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Abstract

Feature point tracking over a video sequence fails
when the points go out of the field of view or be-
hind other objects. Motivated by 3-D reconstruction
applications, we extend such interrupted tracking by
imposing the constraint that under the affine cam-
era model feature trajectories should be in an affine
space in the parameter space. Our method consists
of iterations for optimally extending the trajectories
so that they are compatible with the estimated affine
space and optimally estimating the affine space from
the extended trajectories, coupled with an outlier re-
moval process based on a statistical model of image
noise. Using real video images, we demonstrate that
our method can restore sufficiently many trajectories
for accurate and detailed 3-D reconstruction.

1. Introduction

The factorization method of Tomasi and Kanade
[15] can reconstruct the 3-D shape of the scene from
feature point trajectories tracked over a video se-
quence. The computation is very efficient, requiring
only linear operations. The solution is sufficiently ac-
curate for many practical purposes and can be used as
an initial value for iterations of a more sophisticated
reconstruction procedure [3].

However, the feature point tracking fails when the
points go out of the field of view or behind other ob-
jects. This can be avoided if we use a short sequence,
but then we cannot obtain sufficient information for
3-D reconstruction. In order to resolve this problem, it
is necessary to extend interrupted trajectories so that
they cover the entire image sequence. There have been
several such attempts in the past.

Tomasi and Kanade [15] first reconstructed the 3-D
positions of partly visible feature points from their vis-
ible image positions and then reprojected them onto
the frames in which they are invisible. The camera
positions were estimated from other visible feature
points.

Kamijima and Saito [7] projectively reconstructed
the tentative 3-D positions of missing points by sam-
pling two frames in which they are visible and repro-
jected them onto the frames in which they are invisi-
ble. The camera positions were computed up to pro-
jectivity.

Using the knowledge that the trajectories of feature
points should be in a 4-dimensional subspace in the

parameter space, Jacobs [5] randomly sampled four
trajectories, constructed a high dimensional subspace
from them by letting the missing data have free val-
ues, and computed its orthogonal complement. He
repeated this many times and fitted by least squares
a 4-dimensional subspace that was best orthogonal to
the resulting orthogonal complements1. Partial tra-
jectories were extended so that they were compatible
with the estimated 4-dimensional subspace. A similar
method was also used by Kahl and Heyden [6].

Brandt [1] estimated the centroid of the feature
points from their incomplete coordinates by assuming
a camera model, reconstructed their 3-D positions and
reprojected them onto all the frames. Iterating this,
he optimized the camera model and the feature posi-
tions, starting from the solution given by the method
of Jacobs [5].

For all these methods, we should note the following:

• We need not reconstruct a tentative 3-D shape.
3-D reconstruction is made possible by some geo-
metric constraints over multiple frames, so one
can directly map 2-D point positions to other
frames by using those constraints2.

• If a minimum number of frames are sampled for
tentative 3-D reconstruction, the accuracy de-
pends on the sampled frames. Rather, one should
make full use of all information contained in all
frames.

• All existing methods are based on the assumption
that the observed trajectories are correct, but this
is not always the case. Incorrect trajectories are
useless even if they are of full length, and exten-
sion of partial trajectories is meaningless if they
are incorrect.

In this paper, we present a new scheme for extend-
ing partial trajectories based on the constraint that
under the affine camera model all trajectories should
be in a 3-dimensional affine space in the parameter
space [10], which is a stronger requirement than that
used by Jacobs [5]. No reprojection of tentative 3-D
reconstruction is involved.

Like the method of Brandt [1], our method consists
of iterations for optimally extending the trajectories

1In actual computation, he interchanged the roles of points
and frames: he sampled two frames, i.e., two lists of x coordi-
nates and two lists of y coordinates. The mathematical struc-
ture is the same.

2The projective reconstruction of Kamijima and Saito [7]
is equivalent to the use of what is known as the trilinear (or
trifocal) constraint [3].



so that they are compatible with the estimated affine
space and optimally estimating the affine space from
the extended trajectories.

Exact maximal likelihood estimation may be possi-
ble, e.g., by using the method of Shum, et al. [13], but
it involves complicated iterations. Here, we simplify
the procedure for efficiency by introducing to each par-
tial trajectory a weight that reflects its length.

We do not assume that the observed trajectories
are correct. In every iteration of the optimization, we
test if each trajectory, extended or not, is statistically
reliable, removing unreliable ones as outliers.

Sec. 2 describes our affine space constraint. Sec. 3
describes our initial outlier removal procedure. In
Sec. 4, we describe how we extend partial trajecto-
ries and test their reliability. In Sec. 5, we show real
video examples and demonstrate that our method can
restore sufficiently many trajectories for accurate and
detailed 3-D reconstruction. Sec. 6 is our conclusion.

2. Affine Space Constraint

We first describe the geometric constraints on which
our method is based.

2.1 Trajectory of feature points

Suppose we track N feature points over M frames.
Let (xκα, yκα) be the coordinates of the αth point in
the κth frame. We stack all the coordinates vertically
and represent the entire trajectory by the following
2M -dimensional trajectory vector :

pα =
(
x1α y1α x2α y2α · · · xMα yMα

)>
. (1)

Taking the XY Z camera coordinate system as a
reference, we express the 3-D scene coordinate system
with respect to the camera coordinate system. Let tκ

and {iκ, jκ, kκ} be, respectively, the origin and the
orthonormal basis of the scene coordinate system ex-
pressed with respect to the camera coordinate system
for the κth frame. If the αth point has scene coor-
dinates (aα, bα, cα), its position with respect to the
camera coordinate system for the κth frame is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

2.2 Affine camera model

If an affine camera model (orthographic, weak per-
spective, or paraperspective projection [11]) is as-
sumed, the image position of rκα is

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2× 3 matrix and
a 2-dimensional vector determined by the position and
orientation of the camera and its internal parameters
for the κth frame. From Eq. (2), we can write Eq. (3)
as

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional
vectors determined by the position and orientation of
the camera and its internal parameters in the κth
frame. From Eq. (4), the trajectory vector pα in
Eq. (1) can be written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -dimensional
vectors obtained by stacking m̃0κ, m̃1κ, m̃2κ, and
m̃3κ vertically over the M frames, respectively.

2.3 Affine space constraint

Eq. (5) implies that all the trajectories are con-
strained to be in the 4-dimensional subspace spanned
by {m0, m1, m2, m3} inR2M . This is called the sub-
space constraint [8, 9], on which the method of Jacobs
[5] is based.

In addition, the coefficient of m0 in Eq. (5) is iden-
tically 1 for all α. This means that the trajectories
are in the 3-dimensional affine space within that 4-
dimensional subspace. This is called the affine space
constraint [10].

If all the feature points are tracked to the final
frame, we can define the coordinate origin at the cen-
troid of their trajectory vectors {pα}, thereby regard-
ing them as defining a 3-dimensional subspace inR2M .
The Tomasi-Kanade factorization [15] is based on this
representation, and Brandt [1] tried to find this repre-
sentation by iterations. In this paper, we directly use
the affine space constraint without searching for the
centroid.

Unlike existing studies, our trajectory extension
scheme does not assume any particular camera model
(e.g., orthographic, weak perspective, or paraperspec-
tive projection) except that it is affine. A particular
camera model is necessary only when we compute the
3-D shape and motion from the extended trajectories.

3. Outlier Removal

Before extending partial trajectories, we must first
remove incorrectly tracked trajectories, or “outliers”,
from among observed complete trajectories.

This problem was studied by Huynh and Heyden [4],
who fitted a 4-dimensional subspace to the observed
trajectories by LMedS [12], removing those trajecto-
ries sufficiently apart from it. However, their distance
measure was introduced merely for mathematical con-
venience without giving much consideration to the sta-
tistical behavior of image noise.

Sugaya and Kanatani [14] fitted a 4-dimensional
subspace to the observed trajectories by RANSAC
[2, 3] and removed outliers using a χ2 criterion de-
rived by modeling the error behavior of actual video
tracking. In this paper, we apply their method to the
affine space constraint.

3.1 Procedure

Let n = 2M , where M is the number of frames,
and let {pα}, α = 1, ..., N , be the observed complete
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trajectory vectors. Our outlier removal procedure is
as follows:

1. Randomly choose three vectors q1, q2, q3 from
among {pα}.

2. Compute the n× n moment matrix

M3 =
3∑

i=1

(qi − qC)(qi − qC)>, (6)

where qC is the centroid of {q1, q2, q3}.
3. Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the

matrix M3, and {u1, u2, u3} the orthonormal
system of corresponding eigenvectors.

4. Compute the n× n projection matrix

P n−3 = I −
3∑

i=1

uiu
>
i . (7)

5. Let S be the number of points pα that satisfy

‖P n−3(pα − qC)‖2 < (n− 3)σ2, (8)

where σ is an estimate of the noise standard de-
viation.

6. Repeat the above procedure a sufficient number
of times3, and determine the projection matrix
P n−3 that maximizes S.

7. Remove those pα that satisfy

‖P n−3(pα − qC)‖2 ≥ σ2χ2
n−3;99, (9)

where χ2
r;a is the ath percentile of the χ2 distri-

bution with r degrees of freedom.

3.2 Interpretation

In Eq. (8), the term ‖P n−3(pα − qC)‖2, which we
call the residual , is the squared distance of point pα

from the fitted 3-dimensional affine space. If the noise
in the coordinates of the feature points is an indepen-
dent Gaussian random variable of mean 0 and stan-
dard deviation σ, the residual ‖P n−3(pα − qC)‖2 di-
vided by σ2 should be subject to a χ2 distribution
with n− 3 degrees of freedom. Hence, its expectation
is (n− 3)σ2. The above procedure effectively fits a 3-
dimensional affine space that maximizes the number
of the trajectories whose residuals are smaller than
(n − 3)σ2. After fitting such an affine space, we re-
move those trajectories which cannot be regarded as
inliers with significance level 1% (Fig. 1). We have
confirmed that the value σ = 0.5 can work well for all
image sequences we tested [14].

3.3 Final affine space fitting

After removing outlier trajectories, we optimally fit
a 3-dimensional affine space to the resulting inlier tra-
jectories. Let {pα}, α = 1, ..., N , be their trajectory
vectors. We first compute their centroid

pC =
1
N

N∑
α=1

pα. (10)

3In our experiment, we stopped if S did not increase 200
times consecutively.

O

Figure 1 Removing outliers by fitting a 3-
dimensional affine space.

Then, we compute the n× n moment matrix

M =
N∑

α=1

(pα − pC)(pα − pC)>. (11)

Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the ma-
trix M , and {u1, u2, u3} the orthonormal system
of corresponding eigenvectors. The optimally fitted
3-dimensional affine space is simply the affine space
spanned by the three vectors of u1, u2, and u3 start-
ing from pC .

Mathematically, this affine space fitting is equiva-
lent to the factorization operation using the singular
value decomposition (SVD) in the method of Tomasi
and Kanade [15].

4. Trajectory Extension

We now describe our trajectory extension scheme.
It consists of several components, which we describe
one by one.

4.1 Interrupted trajectories

If the αth feature point can be tracked only over κ
of the M frames, its trajectory vector pα has n−k un-
known components (as before, we put n = 2M and k
= 2κ). We divide the vector pα into the k-dimensional
vector p

(0)
α consisting of the k known components and

the (n−k)-dimensional vector p
(1)
α consisting of the re-

maining n− k unknown components. We also divide4

the centroid pC and the basis vectors {u1, u2, u3}
into the k-dimensional vectors p

(0)
C and {u(0)

1 , u
(0)
2 ,

u
(0)
3 } and the (n − k)-dimensional vectors p

(1)
C and

{u(1)
1 , u

(1)
2 , u

(1)
3 } in accordance with the division of

pα.

4.2 Reliability test

We test if each of the partial trajectories is suffi-
ciently reliable. Let pα be a partial trajectory vector.
If image noise does not exist, the displacement of pα

4This is merely for the convenience of description. In real
computation, we treat all data as n-dimensional vectors after
multiplying them by an appropriate diagonal matrix consisting
of 1s for the known component positions and 0s for the rest.
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from the centroid pC is expressed as a linear combi-
nation of u1, u2, and u3. Hence, there exist some
constants c1, c2, and c3 such that

p(0)
α − p

(0)
C = c1u

(0)
1 + c2u

(0)
2 + c3u

(0) (12)

for the k known components. In the presence of image
noise, this equality does not hold. If we let U (0) be
the k × 3 matrix consisting of u

(0)
1 , u

(0)
2 , and u

(0)
3 as

its columns, Eq. (12) is replaced by

p(0)
α − p

(0)
C ≈ U (0)c, (13)

where c is the 3-dimensional vector consisting of c1,
c2, and c3. Assuming that k ≥ 3, we estimate the
vector c by least squares in the form

ĉ = U (0)−(p(0)
α − p

(0)
C ), (14)

where U (0)− is the generalized inverse of U (0). It is
computed by

U (0)− = (U (0)>U (0))−1U (0)>. (15)

The residual, i.e., the squared distance of point p
(0)
α

from the 3-dimensional affine space spanned by {u(0)
1 ,

u
(0)
2 , u

(0)
3 } is ‖p(0)

α − p
(0)
C − U (0)ĉ‖2. If the noise in

the coordinates of the feature points is an independent
Gaussian random variable of mean 0 and standard de-
viation σ, the residual ‖p(0)

α − p
(0)
C −U (0)ĉ‖2 divided

by σ2 should be subject to a χ2 distribution with k−3
degrees of freedom. Hence, we regard those trajecto-
ries that satisfy

‖p(0)
α − p

(0)
C −U (0)ĉ‖2 ≥ σ2χ2

k−3;99 (16)

as outliers with significance level 1%.

4.3 Extension of trajectories

In accordance with Eq. (12), the optimal estimate of
the unknown components in the presence of Gaussian
noise as modeled above is obtained by letting

p(1)
α − p

(1)
C =c1u

(1)
1 +c2u

(1)
2 +c3u

(1) =U (1)c, (17)

where U (1) is the (n−k)×3 matrix consisting of u
(1)
1 ,

u
(1)
2 , and u

(1)
3 as its columns. Substituting Eq. (14)

for c, we obtain

p̂(1)
α = p

(1)
C + U (1)U (0)−(p(0)

α − p
(0)
C ). (18)

4.4 Optimization

Although Eq. (18) produces the vector that opti-
mally fits to the affine space define by pC and {u1,
u2, u3}, that affine space is computed only from a
small number of complete trajectories; no information
contained in the partial trajectories is used, irrespec-
tive of how long they are. So, we incorporate partial
trajectories by iterations.

Note that if three components of pα are specified,
one can place it, in general, in any 3-dimensional

affine space by appropriately adjusting the remain-
ing n − 3 components. In view of this, we introduce
the “weight” of the trajectory vector pα with k known
components in the form

Wα =
k − 3
n− 3

. (19)

Let N be the number of all trajectories, complete
or partial, inliers or outliers. The optimization goes
as follows:

1. Set the weights Wα of those trajectories, complete
or partial, that are so far judged to be outliers
to 0. All other weights are set to the value in
Eq. (19).

2. Fit a 3-dimensional affine space to all the trajec-
tories. The procedure is the same as described in
Sec. 3.3 except that Eq. (10) is replaced by the
weighted centroid

pC =
∑N

α=1 Wαpα∑N
α=1 Wα

, (20)

and Eq. (11) is replaced by the weighted moment
matrix

M =
N∑

α=1

Wα(pα − pC)(pα − pC)>. (21)

3. Test each trajectory if it is an outlier, using
Eq. (16).

4. Estimate the unknown components of the inlier
partial trajectory vectors, using Eq. (18).

These computations are repeated until the fitted affine
space converges.

In the course of this optimization, trajectories once
regarded as outliers may be judged to be inliers later,
and vice versa. In the end, inlier partial trajectories
are optimally extended with respect to the affine space
that is optimally fitted to all the complete and partial
inlier trajectories.

This optimization procedure starts from at least
three complete trajectories that define the initial affine
space. If no such initial trajectories are given, we can
use, for example, the method of Jacobs [5] to compute
the initial affine space for starting the optimization.

5. Experiments

We tested our method using real video sequences.
Fig. 2(a) shows five decimated frames from a 50 frame
sequence (320× 240 pixels) of a static scene taken by
a moving camera. We first detected 200 feature points
and tracked them using the Kanade-Lucas-Tomasi al-
gorithm [16]. When tracking failed at some frame,
we restarted the tracking after adding a new feature
point in that frame. Fig. 2(b) shows the 871 tracked
trajectories thus obtained.

In the end, we obtained 29 complete trajectories,
of which 11 were regarded as inliers by the procedure
described in Sec. 3. The marks 2 in Fig. 2(a) indicate
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Figure 2 (a) Five decimated frames from an image sequence of 50 frames and 11 feature points correctly
tracked throughout them. (b) The 871 initial trajectories obtained by the Kanade-Lucas-Tomasi algorithm. (c)
The 11 complete inlier trajectories. (d) The 560 optimal extensions of the trajectories in (b). (e) The duration
of the trajectories. (f) The extended texture mapped image of the 33th frame. (g) The reconstructed 3-D
shape. (h) The wireframe representation of (g). (i) The wireframe reconstructed from the 11 initial complete
trajectories in (c). (j) The wireframe reconstructed from all extended trajectories without optimization. (k) The
wireframe reconstructed after extending and optimizing only the trajectories starting from the first frame.
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their positions; Fig. 2(c) shows their trajectories. Evi-
dently, we cannot reconstruct a meaningful 3-D shape
from these trajectories alone.

Using the affine space they define, we extended the
partial trajectories and optimized the affine space and
the extended trajectories, testing the reliability of the
extension in every iteration. The optimization con-
verged after 11 iterations, resulting in the 560 inlier
trajectories shown in Fig. 2(d). Some portions are ex-
trapolated out of the frame. The total computation
time for this optimization was 134 seconds. We used
Pentium 4 2.4B GHz for the CPU with 1 Gb main
memory and Linux for the OS.

Fig. 2(e) plots the durations of the 560 trajectories;
they are enumerated on the horizontal axis in the or-
der of disappearance and new appearance; the white
part corresponds to missing data.

Fig. 2(f) is the texture mapped image of the 33th
frame obtained after missing feature positions are re-
stored. Using the 180 feature points visible in the first
frame, we defined triangular patches, to which the tex-
ture in the first frame is mapped, extrapolating the
view outside the frame.

We reconstructed the 3-D shape using the factor-
ization method based on weak perspective projection
[11]. Fig. 2(g) is the top view of the 3-D shape of the
triangular patches shown in Fig. 2(f). Fig. 2(h) is its
wireframe representation.

For comparison, Fig. 2(i) shows the wireframe
reconstructed from the 11 initial trajectories in
Fig. 2(c) alone; Fig. 2(j) shows the wireframe recon-
structed from extended trajectories without optimiza-
tion. Fig. 2(k) shows the corresponding shape recon-
structed after extending and optimizing only the tra-
jectories starting from the first frame without adding
new trajectories. All are viewed from the same angle.

From these results, we can see that sufficiently many
trajectories can be restored for accurate and detailed
3-D reconstruction by extending and optimizing com-
plete and partial trajectories. Increasing the number
of trajectories by tracking new feature points after pre-
vious tracking has failed is also effective in improving
the accuracy.

6. Concluding Remarks

We have presented a new method for extending in-
terrupted feature point tracking for 3-D affine recon-
struction. Our method consists of iterations for opti-
mally extending the trajectories so that they are com-
patible with the estimated affine space and optimally
estimating the affine space from the extended trajec-
tories. In every step, the reliability of the resulting
trajectories is tested, and those judged to be outliers
are removed. Using real video images, we have demon-
strated that sufficiently many trajectories can be re-
stored for accurate and detailed 3-D reconstruction.
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