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Abstract. We present a new technique for calibrating an
ultra-wide fisheye lens camera by imposing the constraint
that collinear points be rectified to be collinear, parallel
lines to be parallel, and orthogonal lines to be orthogo-
nal. Exploiting the fact that line fitting reduces to an
eigenvalue problem, we do a rigorous perturbation anal-
ysis to obtain a Levenberg-Marquardt procedure for the
optimization. Doing experiments, we point out that spu-
rious solutions exist if collinearity and parallelism alone
are imposed. Our technique has many desirable proper-
ties. For example, no metric information is required about
the reference pattern or the camera position, and separate
stripe patterns can be displayed on a screen to generate a
virtual grid, eliminating the grid point detection.

1. Introduction

Fisheye lens cameras are widely used for surveillance
purposes because of their wide angles of view. They
are also mounted on vehicles for various purposes in-
cluding obstacle detection, self-localization, and bird’s
eye view generation [9, 12]. However, fisheye lens im-
ages have a large distortion, so that in order to apply
the computer vision techniques accumulated for the
past decades, one first needs to rectify the image into
a perspective view. Already, there is a lot of literature
for this [2, 4, 6, 7, 10, 11, 12, 13, 16, 17].

The standard technique is to place a reference grid
plane and match the grid image with the reference
grid, whose precise geometry is assumed to be known
[2, 3, 4, 6, 17]. However, this approach is not very
practical for recently popularized ultra-wide fisheye
lenses, because they cover more than 180◦ angles of
view and hence any (even infinite) reference plane can-
not cover the entire field of view. This difficulty can
be circumvented by using the collinearity constraint
pointed out repeatedly, first by Onodera and Kanatani
[14] in 1992, later by Swaminathan and Nayar [16] in
2000, and by Devernay and Faugeras [1] in 2001. They
pointed out that camera calibration can be done by
imposing the constraint that straight lines should be
rectified to be straight. This constraint was used to
calibrate fisheye lenses by Nakano, et al. [11], Kase
et al. [7], and Okutsu et al. [12]. Komagata et al. [8]
further introduced the parallelism constraint and the
orthogonality constraint , requiring that parallel lines
be rectified to be parallel and orthogonal lines to be
orthogonal. However, the cost function has been di-
rectly minimized by brute force means such as the
Brent method and the Powell method [15].

In this paper, we adopt the collinearity-parallelism-
orthogonality constraint of Komagata et al. [8] and

optimize it by eigenvalue minimization. The fact that
imposing collinearity implies eigenvalue minimization
and that the optimization can be done by invoking
the perturbation theorem was pointed out by Onodera
and Kanatani [14]. Using this principle, they recti-
fied perspective images by gradient decent. Here, we
consider ultra-wide fisheye lenses and do a more de-
tailed perturbation analysis to derive the Levenberg-
Marquardt (LM) procedure, currently regarded as the
standard tool for efficient and accurate optimization.

We also show by experiments that the orthogonality
constraint plays an essential role for ultra-wide fish-
eye lenses and that correct calibration cannot be done
only by imposing collinearity or parallelism or both,
pointing out the existence of a spurious solution. This
fact has not been known in the past collinearity-based
work [1, 7, 11, 12, 14, 16].

For data acquisition, we take images of stripe pat-
terns of different orientations on a large-screen display
by placing the camera in various positions. Like the
past collinearity-based methods [1, 7, 11, 12, 14, 16],
our method is non-metric in the sense that no met-
ric information is required about the camera posi-
tion or the reference pattern. Yet, many researchers
pointed out the necessity of some auxiliary informa-
tion. For example, Nakano et al. [10, 11] proposed van-
ishing point estimation using conic fitting to straight
line images (recently, Hughes et al. [4] proposed this
same technique again). Okutsu et al. [13] picked out
the images of antipodal points by hand. Such aux-
iliary information may be useful to suppress spuri-
ous solutions. However, we show that accurate cal-
ibration is possible without any auxiliary information
if we do eigenvalue minimization for the collinearity-
parallelism-orthogonality constraint.

Section 2 describes our imaging geometry model.
Section 3 gives derivative expressions of the funda-
mental quantities, followed by a detailed perturbation
analysis of the collinearity constraint in Sec. 4, of the
parallelism constraint in Sec. 5, and of the orthogo-
nality constraint in Sec. 6. Section 7 describes our
Levenberg-Marquardt (LM) optimization procedure.
In Sec. 8, we show our experiments and an examples
of real scene applications. In Sec. 9, we conclude.

2. Geometry of ultra-wide fisheye lens

We consider recently popularized ultra-wide fish-
eye lenses with the imaging geometry modeled by the

IS3-04-1



17th Symp. Sensing via Image Information, June 2011, Yokohama, Japan

f

r

θ m

Figure 1 The imaging geometry of a fisheye lens
and the incident ray vector m.

stereographic projection

r = 2f tan
θ

2
, (1)

where θ is the incidence angle (the angle of the inci-
dent ray of light from the optical axis) and r (in pixels)
is the distance of the corresponding image point from
the principal point (Fig. 1). The constant f is called
the focal length. We consider Eq. (1) merely because
our camera is as such, but the following calibration
procedure is identical whatever model is used.

For a manufactured lens, the value of f is unknown
or may not be exact if provided by the manufacturer.
Also, the principal point may not be at the center of
the image frame. Moreover, Eq. (1) is an idealization,
and a real lens may not exactly satisfy it. So, we
generalize Eq. (1) into the form

r

f0
+ a1

( r

f0

)3

+ a2

( r

f0

)5

+ · · · =
2f

f0
tan

θ

2
, (2)

and determine the values of f , a1, a2, ... along with
the principal point position. Here, f0 is a scale con-
stant to keep the powers rk within a reasonable nu-
merical range (in our experiment, we used the value
f0 = 150 pixels). Since a sufficient number of correc-
tion terms could approximate any function, the right-
hand side of Eq. (2) could be any function of θ, e.g.,
the perspective projection model (f/f0) tan θ or the
equidistance projection model (f/f0)θ. We adopt the
stereographic projection model of Eq. (1) merely for
the sake of simple initialization for our camera.

In Eq. (2), even power terms do not exist, because
the lens has circular symmetry and hence r is an odd
function of θ. We assume that the azimuthal angle of
the projection is equal to that of the incident ray. In
the past, these two were often assumed to be slightly
different, and geometric correction of the resulting
“tangential distortion” was studied. Currently, the
lens manufacturing technology is highly advanced so
that the tangential distortion can be safely ignored.
If not, we can simply include the tangential distor-
tion terms in Eq. (2), and the subsequent calibration
procedure remains unchanged.

In the literature, many authors have assumed the
model in the form of r = c1θ + c2θ

3 + c3θ
5 + · · · [6,

7, 12, 11]. As we see shortly, the value of θ for a
specified r is necessary in each step of the optimization
iterations. Many authors computed θ by solving a
polynomial equation by a numerical means [6, 7, 12,
11], but this causes loss of accuracy and efficiency. It

is more convenient to assume the expansion of θ in
terms of r from the beginning. From Eq. (2), we can
express θ in terms of r in the form

θ = 2 tan−1
( f0

2f

( r

f0
+ a1

( r

f0

)3

+ a2

( r

f0

)5

+ · · ·
))

.

(3)

3. Incident ray vector and its derivatives

Let m be the unit vector in the direction of the in-
cident ray of light which focuses at (x, y) on the image
plane (Fig. 1). We call m the incident ray vector . In
polar coordinates, it has the expression

m =

 sin θ cos φ
sin θ sinφ

cos θ

 , (4)

where θ is the incidence angle from the Z-axis and φ is
the azimuthal angle from the X-axis. If the principal
point is at (u0, v0), we have

x − u0 = r cos φ, y − v0 = r sin φ,

r =
√

(x − u0)2 + (y − v0)2. (5)

Hence, Eq. (4) is rewritten as

m =

 ((x − u0)/r) sin θ
((y − v0)/r) sin θ

cos θ

 . (6)

Differentiating this with respect to u0 and v0, we ob-
tain

∂m

∂u0
= − sin θ

r
i,

∂m

∂v0
= − sin θ

r
j, (7)

where we define i ≡ (1, 0, 0)> and j ≡ (0, 1, 0)>. Next,
we consider derivation with respect to f . Differentiat-
ing Eq. (2) with respect to f on both sides, we have

0 =
2
f0

tan
θ

2
+

2f

f0

1
2 cos2(θ/2)

∂θ

∂f
. (8)

Hence, we obtain

∂θ

∂f
= −

( 2
f0

tan
θ

2

)(f0

f
cos2

θ

2

)
= − 2

f
sin

θ

2
cos

θ

2
= − 1

f
sin θ. (9)

If follows that the derivative of Eq. (6) with respect
to f is

∂m

∂f
=

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 ∂θ

∂f

= − 1
f

sin θ

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 . (10)

Finally, we consider derivation with respect to ak. Dif-
ferentiating (2) with respect to ak on both sides, we
have ( r

f0

)2k+1

=
2f

f0

1
2 cos2(θ/2)

∂θ

∂ak
. (11)
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Figure 2 The incident ray vectors mα of collinear
points p1, ..., pN are coplanar.

Hence, we obtain

∂θ

∂ak
=

f0

f

( r

f0

)2k+1

cos2
θ

2
. (12)

If follows that the derivative of Eq. (6) with respect
to ak is

∂m

∂ak
=

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 ∂θ

∂ak

=
f0

f

( r

f0

)2k+1

cos2
θ

2

 ((x − u0)/r) cos θ
((y − v0)/r) cos θ

− sin θ

 . (13)

All the cost functions in the subsequent optimization
are expressed in terms of the incident ray vector m.
Hence, we can compute derivatives of any cost func-
tion with respect to any parameter simply by combin-
ing the above derivative expressions,

4. Collinearity constraint

Suppose we observe a collinear point sequence Sκ

(the subscript κ enumerates all existing sequences)
consisting of N points p1, ..., pN , and let m1,..., mN

be their incident ray vectors. If the camera is precisely
calibrated, the computed incident ray vectors should
be coplanar (Fig. 2) and satisfy (nκ, mα) = 0, α = 1,
..., N . In the following, we denote the inner product
of vectors a and b by (a, b). If the calibration is in-
complete, (nκ, mα) may not be strictly zero. So, we
adjust the parameters by minimizing∑

α∈Sκ

(nκ, mα)2 =
∑

α∈Sκ

n>
κ mαm>

α nκ

= (nκ,
∑

α∈Sκ

mαm>
α nκ) = (nκ, M (κ)nκ), (14)

where we define

M (κ) =
∑

α∈Sκ

mαm>
α . (15)

Equation (14) is a quadratic form of M (κ), so its min-
imimum equals the smallest eigenvalue λ

(κ)
min of M (κ).

To enforce the collinearity constraint for all collinear
point squences Sκ, we determine the paremeters so as
to minimize

J1 =
∑
all κ

λ
(κ)
min. (16)

4.1 First derivatives

We consider first derivatives of λ
(κ)
min with respect to

c, which represnts the calibration parameters u0, v0,
f , a1, a2, ... Differentiating the defining equation

M (κ)nκ = λ
(κ)
minnκ (17)

with respect to c on both sides, we have

∂M (κ)

∂c
nκ +M (κ) ∂nκ

∂c
=

∂λ
(κ)
min

∂c
nκ +λ

(κ)
min

∂nκ

∂c
. (18)

Computing the inner product with nκ on both sides,
we obtain

(nκ,
∂M (κ)

∂c
nκ) + (nκ,M (κ) ∂nκ

∂c
)

=
∂λ

(κ)
min

∂c
(nκ, nκ) + λ

(κ)
min(nκ,

∂nκ

∂c
). (19)

Since nκ is a unit vector, we have (nκ, nκ) = ‖nκ‖2

= 1. Variations of a unit vector should be orthog-
onal to itself, so (nκ, ∂nκ/∂c) = 0. Since M (κ) is
a symmetric matrix, we have (nκ, M (κ)∂nκ/∂c) =
(M (κ)nκ, ∂nκ/∂c) = λ

(κ)
min(nκ, ∂nκ/∂c) = 0. Thus,

Eq. (19) implies

∂λ
(κ)
min

∂c
= (nκ,

∂M (κ)

∂c
nκ). (20)

This result is well known as the perturabation theorem
of eigenvalue problems [5]. From the definiton of M (κ)

in Eq. (45), we see that

∂M (κ)

∂c
=

N∑
α=1

(∂mα

∂c
m>

α + mα

(∂mα

∂c

)>)
= 2S[

N∑
α=1

∂mα

∂c
m>

α ] ≡ M (κ)
c , (21)

where S[ · ] denotes symmetrization (S[A] = (A +
A>)/2). Thus, the first derivatives of the function
J1 with respect to c = u0, v0, f , a1, a2, ... are given
as follows:

∂J1

∂c
=

∑
all κ

(nκ, M (κ)
c nκ). (22)

4.2 Second derivatives

Differentiating Eq. (20) with respect to c′ (= u0, v0,
f , a1, a2, ...), we obtain

∂2λ
(κ)
min

∂c∂c′
= (

∂nκ

∂c′
, M (κ)

c nκ) + (nκ,
∂2M (κ)

∂c∂c′
nκ)

+(nκ, M (κ)
c

∂nκ

∂c′
)

= (nκ,
∂2M (κ)

∂c∂c′
nκ) + 2(

∂nκ

∂c′
, M (κ)

c nκ). (23)

First, consider the first term. Differentiation of
Eq. (21) with respect to c′ is

∂2M (κ)

∂c∂c′
= 2S[

N∑
α=1

(∂2mα

∂c∂c′
m>

α +
∂mα

∂c

(∂mα

∂c′

)>)
],

(24)
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and hence we have

(nκ,
∂2M (κ)

∂c∂c′
nκ) = 2

N∑
α=1

(
(nκ,

∂2mα

∂c∂c′
)(mα, nκ)

+(nκ,
∂mα

∂c
)(

∂mα

∂c′
, nκ)

)
. (25)

If the calibration is complete, we should have
(mα, nκ) = 0. In the course of the optimization, we
can expect that (mα, nκ) ≈ 0. Hence, Eq. (25) can
be approximated by

(nκ,
∂2M (κ)

∂c∂c′
nκ) ≈ 2

N∑
α=1

(nκ,
∂mα

∂c
)(

∂mα

∂c′
, nκ)

= 2(nκ, M
(κ)
cc′ nκ), (26)

M
(κ)
cc′ ≡

N∑
α=1

(∂mα

∂c

)(∂mα

∂c′

)>
. (27)

This is a sort of the Gauss-Newton approximation.
Next, consider the second term of Eq. (23). Since

nκ is a unit vector, its variations are orthogonal to
itself. Let λ

(κ)
1 ≥ λ

(κ)
2 ≥ λ

(κ)
min be the eigenvalues of

M (κ) with nκ1, nκ2, and nκ the corresponding unit
eigenvectors. Since the eigenvectors of a symmetric
matrix are mutually orthogonal, any vector orthogo-
nal to nκ is expressed as a linear combination of nκ1

and nκ2. Hence, we can write
∂nκ

∂c
= β1nκ1 + β2nκ2, (28)

for some β1 and β2. Substitution of Eqs. (20) and (28)
into Eq. (18) results in

M (κ)
c nκ + M (κ)(β1nκ1 + β2nκ2)

= (nκ,M (κ)
c nκ)nκ + λ

(κ)
min(β1nκ1 + β2nκ2). (29)

Noting that M (κ)nκ1 = λ
(κ)
1 nκ1 and M (κ)nκ2 =

λ
(κ)
2 nκ2, we have

β1(λ
(κ)
1 − λ

(κ)
min)nκ1 + β2(λ

(κ)
2 − λ

(κ)
min)nκ2

= (nκ, M (κ)
c nκ)nκ − M (κ)

c nκ. (30)

Computing the inner product with nκ1 and nκ2 on
both sides, we obtain

β1(λ
(κ)
1 − λ

(κ)
min) = −(nκ1, M

(κ)
c nκ),

β2(λ
(κ)
2 − λ

(κ)
min) = −(nκ2, M

(κ)
c nκ). (31)

Thus, Eq. (28) is written as follows:

∂nκ

∂c
= − (nκ1, M

(κ)
c nκ)nκ1

λ
(κ)
1 − λ

(κ)
min

− (nκ2, M
(κ)
c nκ)nκ2

λ
(κ)
2 − λ

(κ)
min

.

(32)
This is also a well known result of the perturbation
theorem of eigenvalue problems [5]. Thus, the second
term of Eq. (23) can be written as

2(
∂nκ

∂c′
, M (κ)

c nκ) = −
2(nκ1, M

(κ)
c nκ)(nκ1, M

(κ)
c′ nκ)

λ
(κ)
1 − λ

(κ)
min

−
2(nκ2, M

(κ)
c nκ)(nκ2, M

(κ)
c′ nκ)

λ
(κ)
2 − λ

(κ)
min

.

(33)

O
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Figure 3 The surface normals nκ to the planes
defined by parallel lines are orthogonal to the com-
mon direction lg of the lines.

Combining Eq. (26) and (33), we can approximate
Eq. (23) in the form

∂2λ
(κ)
min

∂c∂c′
≈ 2

(
(nκ,M

(κ)
cc′ nκ)

−
2∑

i=1

(nκi, M
(κ)
c nκ)(nκi, M

(κ)
c′ nκ)

λ
(κ)
i − λ

(κ)
min

)
. (34)

Thus, the second derivatives of the function J1 with
respect to c and c′ are given by

∂2J1

∂c∂c′
= 2

∑
all κ

(
(nκ, M

(κ)
cc′ nκ)

−
2∑

i=1

(nκi, M
(κ)
c nκ)(nκi, M

(κ)
c′ nκ)

λ
(κ)
i − λ

(κ)
min

)
. (35)

5. Parallelism constraint

Let Gg be a group of parallel collinear point se-
quences (the subscript g enumerates all existing
groups) with a common orientation lg (unit vector).
The normals nκ to the planes passing through the ori-
gin O (lens center) and lines of Gg are all orthogonal
to lg (Fig. 3). Hence, we should have (lg, nκ) = 0, κ
∈ Gg, if the calibration is complete. So, we adjust the
parameters by minimizing∑

κ∈Gg

(lg, nκ)2 =
∑
κ∈Gg

l>g nκn>
κ lg

= (lg,
∑
κ∈Gg

nκn>
κ lg) = (lg, N (g)lg), (36)

where we define

N (g) =
∑
κ∈Gg

nκn>
κ . (37)

Equation (36) is a quadratic form of N (g), so its min-
imum equals the smallest eigenvalue µ

(g)
min of N (g). To

enforce the parallelism constraint for all groups of par-
allel collinear sequences, we determine the parameters
so as to minimize

J2 =
∑
all g

µ
(g)
min. (38)
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lg

g’l

Figure 4 If two sets of parallel lines make right
angles, their directions lg and lg′ are orthogonal to
each other.

5.1 First derivatives

Doing the same perturbation analysis as in Sec. 4,
we obtain the first derivatives of the function J2 with
respect to parameters c in the form

∂J2

∂c
=

∑
all g

(lg,N (g)
c lg),

N (g)
c = 2S[

∑
κ∈Gg

∂nκ

∂c
n>

κ ], (39)

where lg is the unit eigenvector of the matrix N (g) in
Eq. (37) for the smallest eigenvalue µ

(g)
min. The first

derivative of ∂nκ/∂c is given by Eq. (32).

5.2 Second derivatives

Doing the same perturbation analysis as in Sec. 4,
we obtain the second derivatives of the function J2

with respect to parameters c and c′ in the form

∂2J2

∂c∂c′
= 2

∑
all g

(
(lg, N

(g)
cc′ lg)

−
2∑

i=1

(lgi,N
(g)
c lg)(lgi, N

(g)
c′ lg)

µ
(g)
i − µ

(g)
min

)
, (40)

where µ
(g)
i , i = 1, 2, are the first and the second largest

eigenvalues of the matrix N (g) and lgi are the corre-
sponding unit eigenvectors. The matrix N

(g)
cc′ is de-

fined by

N
(g)
cc′ ≡

∑
κ∈Gg

(∂nκ

∂c

)(∂nκ

∂c′

)>
. (41)

6. Orthogonality constraint

Suppose we observe two groups Gg and Gg′ of paral-
lel line sequences with mutually orthogonal directions
lg and lg′ (Fig. 4). The orientation lg of the sequences
in the group Gg is the unit eigenvector of the matrix
N (g) in Eq. (37) for the smallest eigenvalue. If the
calibration is complete, we should have (lg, lg′) = 0 ,
so we adjust the parameters by minimizing

J3 =
∑

all orthogonal
pairs {Gg , G′

g}

(lg, lg′)2. (42)

6.1 First derivatives

The first derivatives of the function J3 with respect
to parameters c are given by

∂J3

∂c
= 2

∑
all orthogonal
pairs {Gg , G′

g}

(lg, lg′)
(
(
∂lg
∂c

, lg′) + (lg,
∂lg′

∂c
)
)
. (43)

The first derivative ∂lg/∂c is given by

∂lg
∂c

= −
2∑

i=1

(lgi, N
(g)
c lg)lgi

µ
(g)
i − µ

(g)
min

, (44)

and ∂lg′/∂c similarly.

6.2 Second derivatives

Using the Gauss-Newton approximation (lg, lg′) ≈
0, we obtain the second derivatives of the function J3

with respect to parameters c and c′ in the form

∂2J3

∂c∂c′
= 2

∑
all orthogonal
pairs {Gg , G′

g}

(
(
∂lg
∂c

, lg′) + (lg,
∂lg′

∂c
)
)

(
(
∂lg
∂c′

, lg′) + (lg,
∂lg′

∂c′
)
)
. (45)

7. Levenberg-Marquardt procedure

To incorporate all of the collinearity, parallelism,
and orthogonality constraints, we minimize

J =
J1

γ1
+

J2

γ1
+

J3

γ1
, (46)

where γi, i = 1, 2, 3, are the weights to balance the
magnitudes of the three terms. Note that J1 À J2

À J3, since J1 is proportional to the number of all
points, J2 to the number of all lines, and J3 to the
number of orthogonal pairs of parallel lines. In our
experiment, we used as γi the initial value of Ji.

Since we have derived the first and second deriva-
tives of all Ji with respect to all the parameters, we
can now combine them into the following Levenberg-
Marquardt (LM) procedure [15]:

1. Provide initial values, e.g., let the principal point
(u0, v0) be at the frame center, f be a default
value and, let a1 = a2 = · · · = 0. Let J0 be the
value of the function J for these initial values, and
let C = 0.0001.

2. Compute the incidence angle θκα of the αth
point pα in the κth sequence Sκ by Eq. (3),
and compute its incidence ray vector mκα by
Eq. (6) Then, compute the derivatives ∂mκα/∂c
by Eqs. (7), (10), and (13), c = u0, v0, f , a1, a2,
... .

3. Compute the first derivatives Jc and the second
derivatives Jcc′ of the function J , c, c′ = u0, v0,
f , a1, a2, ... .
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Figure 5 Stripe patterns in four directions.

4. Determine the increments ∆u0, ∆v0, ∆f , ∆a1, ...
by solving the linear equation
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5. Tentatively update the parameter values in the
form

ũ0 = u0 + ∆u0, ṽ = v0 + ∆v0, f̃ = f + ∆f,

ã1 = a1 + ∆a1, ã2 = a2 + ∆a2, ... (48)

and evaluate the resulting value J̃ of the function
J .

6. If J̃ < J0, proceed. Else, let C ← 10C and go
back to Step 4.

7. Let u0 ← ũ0, v0 ← ṽ0, f ← f̃ , a1 ← ã1, a2 ← ã2,
... . If |∆u0| < ε0, |∆v0| < ε0, |∆f | < εf , |∆a1|
< ε1, |∆a2| < ε2, ..., return J , u0, v0, f , a1, a2,
..., and stop. Else, let J0 ← J and C ← C/10,
and go back to Step 2.

8. Experiments

Figure 5 shows the four stripe patterns we used in
our experiments. We displayed them on a large video
screen and take their images by placing the camera in
various positions so that the pattern image appears
in various parts of the view (recall that the view can-
not be covered by a single planar pattern image). The
four patterns were repeatedly displayed cyclically with
blank frames in-between, and the camera is fixed in
each position at least for one round of the display to
take images of the four types. Figure 6(a) is one shot
of such images. The image size is 640 × 480 pixels.
From each image, we detected edges; Fig. 6(b) shows
the edges detected from the image in Fig. 6(a). We
manually removed edges outside the display area. We
also removed too small clusters of edge points. Then,
we ran an edge segmentation algorithm to classify the
remaining edge points into connected edge segments.

(a) (b)

Figure 6 (a) Fisheye lens image of a stripe pat-
tern. (b) Detected edges.

On each segment was imposed the collinearity con-
straint; on the segments resulting from one stripe pat-
tern were imposed the parallelism constraint; on the
segments resulting from consecutive stripe patterns
for a fixed camera position were imposed the orthog-
onality constraint. In all, we obtained 220 segments,
consisting of 20 groups of parallel segments and 10
orthogonal pairs, to which the LM procedure was ap-
plied.

Let us call the number K of the terms on the left
hand side of Eq. (2) the correction degree, meaning
that the left-hand side of Eq. (2) is approximated by
a (2K + 1)th degree polynomial. The results up to
the fifth correction degree are shown in Table 1. We
set the frame center to be (0, 0) to specify the princi-
pal point (u0, v0). For the convergence thresholds in
Step 7 of the LM iterations, we let ε0 = εf = 10−3,
ε1 = 10−5, ε2 = 10−6, ε3 = 10−7, ε4 = 10−8, and
ε5 = 10−9. Using various different initial values, we
confirmed that the LM always converges to the same
solution after at most 10 iterations.

Figure 7(a) plots the graph of Eq. (3) for different
correction degrees. For the convenience of applica-
tions, we numerically converted Eq. (3) to express the
angle θ in terms of the distance r. As we see, the stere-
ographic projection model in Eq. (1) holds fairly well
even without any correction terms (degree 0). The
result is almost unchanged for the degrees 3, 4, and 5
(i.e., including powers up to r7, r9, and r11). Thus,
there is no need to increase the correction terms any
further.

For comparison, Fig. 7(b) shows the same result
using collinearity alone; Fig. 7(c) shows the result
collinearity and parallelism. In both cases, the graph
approaches, as the degree increases, some r-θ relation-
ship quite different from the stereographic projection.

In order to see what this means, we did a rectifica-
tion experiment. Figure 8(a) shows a fisheye lens im-
age viewing a square grid pattern in approximately 30
degree direction, and Fig. 8(b) is the rectified perspec-
tive image, using the parameters of correction degree
5 in Table 1. The image is converted to a view as if
observed by rotating the camera by 60 degrees to face
the pattern (see Appendix for this computation). The
black area near the left boundary corresponds to 95
degrees or more from the optical axis. Thus, we can
obtain a correct perspective image to the very bound-
ary of the view.
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Table 1 Computed parameters for each correction degree.

degree 0 1 2 3 4 5

u0 −1.56761 −1.56968 −1.57134 −1.59349 −1.59385 −1.60081
v0 0.517809 0.488646 0.430145 0.423562 0.422805 0.426097
f 146.647 149.572 148.112 146.727 146.796 146.501

a1/10−2 — 0.646891 −0.305581 −1.41589 −1.68775 −1.80506
a2/10−3 — — 2.39013 7.57212 11.1001 9.34256
a3/10−4 — — — 8.05471 22.2419 0.387907
a4/10−5 — — — — 18.0654 61.6627
a5/10−6 — — — — — 0.935994

(a) (b) (c)

Figure 7 The dependence of the distance r (pixels) from the focal point on the incidence angle θ (degree)
obtained by (a) using the collinearity, parallelism, and orthogonality constraints; (b) using only the collinearity
constraints; (c) using the collinearity and parallelism constraints.

(a) (b) (c)

Figure 8 (a) Fisheye lens image viewing a square grid pattern in approximately 30 degree direction. (b) Rectified
perspective image to be observed if the camera is rotated by 60 degrees to face the pattern. (c) Similarly rectified
image using a spurious solution.

For comparison, Fig. 8(c) shows the result obtained
by the same procedure using the spurious solution.
We can see that collinear points are certainly rectified
to be collinear and parallel lines to be (a skewed view
of) parallel lines. The existence of such a spurious
solution has not been known in the past collinearity-
based work [1, 7, 11, 12, 14, 16]. Spurious solutions
may be prevented by using auxiliary information such
as vanishing point estimation [2, 4, 10, 11] or antipodal
point extraction [13]. As we see, however, the spurious
solution does not arise if the orthogonality constraint
is imposed in addition.

The top-left of Fig. 9 is an image of a street scene
taken from a moving vehicle with a fisheye lens cam-
era mounted below the bumper at the car front. The
top-right of Fig. 9 is the rectified perspective images.
The second and third rows of Fig. 9 show the rectified
perspective images to be observed if the camera is ro-
tated by 90◦ left, right, up and down, confirming that
we are really seeing more than 180◦ angles of view.
Using a fisheye lens camera like this, we can detect
vehicles approaching from left and/or right or create
an image as if viewing the road from above the car.

9. Concluding remarks

We have presented a new technique for calibrating
ultra-wide fisheye lens cameras. The basic principle
of our calibration is the imposition of the constraint
that collinear points be rectified to collinear, parallel
lines to parallel, and orthogonal lines to be orthogo-
nal. Exploiting the fact that line fitting reduces to
eigenvalue problems, we optimized the constraint by
invoking the perturbation theorem, as suggested by
Onodera and Kanatani [14] in 1992. Then, we derived
a Levenberg-Marquardt procedure for it. By experi-
ments, we have found that a spurious solution exists if
the collinearity constraint alone is used or even com-
bined with the parallelism constraint. However, we
have shown that by incorporating the orthogonality
constraint an accurate calibration is done without us-
ing any auxiliary information such as vanishing point
estimation [2, 4, 10, 11]. Finally, we have shown a
real image example using a vehicle-mounted fisheye
lens camera.
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Original fisheye lens image Rectified front view

Rectified left 90◦ view Rectified right 90◦ view

Rectified down view Rectified up view

Figure 9 Fisheye lens image of an outdoor scene
taken from a moving vehicle, rectified front images,
and rectified images after virtually rotating the cam-
era to left, right, up, and down.
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Appendix: Image rectification

The rectification to a perspective image is done by the
following procedure:

1. For each pixel (x̄, ȳ), compute the incident angle θ by

θ = tan−1

√
X2 + Y 2

Z
= tan−1

√
R2 − Z2

Z
, (49)

and compute the corresponding 3-D point (X, Y, Z)
by
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where the radius R is arbitrary (we may let R = 1).

2. Compute the corresponding pixel position (x, y) by
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and copy its pixel value to (x̄, ȳ). If (x, y) are not
integers, its value is interpolated from surrounding
pixels.

To generate a perspective image to be observed by ro-
tating the camera by R (rotation matrix) is obtained if
Eq. (50) is replaced by
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