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Abstract
We present a new method for extracting objects moving

independently of the background from a video sequence
taken by a moving camera. We first extract and track fea-
ture points through the sequence and select the trajectories
of background points by exploiting geometric constraints
based on the affine camera model. Then, we generate a
panoramic image of the background and compare it with
the individual frames. We describe our image processing
and thresholding techniques.

1. Introduction

Extracting moving objects from a video sequence is
the first step of many video processing applications in-
cluding traffic monitoring and security surveillance. If
the camera is fixed in the scene, we can detect moving
objects by background subtraction, and many meth-
ods have been proposed for generating background
images in varying illumination conditions. For im-
ages taken by a pan-tilt camera moving around a fixed
projection center, we can reduce the problem to the
stationary camera case by rectifying the image using
the camera control signal. Otherwise, frame-by-frame
image mapping is necessary for canceling the back-
ground motion caused by the camera motion. Such
frame-wise image mapping is based on intensity-based
optical flow or feature point matching, using robust
estimation techniques, such as LMedS and RANSAC,
for avoiding moving object regions [1, 3, 10]. These
techniques were originally proposed for the purpose of
video data compression [7].

While such frame-by-frame processing is intended
for real time applications, we present a new method
for estimating the background motion from the entire
video stream. This means that the computation is
necessarily off line. However, there exist many appli-
cations for which time delay is allowed, e.g., surveil-
lance systems that first store images which are ana-
lyzed later. For such applications, we can robustly
estimate the background motion by taking advantage
of the knowledge of the entire image motion without
accumulating errors.

As in many existing studies, we assume that the
scene is sufficiently far away, the camera motion is
small compared with the depth of the scene, and the
camera orientation change is also small. Under these
assumptions, the image frames are related by homo-
graphies. Hence, we can generate a panoramic image
of the background once we know the correspondences
of background points. For this, we make use of the ge-
ometric constraints based on the affine camera model

[5, 6, 12, 13, 14]. From the resulting panoramic image,
we detect moving objects by background subtraction.
We describe our image processing and thresholding
techniques and confirm their effectiveness using real
video sequences.

2. Feature Point Tracking

First, we extract and track feature points through-
out the input video stream, using the Kanade-Lucas-
Tomasi algorithm [15]. Suppose we tracked N feature
points over M frames. Let (xκα, yκα) be the coor-
dinates of the αth point in the κth frame. Stacking
all the coordinates vertically, we represent the entire
trajectory by the following 2M -D trajectory vector :

pα = (x1α y1α x2α y2α · · · xMα yMα)>. (1)

For convenience, we identify the frame number κ with
“time” and refer to the κth frame as “time κ”.

We regard the XY Z camera coordinate system as
a reference, relative to which objects and the back-
ground are moving. Consider a 3-D coordinate system
fixed to the background. Let tκ and {iκ, jκ, kκ} be,
respectively, the origin and basis vectors at time κ.
We define the basis vector kκ in the depth direction.
Let (aα, bα, cα) be the coordinates of the αth back-
ground point with respect to this coordinate system.
Its position relative to the camera coordinate system
at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

We assume an affine camera, which generalizes or-
thographic, weak perspective, and paraperspective
projections [6, 8]: the 3-D point rκα is projected onto
the image position

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2× 3 matrix and
a 2-D vector determined by the position and orienta-
tion of the camera and its internal parameters at time
κ. This affine camera model is a good approximation
if the scene is sufficiently far away and the camera mo-
tion is small, which we assume as mentioned earlier.

Substituting Eq. (2) into Eq. (3), we obtain
(

xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ, (4)

where m̃0κ, m̃1κ, and m̃2κ are 2-D vectors determined
by the position and orientation of the camera and its
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Figure 1 Trajectory vectors of background
points are constrained to be in a 2-D affine space.

internal parameters at time κ. Since the vector kκ is
fixed to the background, which we assumed is suffi-
ciently far away, it is effectively always in the depth
orientation. Hence, the term cαm̃3κ does not appear
in Eq. (4) after projected onto the image plane.

From Eq. (4), the trajectory vector pα in Eq. (1) is
written in the form

pα = m0 + aαm1 + bαm2, (5)

where m0, m1, and m2 are, respectively, the 2M -D
vectors obtained by stacking m̃0κ, m̃1κ, and m̃2κ ver-
tically over the M frames.

3. Selection of Background Points

Eq. (5) implies that the trajectory vectors of back-
ground points are constrained to be in the 2-D affine
space passing through m0 and spanned by {m1, m2}
(Fig. 1). Hence, we can pick out background points
by robustly fitting a 2-D affine space to the observed
trajectory vectors.

Let {pα}, α = 1, . . . , N , be the observed 2M -D tra-
jectory vectors, and let n = 2M . Our procedure is as
follows:

1. Randomly choose three vectors q1, q2, and q3

from {pα}, α = 1, . . . , N .
2. Letting qC be the centroid of q1, q2, and q3, com-

pute the n× n (second-order) moment matrix

M2 =
3∑

i=1

(qi − qC)(qi − qC)>. (6)

3. Let λ1 ≥ λ2 be the largest two eigenvalues of M2,
and u1 and u2 the corresponding unit eigenvec-
tors.

4. Compute the n× n projection matrix

P n−2 = I −
2∑

i=1

uiu
>
i . (7)

5. Let S be the number of those pα that satisfy

||P n−2(pα − qC)||2 < (n− 2)σ2, (8)

where σ is an estimate of the noise standard de-
viation1.

6. Repeat the above procedure a sufficient number
of times2 and choose the projection matrix P n−2

that maximizes S.
1We confirmed that σ = 0.5 is a reasonable value [12].
2In our experiment, we stopped if S did not increase 200

consecutive times.
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Figure 2 Background point selection by affine
space fitting.

7. Remove those pα that satisfy

||P n−2(pα − qC)||2 ≥ σ2χ2
n−2;99, (9)

where χ2
r;a is the ath percentile of the χ2 distri-

bution with r degrees of freedom.
The term ||P n−2(pα − qC)||2, or the residual, is the
squared distance of point pα from the 2-D affine space
passing through qC and spanned by u1 and u2. We
assume that the noise in the coordinates of the feature
points is an independent Gaussian random variable of
mean 0 and standard deviation σ. Then, the residual
||P n−2(pα−qC)||2 divided by σ2 should be subject to
a χ2 distribution with n − 2 degrees of freedom with
expectation (n− 2)σ2.

The above procedure effectively fits a 2-D affine
space that maximizes the number of the trajectories
whose residuals are less than (n − 2)σ2. We regard
those trajectories which do not belong to the fitted
affine space with significance level 1% as not back-
ground point trajectories (Fig. 2).

4. Extraction of Moving Objects

4.1 Panoramic background image generation
We generate a panoramic background image by

mapping all the frames onto a reference frame. The
mapping is determined by the homographies com-
puted from the point correspondences provided by
the background point trajectories. The homographies
need to be accurately computed even if only a small
number of background point trajectories are detected.
For this, we used the method called renormalization3,
which is known to be statistically optimal [4].

From the multiple pixels mapped onto one pixel in
the reference frame4, we select their median as the
background pixel value, assuming that moving objects
do not stay in that position over more than half of
the entire frames, as commonly done in moving object
detection [1, 3, 10].

4.2 Background subtraction
We create the background images of the individual

frames by inversely mapping the panoramic image and
detect moving objects by background subtraction fol-
lowed by thresholding. Here, selecting an appropriate

3The program code is publicly available at:
http://www.ail.cs.gumma-u.ac.jp/Labo/research.html

4We determined the pixel values by bilinear interpolation.
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Figure 3 Five decimated frames from a 100 frame sequence (above) and detected moving objects (below).

threshold is very difficult. For a stationary camera, we
could obtain an empirical value by prior experiments
in that circumstance. For a freely moving camera,
however, this is difficult.

Many methods exist for automatically selecting a
threshold; the best known is the method of Otsu [9].
However, they are intended for object recognition on
the assumption that the intensity histogram has two
peeks. In contrast, background subtraction images
consist of mostly 0 intensity pixels. In particular, if
moving objects do not exist, all the pixels belong to
the background, so no threshold should exist (theoret-
ically ∞). However, automatic thresholding divides
the background into two regions.

In this paper, we avoid this by fitting a χ2 distri-
bution to the background intensities and a Gaussian
distribution to the moving object intensities; the in-
tersection of the two distribution curves is chosen as
the threshold. The actual procedure is given in the
Appendix.

4.3 Noise removal
The background pixels of the subtraction image do

not necessarily have exactly 0 values, because each
pixel of the panoramic image may correspond to dif-
ferent points in the scene due to the inaccuracy in the
homography computation. As a result, random noise
patterns appear after thresholding the subtraction im-
ages. To remove them, we applied median filtering5

and morphological operations6 after the thresholding.

4.4 Division of an image sequence
Our method requires at least four complete feature

trajectories through the entire frames. However, fea-
ture point tracking fails when the points go out of the
frame, and the accuracy of image mosaicing deterio-
rates as we observe fewer trajectories. To prevent this,
we divide the image sequence into multiple overlap-
ping blocks: we start a new sequence when the number
of surviving trajectories decreases below a threshold7.

5We adjusted the filter size according to the expected size of
the objects to detect. To be specific, we used a 3×3 mask and a
5×5 mask when we expect small and large objects, respectively.

6We conducted two-pixel shrinking and four-pixel expanding
followed by two-pixel shrinking.

7Initially, we tracked 300 feature points and started a new
sequence when the number of surviving trajectories becomes

Figure 4 The panoramic background image
generated from the sequence in Fig. 3.

We generate a panoramic image from each block sep-
arately and connect the resulting panoramic images
using the feature point positions in the overlapping
frames.

5. Experiments

We tested our method using real video sequences.
Fig. 3(a) shows five frames decimated from a 100
frame sequence (310× 236 pixels). We extracted and
tracked 300 feature points and obtained 119 complete
trajectories. From among them, we selected 92 back-
ground trajectories by the method described in Sec. 4.
The marks ¤ in Fig. 3(a) indicate the selected back-
ground points; the marks ¥ are the rejected points.

Fig. 4 shows the median-valued panoramic image
generated from the detected background trajectories.
Fig. 3(b) shows detected moving objects by back-
ground subtraction.

The computation time for this sequence is 8.52 sec
for feature point tracking, 335.47 sec for image mosaic-
ing, and 0.25 sec/frame for moving object extraction.
We used Pentium 4 2.6 GHz for the CPU with 1 GB
main memory and Linux for the OS.

Figs. 5 and 7 show the results of other sequences;
Figs. 6 and 8 are the corresponding panoramic back-
ground images. Since the camera panning is large
for these sequences, the footage was automatically di-
vided into five and four blocks, respectively.

less than 100.
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Figure 5 Five decimated frames from a 300 frame sequence (above) and detected moving objects (below).

Figure 6 The panoramic background image
generated from the sequence in Fig. 5.

6. Concluding Remarks

We presented a new method for extracting moving
objects from a video sequence taken by a moving cam-
era. The basic principle is well known: we generate a
panoramic background image and detect moving ob-
jects by background subtraction [1, 3, 10]. The differ-
ence is that while existing methods compute frame-by-
frame mapping for canceling the camera motion, we
make use of the knowledge of the entire video stream.
We first extract and track feature points throughout
the sequence and apply the affine space constraint
to select background point trajectories, from which a
panoramic image is generated. We described our im-
age processing and thresholding techniques and con-
firmed their effectiveness using real video sequences.

Since our method uses the entire video stream, the
processing is necessarily off line. However, there are
many practical applications for which time delay is al-
lowed, e.g., surveillance systems that first store images
and analyze them whenever necessary. At the cost of
real-time processing, the background image genera-
tion becomes simpler and stabler, because each frame
is directly mapped onto a reference frame without ac-
cumulating errors.

Of course, our method, too, cannot escape from
the problems characteristic of background subtrac-
tion. For example, small objects may be overlooked,
and random noise patterns are likely to remain due to
image mosaicing errors. To solve these problems, we
need additional high-level operations, which are left
for future studies.

Acknowledgments. This work was supported in part
by the Ministry of Education, Culture, Sports, Science and
Technology, Japan, under a Grant in Aid for Scientific
Research C(2) (No. 15500113) and Kayamori Foundation
of Information Science Advancement.

References

[1] S. Araki, T. Matsuoka, N. Yokoya, and H. Takemura,
“Real-Time Tracking of Multiple Moving Object Con-
tours in a Moving Camera Image Sequence,” IEICE
Trans. Inf. & Syst., vol. E83-D, no. 7, July 2000.

[2] A. P. Dempster, N. M. Laird and D. B. Rubin, “Max-
imum likelihood from incomplete data via the EM Al-
gorithm,” J. Roy. Statist. Soc., ser. B, vol. 39, pp. 1–
38, 1977.

[3] M. Irani, P. Anandan, and S. Hsu, “Mosaic Based
Representations of Video Sequences,” Proc. 5th Int.
Conf. Comput. Vision, pp. 605–611, Cambridge, MA,
U.S.A., June 1995.

[4] K. Kanatani, N. Ohta and Y. Kanazawa, “Opti-
mal homography computation with a reliability mea-
sure.” IEICE Trans. Inf. & Syst., vol. E83-D, no. 7,
pp. 1369–1374, July 2000.

[5] K. Kanatani, “Motion segmentation by subspace sep-
aration: Model selection and reliability evaluation,”
Int. J. Image Graphics, vol. 2, no. 2, pp. 179–197,
April 2002.

[6] K. Kanatani and Y. Sugaya, “Factorization without
factorization: Complete Recipe,” Memoirs Faculty
Eng., Okayama University, vol. 38, no. 2, pp. 61–72,
March 2004.

[7] M.-C. Lee, W. Chen, C. B. Lin, C. Gu, T. Markoc,
I. Zabinsky and R. Szelizki, “A layered video object
coding system using sprite and affine motion model,”
IEEE Trans. Circuit Systems Video Tech., vol. 7,
no. 1, pp. 130–145, February 1997.

[8] C. J. Poelman and T. Kanade, “A paraperspective
factorization method for shape and motion recovery,”
IEEE Trans. Patt. Anal. Mach. Intell., vol. 19, no. 3,
pp. 206–218, March 1997.

[9] N. Otsu, “A threshold selection method from gray-
level histograms,” IEEE Trans. Sys. Man Cyber.,
vol. 9, no. 1, pp. 62–66, 1979.

[10] H. S. Sawhney and S. Ayer, “Compact representa-
tions of video through dominant and multiple motion
estimation,” IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 18, no. 8, pp. 814–830, August 1996.

[11] M. I. Schlesinger and V. Hlaváč, Ten Lectures on Sta-
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Appendix: Image thresholding

Our thresholding scheme for background subtrac-
tion is as follows:
• Compute the intensity histogram h(x) over the

pixel value range x = 0, 1, 2, . . . , xmax. Let h(0) =
0.

• Let xc be an initial threshold8.
• Let

b(x) =

{
1 x = 0, 1, . . . , xc

0 x = xc + 1, . . . , xmax
,

g(x) =

{
0 x = 0, 1, . . . , xc

1 x = xc + 1, . . . , xmax.
(10)

• Iterate the following until N0, N1, µ0, µ1, σ2
0 , and

σ2
1 converge:

1. Estimate the number N0 of the background pix-
els and the mean µ0 and variance σ2

0 of the back-
ground intensities as follows:

N0 =
xmax∑
x=0

b(x)h(x),

µ0 = 0.5 +
1

N0

xmax∑
x=0

xb(x)h(x),

σ2
0 =

1
N0

xmax∑
x=0

x2b(x)h(x)− (µ0 − 0.5)2. (11)

8We chose the value xc in such a way that the number of the
pixels larger than xc is 10% of all the pixels.

Figure 8 The panoramic background image
generated from the sequence in Fig. 7.

2. Estimate the number N1 of the object pixels and
the mean µ1 and variance σ2

1 of the object inten-
sities as follows:

N1 =
xmax∑
x=0

g(x)h(x),

µ1 = 0.5 +
1

N1

xmax∑
x=0

xg(x)h(x),

σ2
1 =

1
N1

xmax∑
x=0

x2g(x)h(x)− (µ1 − 0.5)2. (12)

3. Update b(x) and g(x) as follows:

s0 =
2N0µ0

σ2
0

φ2µ2
0/σ2

0

(2µ0x

σ2
0

)
,

s1 =
N1√
2πσ1

e−(x−µ1)
2/2σ2

1 ,

b(x) =

{
0 if s0 ≈ 0

s0
s0 + s1

otherwise ,

g(x) = 1− b(x). (13)

Here, φr(x) is the probability density of the χ2

distribution with r degrees of freedom.
4. Scan the values of b(x), x = 0, 1, . . . , xmax, and

choose the first x for which b(x) ≥ 0.5 ≥ b(x+1).
Then, compute the threshold xc as follows:

xc =





(x + 1)b(x)− xb(x + 1)− 0.5
b(x)− b(x + 1)
if b(x) > b(x + 1)

x + 0.5 if b(x) = (b + 1).

(14)

If no x satisfies 0.5 ≥ b(x + 1), let xc = xmax.
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Figure 9 (a) Input image. (b) Corresponding
background image.
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Figure 10 Intensity histogram of the subtrac-
tion image obtained from Fig. 9(a), (b).

(a) (b)

Figure 11 (a) Our thresholding. (b) Otsu thresh-
olding.

In the above procedure, we approximate the intensity
histogram h(x) by a mixture of χ2 and Gaussian dis-
tributions. The values b(x) and g(x) are, respectively,
the fractions of the background and object pixels for
the intensity x. From them, we estimate the inten-
sity histograms of the background and object pixels
and recompute the parameters of the two distribu-
tions by Eqs. (11) and (12). Note that the mean and
variance of the distribution (1/a)φr(x/a) are, respec-
tively, µ = ar, σ2 = a2r. Hence, we have

r =
2µ2

σ2
, a =

σ2

2µ
. (15)

We iterate the above procedure until the parameters
converge. This scheme is well known as unsupervised
learning [11] or the EM algorithm [2].

The reason why we let h(0) = 0 is as follows. The
input image and the background image have differ-
ent pixel values in general. Hence, exact agreement
is mostly due to intensity saturation. Such values are
not suitable for statistical learning.

Since the histogram value h(x) is the count of the
pixel values in the interval [x, x+1], we replaced h(x)

(a) (b)

Figure 12 (a) Input image. (b) Corresponding
background image.
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Figure 13 Intensity histogram of the subtrac-
tion image obtained from Fig. 12(a), (b).

(a) (b)

Figure 14 (a) Our thresholding. (b) Otsu thresh-
olding.

by h(x+0.5) in our analysis. That is why 0.5 appears
in Eqs. (11) and (12).

We stopped the iterations when the parameter
changes became less than 10−5. It took about 100
to 200 iterations for convergence. The iterations con-
verged into a unique solution irrespective of the initial
value unless we started from an exceptional value, such
as 0 or xmax.

Fig. 9 shows an input image and the corresponding
background image. Fig. 10 shows the intensity his-
togram of the resulting subtraction image: the solid
curve shows the fitted mixture distribution; the ver-
tical line shows the computed threshold. The vertical
dotted line indicates, for comparison, the threshold
obtained by the Otsu criterion [9]. Fig. 11 shows the
binary images obtained using the two thresholds. We
can see that our thresholding produces a better result.

Figs. 12∼14 show another example, for which mov-
ing objects do not exist. In this case, the Otsu cri-
terion divides the background into two regions. Our
method computes the threshold to be xmax, meaning
that all pixels belong to the background.
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