1

V (kl)
α λ(l)

α =−(ξα, I(k)h)=−(ξ(k)
α , h), k = 1, 2, 3,

(54)
which provides simultaneous linear equations for λ

(k)
α .

However, the rank of the coefficient matrix V α =
(V (kl)

α ) drops to 2 if there is no noise (as described
shortly). So, we solve Eq. (54) by least squares, which
is equivalent to using the pseudoinverse W α = (V α)−2
of rank 2, obtaining

λ(k)
α = −

3∑
l=1

W (kl)
α (ξ(l)

α ,h). (55)

Substituting this into Eq. (52), we obtain

JML =
1
N

N∑
α=1

3∑
k,l=1

( 3∑
m=1

W (km)
α (ξ(m)

α , h)
)

( 3∑
n=1

W (ln)
α (ξ(n)

α , h)
)
V (kl)

α

=
1
N

N∑
α=1

3∑
m,n=1

( 3∑
k,l=1

W (km)
α V (kl)

α W (ln)
α

)
(ξ(m)

α , h)(ξ(n)
α , h)

=
1
N

N∑
α=1

3∑
m,n=1

W (mn)
α (ξ(m)

α , h)(ξ(n)
α , h), (56)

where we have used the identity for pseudo inverse:
W αV αW α = W α(W α)−2 W α = W α.

The expression of this type is called the Sampson er-
ror . Note that no approximation has been introduced
to derive Eq. (56). However, we assumed in the begin-
ning that noise in ξ(k)

α is Gaussian. This is not strictly
true if ∆xα, ∆yα, ∆x′

α, and ∆y′
α is Gaussian. It has

been confirmed in many problems that the Gaussian
approximation of noise in ξ(k)

α , or the Sampson ap-
proximation, does practically not affect the solution
of the strict ML solution [7].

B.2 Minimizing Eq. (56)

It is easily seen from the definition of ξ(k)
α that

x′
αξ(1)

α + y′
αξ(2)

α + f0ξ
(3)
α = 0 (57)

holds identically. Computing the inner product with
h on both sides, we obtain

(x′
αξ(1)

α + y′
αξ(2)

α + f0ξ
(3)
α ,h) = 0. (58)

This is an identity in xα, yα, x′
α, and y′

α, so its deriva-
tives with respect to these are also identities. Hence,
the following identically holds if there is no noise:

(x′
α[T (1)

α ]1 + y′
α[T (2)

α ]1 + f0[T (3)
α ]1, h) = 0,

(x′
α[T (1)

α ]2 + y′
α[T (2)

α ]2 + f0[T (3)
α ]2, h) = 0,

(x′
α[T (1)

α ]3 + y′
α[T (2)

α ]3 + f0[T (3)
α ]3, h) = 0,

(x′
α[T (1)

α ]4 + y′
α[T (2)

α ]4 + f0[T (3)
α ]4, h) = 0. (59)
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Here, [T (k)
α ]i is the ith column of T (k)

α (= the Jacobi
matrix of ξ(k)

α ), and we have noted that (ξ(k)
α , h) = 0

in the absence of noise. From these four equations, we
conclude that

(x′
αT (1)

α + y′
αT (2)

α + f0T
(3)
α )>h = 0. (60)

If we multiply T (k)
α with this and note the definition

V
(kl)
0 [ξα] ≡ T (k)

α T (l)>
α , we obtain

(x′
αV

(k1)
0 [ξα]+y′

αV
(k2)
0 [ξα]+f0V

(k3)
0 [ξα])h = 0. (61)

We write the 3 × 3 matrix having (h, V
(kl)
0 [ξα]h) as

its (kl) element as V α. Computing the inner product
of h and Eq. (61), we obtain

V α

 x′
α

y′
α

f0

 = 0. (62)

Thus, x′
α =

(
x′

α y′
α f0

)> is a null vector of V α.
From the definition of pseudoinverse, it is also a null
vector of W α = (V α)−2 . It follows that W αV α and
V αW α are both projection matrices onto the sub-
space orthogonal to x′

α. Hence, we can write

W αV α = V αW α = I −N [x′
α]N [x′

α]>, (63)

where N [ · ] denotes normalization into unit norm.
Differentiating Eq. (63) with respect to hi, we obtain

∂V α

∂hi
W α + V α

∂W α

∂hi
= O. (64)

Multiplying this by W α from left and noting that
∂W α/∂hi also has x′

α as its null vector and hence
is invariant to the projection W αV α, we obtain the
following identity:

∂W α

∂hi
= −W α

∂V α

∂hi
W α. (65)

Now, if we define the 9 × 3 matrix

Ξα =
(

ξ(1)
α ξ(2)

α ξ(3)
α

)
, (66)

Eq. (56) can be rewritten as follows:

JML =
1
N

N∑
α=1

(h,ΞαW αΞ>
α h). (67)

Differentiating this with respect to hi and using
Eq. (65), we obtain

∂JML

∂hi
=

2
N

N∑
α=1

(ΞαW αΞ>
α h)i

− 2
N

N∑
α=1

(h,ΞαW α
∂V α

∂hi
W αΞ>

α h), (68)

where ( · )i denotes the ith component. If we put

v(k)
α =

3∑
l=1

W (kl)
α (ξ(l)

α , h), (69)

and define vα to be the 3-D vector with components
v
(k)
α , k = 1, 2, 3, Eq. (69) is written as

vα = W αΞ>
α h. (70)

From the definition of the matrix V α, we see that
∂V α/∂hi is a 3 × 3 matrix whose (kl) element is
2

∑9
j=1 V

(kl)
0 [ξα]ijhj . Hence, the last term of the

right-hand side of Eq. (68) is

2
N

N∑
α=1

(h,ΞαW α
∂V α

∂hi
W αΞ>

α h)=
2
N

N∑
α=1

(vα,
∂V α

∂hi
vα)

=
9∑

j=1

( 2
N

N∑
α=1

3∑
k,l=1

V
(kl)
0 [ξα]ijv(k)

α v(l)
α

)
hj . (71)

If we define 9 × 9 matrices MML and LML by

MML =
1
N

N∑
α=1

W (kl)
α ξ(k)

α ξ(l)>
α , (72)

LML =
1
N

N∑
α=1

N∑
k,l=1

v(k)
α v(l)

α V
(kl)
0 [ξα], (73)

the first term on the right-hand side of Eq. (68) is sim-
ply 2MML. Equation (71) is written as 2LMLh. Thus,
we obtain the following expression of the derivative of
JML in Eq. (67):

∇hJML = 2(MML − LML)h. (74)

It follows that to minimize JML we need to solve

(MML − LML)h = 0. (75)

In the above derivation, we have assumed that there
is no noise. In the presence of noise, the only differ-
ence is that Eq. (62) does not exactly hold, and V α

is nonsingular with the smallest eigenvalue close to 0.
So, we regard W α = (V α)−2 as obtained by curtailing
the smallest eigenvalue of V α to 0.

B.3 Solving Eq. (75)

In order to solve Eq. (75), we use the FNS principle
of Chojnacki et al. [2], though we may as well use the
HEIV principle of Leedan and Meer [11] and Matei
and Meer [12]. The FNS procedure goes as follows:

1. Provide an initial value h0 for h (e.g., by the stan-
dard LS).

2. Compute the matrices MML and LML in
Eqs. (72) and (73).

3. Solve the eigenvalue problem

(MML − LML)h = λh, (76)

and compute the unit eigenvector h for the small-
est eigenvalue λ.

4. If h ≈ h0, return h and stop. Else, let h0 ←
N [h0 + h], and go back to Step 2.

The term N [h0 + h] means N [(h0 + h)/2]. This av-
erage taking, not originally shown by Chojnacki et
al. [2], was shown to stabilize the convergence in many
problems [10].
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