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Abstract. We describe in detail the algorithm of bun-
dle adjustment for 3-D reconstruction from multiple im-
ages based on our latest research results. The main focus
of this paper is on the handling of camera rotations and
the efficiency of computation and memory usage when the
number of variables is very large; an appropriate consid-
eration of this is the core of the implementation of bundle
adjustment. Computing the fundamental matrix from two
views and reconstructing the 3-D structure from multiple
views, we evaluate the performance of our algorithm and
discuses technical issues of bundle adjustment implemen-
tation.

1. Introduction

Bundle adjustment is a fundamental technique for
computing the 3-D structure of the scene from point
correspondences over multiple images. The basic prin-
ciple is to search the space of all the parameters,
i.e., the coordinates of all 3-D points and the intrin-
sic and extrinsic camera parameters of all frames, in
such a way that the images of the reconstructed 3-D
points reprojected via the computed camera parame-
ters agree with the input images as much as possible
[11, 12, 15]. This computation is a complicated iter-
ative procedure, and the details have not been well
documented, partly because the implementation, the
treatment of rotations in particular, differs from re-
searcher to researcher. The purpose of this paper is
to describe the bundle adjustment procedure in a way
considered to be the most appropriate from the view-
point of our latest research. In particular, we high-
light the treatment of rotations and the efficiency of
computation and memory usage when the number of
variables is very large; an appropriate consideration
of this is the core of the implementation of bundle ad-
justment. Computing the fundamental matrix from
two views and reconstructing the 3-D structure from
multiple views, we evaluate the performance of our
algorithm and discuss technical issues of bundle ad-
justment implementation.

2. Perspective Projection

We model the camera imaging geometry by perspec-
tive projection, which projects a 3-D point (X,Y, Z)

onto (x, y) on the image plane by the relationship

 x
y
f0

 ' P


X
Y
Z
1

 , (1)

where ' denotes equality up to a nonzero constant
multiplier, and f0 is an appropriate scaling constant1.
The 3 × 4 matrix P is called the projection matrix .
If the camera with focal length f pixels and the prin-
cipal point at (u0, v0) is placed at t with orientation
R (rotation matrix) relative to the world coordinate
system, the projection matrix P has the following ex-
pression [3] (I is the unit matrix):

P = KR> (
I −t

)
,

K =

 f/f0 0 u0/f0

0 f/f0 v0/f0

0 0 1

 . (2)

Here, we are assuming that the aspect ratio is 1 with
no image skew. Eq. (2) is known as the matrix of in-
trinsic parameters. In components, Eq. (1) is written
as

x = f0
P 11X + P 12Y + P 13Z + P 14

P 31X + P 32Y + P 33Z + P 34
,

y = f0
P 21X + P 22Y + P 23Z + P 24

P 31X + P 32Y + P 33Z + P 34
, (3)

where P ij denotes the (ij) element of P .
Suppose we take M images of N points

(Xα, Yα, Zα), α = 1, ..., N , in the scene. Let
(xακ, yακ) be the projection of the αth point onto
the κth image. Let P κ be the projection matrix of
the κth image. We measure the discrepancy between
the observed points (xακ, yακ) and the image positions
predicted by the projection matrices P κ by the sum
E of square distances between them over all the im-
ages. From Eq. (3), we see that E, which is called the
reprojection error , is given by

E =
N∑

α=1

M∑
κ=1

Iακ

[(pακ

rακ
− xακ

f0

)2

+
(qακ

rακ
− yακ

f0

)2 ]
, (4)

1The numerical error due to finite length computation is
reduced if it is taken to be of the order of the image coordinates
x and y [2]. In our system, we let f0 = 600 (pixels).
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where Iακ is the visibility index , taking 1 if the αth
point is visible in the κth image and 0 otherwise. In
Eq. (4), we measure the distance on the image plane
with f0 as the unit of length and define pακ, qακ, and
rακ as follows:

pακ = P 11
κ Xα + P 12

κ Yα + P 13
κ Zα + P 14

κ ,

qακ = P 21
κ Xα + P 22

κ Yα + P 23
κ Zα + P 24

κ ,

rακ = P 31
κ Xα + P 32

κ Yα + P 33
κ Zα + P 34

κ . (5)

The task of bundle adjustment is to compute the 3-D
coordinates (Xα, Yα, Zα) and the projection matri-
ces P κ that minimize Eq. (4) from the observations
(xακ, yακ), α = 1, ..., N , κ = 1, ..., M [11, 12, 15].

3. Correction of Variables

The basic principle of bundle adjustment com-
putation is to iteratively modify the assumed val-
ues of (Xα, Yα, Zα) and P κ so that the reprojec-
tion error E in Eq. (4) decreases. Let (∆Xα, ∆Yα,
∆Zα) be the correction of (Xα, Yα, Zα). The pro-
jection matrix P κ is determined by the focal length
fκ, the principal point (u0κ, v0κ), the translation tκ

= (tκ1, tκ2, tκ3)>, and the rotation Rκ. Let ∆fκ,
(∆u0κ,∆v0κ), and (∆tκ1, ∆tκ2, ∆tκ3)> be the correc-
tions of fκ, (u0κ, v0κ), and tκ, respectively.

Expressing the correction of Rκ needs care. The
orthogonality relationship RκR>

κ = I imposes three
constraints on the nine elements of Rκ, so Rκ has
three degrees of freedom. However, we do not need
any 3-parameter expression of Rκ, because what we
actually need is the expression of its “correction”,
i.e., the rate of change, which mathematically means
differentiation. From RκR>

κ = I, we see that the
change ∆Rκ of Rκ satisfies to a first approxima-
tion ∆RκR>

κ + Rκ∆R>
κ = O, hence (∆RκR>

κ )> =
−∆RκR>

κ , which means that ∆RκR>
κ is an antisym-

metric matrix. Thus, ∆RκR>
κ can be expressed in

terms of some ωκ1, ωκ2, ωκ3 in the form

∆RκR>
κ =

 0 −ωκ3 ωκ2

ωκ3 0 −ωκ1

−ωκ2 ωκ1 0

 . (6)

It follows that the set of these first order changes of
rotation, which are called infinitesimal rotations in
mathematics, form a 3-D linear space spanned by ωκ1,
ωκ2, ωκ3, which is known as the Lie algebra2 so(3) of
the group of rotations SO(3) [4].

Let us define the product a × T of a vector a and
a matrix T to be the matrix consisting of the vector
product of a and each column of T . Then, the right-
hand side of Eq. (6) is the product ωκ × I of the
vector ωκ = (ωκ1, ωκ2, ωκ3)> and the unit matrix I.
Note that the identities (a×I)b = a×b and (a×I)T
= a× T hold. Multiplying Eq. (6) by Rκ from right,
we have

∆Rκ = ωκ × Rκ. (7)
2Strictly, this is called a Lie algebra if the commutator op-

eration is added [4]. Here, however, the commutator does not
play any role.

If we divide this by the time lapse ∆t and take the
limit of ∆t → 0, we obtain the instantaneous rate of
change dRκ/dt of Rκ, and the limit of ωκ is identified
with the angular velocity , as is well known in physics.
Equation (7), which some researchers call the method
of Lie algebra, is the basic expression for optimization
involving rotations. This is the standard approach
in physics but does not seem to be well known in
the computer vision community, where the use of the
Euler angles, axis-wise rotations, and the quaternion
representation may be more popular. However, if we
parameterize Rκ itself by using these, differentiation
with respect to the parameters results in rather com-
plicated expressions. The use of Eq. (7) is the simplest
and the most straightforward.

4. Bundle Adjustment Procedure

4.1 Basic Principle

As mentioned above, there are 3N + 9M variables
to adjust for reducing the reprojection error E: ∆Xα,
∆Yα, ∆Zα, α = 1, ..., N , ∆fκ, ∆tκ1, ∆tκ2, ∆tκ3,
∆u0κ, ∆v0κ, ωκ1, ωκ2, ωκ3, κ = 1, ..., M . Introduc-
ing serial numbers, let us denote them by ∆ξ1, ∆ξ2,
..., ∆ξ3N+9M . The first order change of E caused by
∆ξk is obtained by ignoring second and higher order
terms in the expansion of E in ∆ξk and is called the
“derivative” of E and denote by ∂E/∂ξk. It has the
following form:

∂E

∂ξk
= 2

N∑
α=1

M∑
κ=1

Iακ

r2
ακ

[(pακ

rακ
− xακ

f0

)
(
rακ

∂pακ

∂ξk
− pακ

∂rακ

∂ξk

)
+

(qακ

rακ
− yακ

f0

)(
rακ

∂qακ

∂ξk
− qακ

∂rακ

∂ξk

)]
. (8)

If we introduce the Gauss-Netwon approximation, the
second derivative of E is given by

∂2E

∂ξk∂ξl
= 2

N∑
α=1

M∑
κ=1

Iακ

r4
ακ

[(
rακ

∂pακ

∂ξk
− pακ

∂rακ

∂ξk

)
(
rακ

∂pακ

∂ξl
− pακ

∂rακ

∂ξl

)
+

(
rακ

∂qακ

∂ξk
− qακ

∂rακ

∂ξk

)(
rακ

∂qακ

∂ξl
− qακ

∂rακ

∂ξl

)]
.

(9)

Equations (8) and (9) imply that evaluation of the first
and the second derivatives ∂E/∂ξk and ∂2E/∂ξk∂ξl

requires only the first derivatives ∂pακ/∂ξk, ∂qακ/∂ξk,
and ∂rακ/∂ξk. In the following, we derive them in
turn.

4.2 Derivatives for 3-D Positions

Differentiating Eqs. (5), we obtain the derivatives
of pακ, qακ, and rακ with respect to (Xβ , Yβ , Zβ) as
follows, where δαβ denotes the Kronecker delta:

∂pακ

∂Xβ
= δαβP 11

κ ,
∂pακ

∂Yβ
= δαβP 12

κ ,
∂pακ

∂Zβ
= δαβP 13

κ ,
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∂qακ

∂Xβ
= δαβP 21

κ ,
∂qακ

∂Yβ
= δαβP 22

κ ,
∂qακ

∂Zβ
= δαβP 23

κ ,

∂rακ

∂Xβ
= δαβP 31

κ ,
∂rακ

∂Yβ
= δαβP 32

κ ,
∂rακ

∂Zβ
= δαβP 33

κ .

(10)

4.3 Derivatives for Focal Lengths

Differentiating P in Eqs. (2) with respect to f , we
obtain

∂P

∂f
=

 1 0 0
0 1 0
0 0 0

 R> (
I −t

)

=

 1 0 0
0 1 0
0 0 0

 K−1KR> (
I −t

)

=

 1 0 0
0 1 0
0 0 0

 1
f

 1 0 −u0/f0

0 1 −v0/f0

0 0 f/f0

 P

=
1
f

 1 0 −u0/f0

0 1 −v0/f0

0 0 0

 P

=
1
f

 P 11 − u0P
31/f0 P 12 − u0P

32/f0

P 21 − v0P
31/f0 P 22 − v0P

32/f0

0 0

P 13 − u0P
33/f0 P 14 − u0P

34/f0

P 23 − v0P
33/f0 P 24 − v0P

34/f0

0 0

. (11)

Hence, the derivatives of pακ, qακ, and rακ with re-
spect to fλ are given as follows:

∂pακ

∂fλ
=

δκλ

fκ

(
pακ − u0

f0
rακ

)
,

∂qακ

∂fλ
=

δκλ

fκ

(
qακ − v0

f0
rακ

)
,

∂rακ

∂fλ
= 0. (12)

4.4 Derivatives for Principal Points

Differentiating P in Eqs. (2) with respect to u0, we
obtain

∂P

∂u0
=

 0 0 1
0 0 0
0 0 0

 R> (
I −t

)

=

 0 0 1
0 0 0
0 0 0

 K−1KR> (
I −t

)

=

 0 0 1
0 0 0
0 0 0

 1
f

 1 0 −u0/f0

0 1 −v0/f0

0 0 f/f0

P

=
1
f0

 P 31 P 32 P 33 P 34

0 0 0 0
0 0 0 0

 . (13)

Similarly, we obtain

∂P

∂v0
=

 0 0 0
0 0 1
0 0 0

R> (
I −t

)

=
1
f0

 0 0 0 0
P 31 P 32 P 33 P 34

0 0 0 0

 . (14)

Hence, the derivatives of pακ, qακ, and rακ with re-
spect to (u0λ, v0λ) are given as follows:

∂pακ

∂u0λ
=

δκλrακ

f0
,

∂qακ

∂u0λ
= 0,

∂rακ

∂u0λ
= 0,

∂pακ

∂v0λ
= 0,

∂qακ

∂v0λ
=

δκλrακ

f0
,

∂rακ

∂u0λ
= 0. (15)

4.5 Derivatives for Translations

From Eqs. (2), we see that only the fourth column
of P contains t in the form P 14

P 24

P 34

 = −KR>t

= −


(fR11 + u0R

13)t1 + (fR21 + u0R
23)t2

+(fR31 + u0R
33)t3

(fR12 + v0R
13)t1 + (fR22 + v0R

23)t2
+(fR32 + v0R

33)t3
f0(R13t1 + R23t2 + R33t3)

 .

(16)

Hence, we obtain

∂

∂t1

 P 14

P 24

P 34

 = −

 fR11 + u0R
13

fR12 + v0R
13

f0R
13

 ,

∂

∂t2

 P 14

P 24

P 34

 = −

 fR21 + u0R
23

fR22 + v0R
23

f0R
23

 ,

∂

∂t3

 P 14

P 24

P 34

 = −

 fR31 + u0R
33

fR32 + v0R
33

f0R
33

 . (17)

Introducing the vector operator ∇tλ
for differentiation

with respect to (tλ1, tλ2, tλ3), we obtain from Eqs. (5)

∇tλ
pακ = −δκλ(fκr1

κ + u0r
3
κ),

∇tλ
pακ = −δκλ(fκr2

κ + v0r
3
κ),

∇tλ
pακ = −δκλf0r

3
κ, (18)

where we define r1
κ, r2

κ, and r3
κ as follows:

r1
κ =

 R11
κ

R21
κ

R31
κ

 , r2
κ =

R12
κ

R22
κ

R32
κ

 , r3
κ =

 R13
κ

R23
κ

R33
κ

 .

(19)

4.6 Derivatives for Rotations

The first order variation of the matrix P in Eqs. (2)
is given by

∆P = K(ω × R)>
(
I −t

)
= KR>

 0 ω3 −ω2 ω2t3 − ω3t2
−ω3 0 ω1 ω3t1 − ω1t3
ω2 −ω1 0 ω1t2 − ω2t1

 ,

(20)

where we have used the identities (ω × R)> =
−R>(ω × I) and (ω × I)t = ω × t. The derivatives
∂P /∂ω1, ∂P /∂ω2, and ∂P /∂ω3 are given as follows:
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∂P

∂ω1
=

 0 −fR31 − u0R
33 fR21 + u0R

23

0 −fR32 − v0R
33 fR22 + v0R

23

0 −f0R
33 f0R

23

f(t2R31 − t3R
21) + u0(t2R33 − t3R

23)
f(t2R32 − t3R

22) + v0(t2R33 − t3R
23)

f0(t2R33 − t3R
23)

 ,

∂P

∂ω2
=

 fR31 + u0R
33 0 −fR11 − u0R

13

fR32 + v0R
33 0 −fR12 − v0R

13

f0R
33 0 −f0R

13

f(t3R11 − t1R
31) + u0(t3R13 − t1R

33)
f(t3R12 − t1R

32) + v0(t3R13 − t1R
33)

f0(t3R13 − t1R
33)

 ,

∂P

∂ω3
=

−fR21 − u0R
23 fR11 + u0R

13 0
−fR22 − v0R

23 fR12 + v0R
13 0

−f0R
23 f0R

13 0

f(t1R21 − t2R
11) + u0(t1R23 − t2R

13)
f(t1R22 − t2R

12) + v0(t1R23 − t2R
13)

f0(t1R23 − t2R
13)

 ,

(21)

Introducing the vector operator ∇ωλ
for differentia-

tion with respect to (ωλ1, ωλ2, ωλ3), we obtain from
Eqs. (5)

∇ωλ
pακ = δκλ(fκr1

κ + u0κr3
κ) × (Xα − tκ),

∇ωλ
qακ = δκλ(fκr2

κ + v0κr3
κ) × (Xα − tκ),

∇ωλ
rακ = δκλf0r

3
κ × (Xα − tκ), (22)

where we define Xα = (Xα, Yα, Zα)>.

5. Levenberg-Marquardt Method

The Levenberg-Marquardt (LM) procedure that
minimizes the reprojection error E go as follows [13]:

1. Provide initial values for Xα, fκ, (u0κ, v0κ), tκ,
and Rκ, and compute the corresponding repro-
jection error E. Let c = 0.0001.

2. Compute the first and second derivatives ∂E/∂ξk

and ∂2E/∂ξk∂ξl, k, l = 1, ..., 3N + 9M .
3. Solve the linear equation

(1 + c)∂2E/∂ξ2
1 ∂2E/∂ξ1∂ξ2

∂2E/∂ξ2∂ξ1 (1 + c)∂2E/∂ξ2
2

...
...

∂2E/∂ξ3N+9M∂ξ1 ∂2E/∂ξ3N+9M∂ξ2

· · · ∂2E/∂ξ1∂ξ3N+9M

· · · ∂2E/∂ξ2∂ξ3N+9M

. . .
...

· · · (1 + c)∂2E/∂ξ2
3N+9M




∆ξ1

∆ξ2

...
∆ξ3N+9M



= −


∂E/∂ξ1

∂E/∂ξ2

...
∂E/∂ξ3N+9M

 , (23)

for ∆ξk, k = 1, ..., 3N + 9M .
4. Update Xα, fκ, (u0κ, v0κ), and tκ, Rκ by

X̃α ← Xα + ∆Xα,

f̃κ ← fκ + ∆fκ, (ũ0κ, ṽ0κ) ← (u0κ, v0κ),

t̃κ ← tκ + ∆tκ, R̃κ ← R(ωκ)Rκ, (24)

where R(ωκ) denotes the rotation by angle ‖ωκ‖
around axis N [ωκ] screwwise (the Rodriguez for-
mula3).

5. Compute the reprojection error Ẽ corresponding
to X̃α, f̃κ, (ũ0κ, ṽ0κ), t̃κ, and R̃κ. If Ẽ > E, let
c ← 10c and go back to Step 3.

6. Let

Xα ← X̃α, fκ ← f̃ , (u0κ, v0κ) ← (ũ0κ, ṽ0κ),

tκ ← t̃κ, Rκ ← R̃κ. (25)

Stop if |Ẽ − E| ≤ δ for a small constant δ. Else,
let E ← Ẽ, c ← c/10, and go back to Step 2.

6. Implementation techniques

6.1 Removing Indeterminacy

Equation (23) does not have a unique solution, be-
cause for c = 0 the Hessian H = (∂2E/∂ξk∂ξl) has
determinant 0 at the solution. This is due to the well
known fact that the absolute scale and 3-D position
of the scene cannot be determined from images alone.
In order to remove this ambiguity, we introduce the
following normalization:

R1 = I, t1 = 0, t22 = 1. (26)

This means that we compute the 3-D position relative
to the first camera and regard the Y component of
the relative displacement of the second camera from
the first camera as the unit of length. Imposing ‖t2‖
= 1 would be theoretically more general but difficult
to treat in computation. Here, we assume that the
second camera is displaced mostly in the Y direction
from the first camera; we may impose t21 = 1 or t23 =
1 if we know that the camera displacement is mostly
in the X or Y direction. Accordingly, the rows and
columns corresponding to ω11, ω12, ω13, ∆t11, ∆t12,
∆t13, and ∆t22 are removed from the Hessian, and
Eq. (23) is solved for the remaining 3N + 9M − 7
unknowns.

The initial values of Xα, fκ, (u0κ, v0κ), tκ, and Rκ

for starting the LM iterations must be computed by
some other means, e.g., the least squares, but if they
are not computed with the constraint in Eqs. (26), we
need to normalize the given Xα, tκ, Rκ to X ′

α, t′κ,
R′

κ as follows:

X ′
α =

1
s
R>

1

(
Xα − t1

)
,

R′
κ = R>

1 Rκ, t′κ =
1
s
R>

1 (tκ − t1). (27)

Here, we put s = (j, R>
1 (t2 − t1)) and j = (0, 1, 0)>.

3This is often written as exp(ωκ × I) and called the expo-
nential map from the Lie algebra so(3) to the Lie group SO(3).
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6.2 Efficient Computation and Memory Use

From the summation
∑N

α=1

∑M
κ=1 in Eqs. (8) and

(9), it appears that one needs to sum at most MN
terms. However, the amount of computation signif-
icantly reduces if one notes the following. Consider
∂E/∂ξk. From Eq. (8), it is seen that if ∆ξk is a
component of the correction ∆Xβ of the βth point,
only the term for α = β needs to be computed in
the summation

∑N
α=1 due to the Kronecker delta δαβ

in Eqs. (10). If ∆ξk corresponds to the correction
of fλ, (u0λ, v0λ), tλ, or Rλ for the λth image, only
the term for κ = λ needs to be computed in the
summation

∑M
κ=1 due to the Kronecker delta δκλ in

Eqs. (12), (15), (18), and (22). Thus, the summation∑N
α=1

∑M
κ=1 in Eq. (8) needs to be computed for ei-

ther α or κ. Note that for the αth point, only those
images that can view that point needs to be considered
in the sum, and for the κth image, only those points
that appear in that image needs to be considered in
the sum.

The same holds for ∂2E/∂ξk∂ξl. Equation (9) is 0
if ∆ξk and ∆ξl are corrections of different points. If
they correspond to the same point, only the term for
that point needs to be computed in

∑N
α=1. Similarly,

Eq. (9) is 0 if ∆ξk and ∆ξl are corrections of camera
parameters for different images. If they correspond to
the same image, only the terms for that image needs
to be computed in

∑M
κ=1. If one of ∆ξk and ∆ξl cor-

respond to a point and the other to an image, only
those terms for that point and that image need to be
summed in

∑N
α=1

∑M
κ=1 provided that that point ap-

pears in that image.
By these considerations, the computation time for

evaluating ∂E/∂ξk and ∂2E/∂ξk∂ξl can be limited to
a minimum. However, the Hessian H = (∂2E/∂ξk∂ξl)
has (3N + 9M)2 elements in total, and allocating
memory space to them is difficult for large N and
M . In order to store them in a minimum amount
of space avoiding duplication and zero elements as
much as possible, we define arrays E, F , and G of
size 3N × 3, 3N × 9M , and 9M × 9, respectively, and
store ∂2E/∂Xα∂Yα, etc. in E, ∂2E/∂Xα∂fκ, etc. in
F , and ∂2E/∂fκ∂u0κ, etc. in G. The total number of
necessary array elements is 2NM + 9N + 81M .

6.3 Decomposing the Linear Equations

After the normalization of Eqs. (26), the matrix in
Eq. (23) is of size (3N +9M−7)×(3N +9M−7) corre-
sponding to 3N +9M −7 unknowns. For large N and
M , we cannot allocate memory space to store inter-
mediate values for numerical computation such as the
LU or Cholesky decomposition. We resolve this dif-
ficulty by decomposing Eq. (23) into parameters for
points and parameters for images. Equation (23) has
the form shown in Eq. (28), where ∆ξP is the 3N -D
vector corresponding to the 3-D coordinates and ∆ξF

is the (9M − 7)-D vector corresponding to the camera
parameters. Likewise, dP and dF are the 3N -D and
(9M − 7)-D parts of the vector on the right hand of
Eq. (23). The submatrices E(c)

α , α = 1, ..., N , are

of size 3 × 3 and contain the second derivatives of E
with respect to (Xα, Yα, Zα); the superscript (c) in-
dicates that the diagonal elements are multiplied by
(1 + c). The submatrices F α are of size 3× (9M − 7)
and contain the second derivatives of E with respect to
(Xα, Yα, Zα) and the camera parameters of the frames
where it appears. The submatrices G(c) are of size
(9M − 7) × (9M − 7) and contain the second deriva-
tives of E with respect to camera parameters, with
the diagonal elements multiplied by (1 + c):

E
(c)
1 F 1

. . .
...

E
(c)
N F N

F>
1 · · · F>

N G(c)


(

∆ξP

∆ξF

)
= −

(
dP

dF

)
.

(28)
Equation (28) is decomposed into the following two
parts:

E
(c)
1

. . .
E

(c)
N

∆ξP +

 F 1

...
F N

 ∆ξF = −dP ,

(
F>

1 · · · F>
N

)
∆ξP + G(c)∆ξF = −dF . (29)

Solving the first equation for ∆ξP and substituting
it into the second, we obtain the following 9M − 7-D
linear equation for ∆ξF alone:

(
G(c) −

N∑
α=1

F>
α E(c)−1

α F α

)
∆ξF

=
N∑

α=1

F>
α E(c)−1

α ∇αE − dF , ∇αE ≡

 ∂E/∂Xα

∂E/∂Yα

∂E/∂Zα

 .

(30)

Solving this for ∆ξF and substituting it to the second
of Eqs. (29), we can determine ∆ξP . The correction
of αth point is given in the form∆Xα

∆Yα

∆Zα

 = −E(c)−1
α (F α∆ξF + ∇αE). (31)

6.4 Convergence Decision

Even with the above techniques, the LM iterations
require considerable computation time. In numeri-
cally solving equations, it may be a common prac-
tice to continue iterations until all significant digits of
the unknowns are unaltered, but the number of un-
knowns for bundle adjustment may become hundreds
and thousands, requiring a very long time for com-
plete convergence. However, the purpose of bundle
adjustment is to find a solution with a small repro-
jection error, so it makes sense to stop if the repro-
jection error decreases less than a specified amount.
The LM algorithm in Sec. 10 is described that way.
For stopping the iterations when the decrease of the
reprojection error is less than ε pixels per point, we
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(a)

Kanatani and Sugaya [9] bundle adjustment
0 0.0000000000000 0.2740543086661
1 0.1071688468318 0.1083766529404
2 0.1071686014356 0.1076009069457
3 0.1071686015030 0.1076005713017
4 0.1071686013682 0.1071718714030
5 0.1071686015030 0.1071686014673
6 0.1071686013682 0.1071686014580
7 0.1071686016378 0.1071686014580

(b)
Figure 1 (a) Simulated images of a grid surface
in the scene. (b) Typical example of the decrease of
the reprojection error for σ = 0.1 pixels.

can set the constant δ in Sec. 10 to δ = nε2/f2
0 , where

n =
∑N

α=1

∑M
κ=1 Iακ is the total number of observed

points in all images. We set ε = 0.01 pixels in our
experiments.

7. Experiments

7.1 Two-View Reconstruction

Figure 1(a) shows two simulated images of a grid
surface taken from different angles. The image size is
assumed to be 600 × 600 pixels with focal lengths f
= f ′ = 600 pixels. We added independent Gaussian
noise of mean 0 and standard deviation σ = 0.1 pix-
els to the x and y coordinates of the grid points in
the two images and computed from them the funda-
mental matrix by least squares (or Hartley’s’ 8-point
algorithm [2]). From the obtained fundamental ma-
trix, we estimated the focal lengths and the relative
translation and rotation of the two cameras and re-
constructed the 3-D coordinates of the grid points by
the procedure described in [10]. Since theoretically
the principal point (u0, v0) cannot be estimated from
two views [10], we assumed it to be at the center of the
frame. The number of parameters is 280: two for the
focal lengths, two for the relative translation, two for
the relative rotation, and 273 for the 3-D coordinates
of the 91 grid point. We evaluated the the reprojection
error e per point in pixel in the form

e = f0

√
E

N − 7
, (32)

where the number 7 in N − 7 is the degree of the free-
dom of the focal lengths, the translation, and the rel-
ative rotation (N = 91). As is well known in statistics
[5], e2/f2

0 σ2 is subject to a χ2 distribution with N −7
degrees of freedom for independent Gaussian noise of
mean 0 and standard deviation σ and hence has ex-
pectation N − 7. Thus, Eq. (32) gives an estimate of
σ of the added noise.

As a comparison, we tested the method of Kanatani
and Sugaya [9] by starting from the same initial val-

ues. The result is listed in Fig. 1(b), where we con-
tinued computation indefinitely without convergence
judgment. The method of Kanatani and Sugaya [9]
orthogonally projects the observed point correspon-
dences onto the 3-D manifold (hyperbolic surface with
one sheet) in the 4-D joint xyx′y′ space and iteratively
optimizes the fundamental matrix using the EFNS
of Kanatani and Sugaya [8]. As can be seen from
Fig. 1(b), it reaches the same solution as bundle ad-
justment, confirming its optimality. Moreover, it con-
verges after two iterations, while bundle adjustment
requires around five iterations. Thus, the combination
of fundamental matrix computation using the method
of [9] and 3-D reconstruction using the method of
[10] is better than bundle adjustment, as far as two-
view reconstruction is concerned. However, the focal
lengths computed by the method of [10] can be imagi-
nary (the values in square roots can become negative)
in the presence of large noise. In such a case, we need
to start bundle adjustment from an appropriate guess
of the focal lengths.

7.2 Multi-View Reconstruction

We tested our method using the real video sequence
provided by the University of Oxford4. It consists of
36 frames tacking feature points (4983 in total) over
2 to 21 consecutive frames, and the projection matrix
P κ is estimated for each frame. Figure 2(a) shows one
frame with tracked feature points.

Since the number of unknowns is 15266, the Hes-
sian has around 200 millions elements. We cannot al-
locate memory space to store them directly, but with
the scheme described in Sec. 10, they can be stored
in around 4000 array cells (about a five thousandth).
Since each point is visible only in a limited number
of images, most of the Hessian elements are 0. Fig-
ure 2(b) shows the sparsity pattern of the Hessian for
1000 decimated points; nonzero elements are indicated
in black (about 13%).

We first estimated the focal lengths fκ, the prin-
cipal points (u0κ, v0κ), the translations tκ, and the
rotations Rκ from the projection matrices P κ pro-
vided in the database (Appendix A) and computed
the 3-D coordinates by least squares (Appendix B).
Then, we started bundle adjustment. The total num-
ber n =

∑N
α=1

∑M
κ=1 Iακ of points visible in the images

is 16432. The reprojection error per point in pixel cor-
responding to Eq. (32) for two views is

e = f0

√
E

2n − (3N + 9M − 7)
. (33)

The initial reprojection error of the least squares re-
construction is was e = 3.27797 pixels, which reduced
to e = 1.625876 pixels after 149 iterations. Figure 2(c)
plots the decrease of e for the number of iterations,
and Fig. 2(d) lists their numerical values. The num-
ber of iterations was 149. The execution time was
21 minutes and 51 seconds. The program was imple-
mented in the C++ language, using Intel Core2Duo

4http://www.robots.ox.ac.uk/~vgg/data.html
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(a) (b)

(c)

reprojection error reprojection error

0 3.277965703463469
..
.

..

.
1 2.037807322757024 140 1.626138870635717
2 1.767180606187605 141 1.626109073343624
3 1.721032319350261 142 1.626079434501709
4 1.698429496315309 143 1.626049951753774
5 1.684614811452468 144 1.626020622805242
6 1.675366012050569 145 1.625991445421568
7 1.668829491793228 146 1.625962417425169
8 1.664028486785132 147 1.625933536694230
9 1.660393246948761 148 1.625904801160639

10 1.657569357560945 149 1.625876208807785

(d)

(e)
Figure 2 (a) One of the 36 frames of the test
image sequence. (b) The sparsity pattern of the
Hessian for decimated 100 points; nonzero elements
are indicated in black. (c) The reprojection error e
vs. the number of iteration. (d) The numerical value
of e at each iteration. (b) 3-D reconstruction. Red:
initial positions. Green: final positions.

E6750, 2.66GHz for CPU with main memory 4GB and
Windows Vista for the OS. Figure 2(e) shows the re-
constructed 3-D points viewed from some angle: the
red points are initial reconstruction, and the green
points are the final reconstruction.

8. Conclusions

We have described in detail the algorithm of bundle
adjustment for 3-D reconstruction from multiple im-
ages based on our latest research results. The main
focus of this paper is on the treatment of camera ro-
tations in a mathematically sound manner and the ef-
ficiency of computation and memory usage when the
number of points and image frames is very large. As
an example, we computed the fundamental matrix
from two-view point correspondences and observed
that the same solution is obtained as the method
of Kanatani and Sugaya [9], confirming that their
method is indeed optimal. However, bundle adjust-
ment is less efficient than their method. As another
example, we reconstructed 3-D using a real video
database provided by the University of Oxford. It
has a very large number of points, so that it is diffi-
cult to implement bundle adjustment directly. How-
ever, we have shown that we can reconstruct 3-D using
our techniques for efficient computation and efficient
memory usage.

Theoretically, bundle adjustment is a universal tool
for 3-D reconstruction that can be used in any situa-
tions. However, it requires a good initial guess to en-
sure convergence within a practically reasonable time.
A typical method for approximate 3-D reconstruction
is the Tomasi-Kanade factorization [7, 14] using the
affine model to approximate the camera imaging ge-
ometry, and more accurate reconstruction can be done
by the technique of self-calibration [1, 6] using the
perspective camera model. In any case, bundle ad-
justment should be regarded as a means of not re-
constructing 3-D from scratch but refining the 3-D
structure already reconstructed by other means.
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APPENDIX

A. Decomposing the Projection Matrix

Write the projection matrix as P =
(
Q q

)
by

letting Q be the first 3 × 3 submatrix of P and q its
fourth column. From Eq. (1), we see that the sign of
P is indeterminate, so choose the sign so that det Q
> 0; if detQ < 0, we change the signs of both Q and
q. Since P still has scale indeterminacy, we have

Q = cKR>, q = −cKR>t, (34)

where c is an unknown positive constant. From these,
we see that the translation t is given by

t = −Q−1q. (35)

Since R is a rotation matrix, satisfying R>R = I, we
obtain from the first of Eqs.(34)

QQ> = c2KR>RK> = c2KK>. (36)

Its inverse is

(QQ>)−1 =
1
c2

(K−1)>(K−1). (37)

By the Choleski decomposition, we can express this in
terms of an upper triangular matrix C in the form

(QQ>)−1 = C>C. (38)

Since the inverse of an upper triangular matrix is also
upper triangular, we obtain from Eqs. (37) and (38)

C =
1
c
K−1 i.e., C−1 = cK. (39)

From the first of Eqs. (34) and Eq. (39), we obtain

Q = C−1R>, (40)

from which R is given by

R = (CQ)>. (41)

The matrix K of intrinsic parameters is obtained by
multiplying C−1 in Eq. (39) by a constant that makes
its (3,3) element 1.

B. 3-D Reconstruction by Least Squares

Clearing the fractions in Eqs. (3), we obtain

xP 31X + xP 32Y + xP 33Z + xP 34

= f0P
11X + f0P

12Y + f0P
13Z + f0P

14,

yP 31X + yP 32Y + yP 33Z + yP 34

= f0P
21X + f0P

22Y + f0P
23Z + f0P

24. (42)

Collect, for each point pα, equations of this form for
all the nα (=

∑M
κ=1 Iακ) frames where the αth point

appears. Then, we obtain the following 2nα linear
equation of the 3-D coordinates (Xα, Yα, Zα) of pα:

...
...

...
xακP 31

κ −f0P
11
κ xακP 32

κ −f0P
12
κ xακP 33

κ −f0P
13
κ

yακP 31
κ −f0P

21
κ yακP 32

κ −f0P
22
κ yακP 33

κ −f0P
23
κ

...
...

...

...
xακP 33

κ −f0P
13
κ

yακP 33
κ −f0P

23
κ

...


Xα

Yα

Zα

=−


...

xακP 34
κ −f0P

14
κ

yακP 34
κ −f0P

24
κ

...

 .

(43)
Solving this by least squares, we can obtain an initial
solution.
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