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Abstract. We optimally estimate the similarity (rotation,
translation, and scale change) between two sets of 3-D data
in the presence of inhomogeneous and anisotropic noise.
Adopting the Lie algebra representation of the 3-D rota-
tional change, we derive the Levenberg-Marquardt proce-
dure for simultaneously optimizing the rotation, the trans-
lation, and the scale change. We test the performance
of our method using simulated stereo data and real GPS
geodetic sensing data. We conclude that the conventional
method assuming homogeneous and isotropic noise is in-
sufficient and that our simultaneous optimization scheme
can produce an accurate solution.

1. Introduction

The task of autonomous robots to reconstruct the
3-D structure of the scene using stereo vision and si-
multaneously compute its location in the map of the
environment, called SLAM (Simultaneous Localiza-
tion and Mapping), is one of the central themes of
robotics studies today. One of the fundamental tech-
niques for this is to compute the 3-D motion (trans-
lation and rotation) of the robot between two time
instances. A similar task occurs in reconstructing the
entire shape of a 3-D object by 3-D sensing, for which
we need multiple sensors, because one sensor can re-
construct only the part that is visible from it. Hence,
we need to map the partial shape obtained from one
sensor to the partial shape obtained from another by
computing an appropriate similarity between them.
The same task arises for geodetic measurement of
the earth surface from multiple satellite sensor data
[1, 7, 8, 20].

Thus, 3-D similarity estimation is an important
problem in many engineering applications. To this
end, many researchers have focused on accurate ro-
tation estimation since 1980s. This is because trans-
lation can be accurately estimated from the displace-
ment of the 3-D points, and the scale change is easily
measured by comparing the size of the correspond-
ing parts, while rotation estimation is not so straight-
forward in the presence of noise. However, almost
all rotation estimation algorithms proposed in the
past [2, 5, 9, 10, 13, 26] have assumed homogeneous
and isotropic noise. This is unrealistic for 3-D data
acquired by 3-D sensing such as stereo vision and
laser/ultrasonic range finders, because the accuracy
is usually different between the depth direction and
the direction orthogonal to it, resulting in an inhomo-
geneous and anisotropic noise distribution depending
on the position, orientation, and type of the sensor.

It is Ohta and Kanatani [22] who first pointed out

the inevitable inhomogeneity and anisotropy of the
noise in 3-D data and presented a 3-D rotation esti-
mation scheme that takes it into account. They used
a technique called renormalization, which iteratively
removes statistical bias of reweight least squares [14].
As a result, a solution statistically equivalent to max-
imum likelihood (ML) is obtained, but it does not
necessarily coincide with the ML solution itself. Re-
cently, Niitsuma and Kanatani [21] presented a nu-
merical scheme for computing an exact ML solution.
Following Ohta and Kanatani [22], they represented
the 3-D rotation by a quaternion and computed the
ML solution using the FNS (Fundamental Numerical
Scheme) of Chojnacki et al. [4]. They demonstrated
that the resulting solution nearly achieves the the-
oretical accuracy limit called the KCR lower bound
[14, 15].

In this paper, we include the translation and scale
change as well and optimize all the parameters simul-
taneously. Scale changes may not be considered if the
measurement is done by the same sensor before and
after the object motion, but in that case we can sim-
ply drop the corresponding terms in the optimization.
The unique aspect of our scheme is that we use the
Lie algebra representation [11] of the 3-D rotational
change, by which we need not parameterize the ro-
tation at all ; we can use the rotation matrix itself
throughout.

This technique is well known in physics and used in
many vision applications including robot navigation
[3, 19], object tracking [6], 3-D shape reconstruction
from images [16], panoramic image generation [24],
fundamental matrix computation [25], but mostly for
tracking rotational changes. In this paper, we use the
Lie algebra representation for deriving the Levenberg-
Marquardt procedure for simultaneously optimizing
the rotation, the translation, and the scale change.

We test the performance of our scheme using simu-
lated stereo data and real GPS geodetic sensing data
and examine to what degree the accuracy improves by
our simultaneous optimization.

2. Maximum Likelihood of Similarity

Suppose we are given 3-D position measurements
rα and r′

α, α = 1, ..., N , before and after a similiarity
motion. We model the measurement uncertainty by
independent Gaussian noise of mean 0 and covariance
matrices ε2V0[rα] and ε2V0[r′

α], where ε, which we call
the noise level, desicribes the magnitude and V0[rα]

IS4-03-1



17th Symp. Sensing via Image Information, June 2011, Yokohama, Japan

and V0[r′
α], which we call the normalized covariance

matrices, describe the directional characteristics of the
noise. If the noise is isotropic and homogeneous, we
can let V0[rα] = V0[r′

α] = I (the unit matrix) for all
α, but in general V0[rα] and V0[r′

α] are different from
position to position.

Let r̄α and r̄′
α be the true positions of rα and r′

α,
respectively. Optimal estimation of similarity in the
sense of maximum likelihood (ML) is to minimize the
Mahalanobis distance [14] (the multiplier 1/e is merely
for convenience)

J =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α))

+
1
2

N∑
α=1

(r′
α − r̄′

α, V0[r′
α]−1(r′

α − r̄′
α)), (1)

with respect to r̄α and r̄′
α subject to

r̄′
α = sRr̄α + t, α = 1, ..., N, (2)

for some R (rotation), t (translation) and s (scale
change). Throughout this paper, we denote the in-
ner product of vectors a and b by (a, b). Introducing
Lagrange multipliers λα for the constrain of Eq. (2),
we let

J̃ =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α))

+
1
2

N∑
α=1

(r′
α − r̄′

α, V0[r′
α]−1(r′

α − r̄′
α))

−
N∑

α=1

(λα, r̄′
α − sRr̄′

α − t). (3)

The r̄α and r̄′
α that minimize Eq. (1) subject to

Eq. (2) are obtained by setting the derivatives of
Eq. (3) with respect to r̄α and r̄′

α to 0. Noting the
identity (λα, Rr̄′

α) = (R>λα, r̄′
α), we obtain

∇r̄α J̃ = −V0[rα]−1(rα − r̄α) + sR>λα,

∇r̄′
α
J̃ = −V0[r′

α]−1(r′
α − r̄′

α) − λα. (4)

Setting these to 0, we obtain

r̄α = rα − sV0[rα]R>λα, r̄′
α = r′

α + V0[r′
α]λα. (5)

Substituting these into Eq. (2), we have

r′
α + V0[r′

α]λα = sR(rα − sV0[rα]R>λα) + t, (6)

from which λα is obtained in the form

λα = −W α(r′
α − sRrα − t), (7)

where the matrix W α is defined by

W α = (s2RV0[rα]R> + V0[r′
α])−1. (8)

Substituting Eqs. (5), after replacing λα by Eq. (7),
into Eq. (1), we can write Eq. (1) as follows:

J =
1
2

N∑
α=1

(V0[rα]R>W α(r′
α − sRrα − t),

V0[rα]−1V0[rα]R>W α(r′
α − sRrα − t))

+
s2

2

N∑
α=1

(V0[r′
α]W α(r′

α − sRrα − t),

V0[r′
α]−1V0[r′

α]W α(r′
α − sRrα − t))

=
s2

2

N∑
α=1

(r′
α − sRrα − t,

W αRV0[rα]V0[rα]−1V0[rα]R>W α(r′
α − sRrα

−t)) +
1
2

N∑
α=1

(r′
α − sRrα − t,

W αV0[r′
α]V0[r′

α]−1V0[r′
α]W α(r′

α − sRrα − t))

=
1
2

N∑
α=1

(r′
α − sRrα − t, W α(s2RV0[rα]R>

+V0[r′
α])W α(r′

α − sRrα − t))

=
1
2

N∑
α=1

(r′
α − sRrα − t, W αW−1

α W α(r′
α − sRrα

−t))

=
1
2

N∑
α=1

(r′
α − sRrα − t, W α(r′

α − sRrα − t)). (9)

Our task is to minimize this function with respect to
R, t, and s.

3. Gradient Computation

The rotation matrix R has nine elements, but the
constraint RR> = I leaves only three degrees of free-
dom. Thus, the change of rotation is specified by
three parameters. The important fact is that we need
not parameterize R itself ; we only need to specify its
changes. From RR> = I, we see that the variation
of ∆R of R satisfies ∆RR> + R∆R> = O to a first
approximation. So, (∆RR>)> = −∆RR>, which im-
plies that ∆RR> is antisymmetric. Hence, there exist
ω1, ω2, and ω3 such that

∆RR> =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (10)

In mathematics, this form is called an infinitesimal
rotation, and the set of all infinitesimal rotations is a
linear space so(3), called the Lie algebra1 of the group
of rotations SO(3), spanned by ω1, ω2, and ω3 [11].

Let us define the product a×T of a vector a and ma-
trix T to be the matrix obtained by the vector prod-
ucts of a and the corresponding columns of T [14].
Then, the right-hand side of Eq. (10) is the product

1Strictly speaking, this linear space is a Lie algebra if a prod-
uct called the commutator is introduced, but in the following
the commutator does not play any role.
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ω × I of the vector ω = (ω1, ω2, ω3)> and the unit
matrix I. Note that the identities (a × I)b = a × b
and (a × I)T = a × T hold. Multiplying Eq. (10) by
R from right on both sides, we obtain

∆R = ω × R. (11)

If we divide this by the time laps ∆t and take the
limit ∆t → 0, we obtain the instantaneous change
of rotation dR/dt, and the limit of ω is identified
with the angular velocity . This representation itself is
well known for describing rotational changes, e.g., in
tracking objects, but is rarely used in numerical opti-
mization, for which many researchers are accustomed
to use parameterization in terms of the Euler angles,
axial rotations, or a quaternion. However, such pa-
rameterization complicates the derivative expressions.
Using Eq. (11), we can write down the first variation
(or derivative) δJ of Eq. (9) in a simple form, as we
now show:

δJ = s
N∑

α=1

(−δRrα, W α(r′
α − sRrα − t))

+
1
2

N∑
α=1

(r′
α − sRrα − t, δW α(r′

α − sRrα − t))

= s
N∑

α=1

(−ω × Rrα, W α(r′
α − sRrα − t))

+
1
2

N∑
α=1

(r′
α − sRrα − t, δW α(r′

α − sRrα − t)).

(12)

Using the scalar triplet product |a, b, c| = (a, b × c)
= (b, c × a) = (c, a × b), we can write the first term
as

−s
N∑

α=1

|ω, R, W α(r′
α − sRrα − t)|

= −s
N∑

α=1

(ω,Rrα × W α(r′
α − sRrα − t)). (13)

For the variation δW α in the second term in Eq. (12),
consider the defining equation of W α in Eq. (8):

(s2RV0[rα]R> + V0[r′
α])W α = I. (14)

The first variation of the left-hand side is

(s2δRV0[rα]R> + s2RV0[rα]δR>)W α

+(s2RV0[rα]R> + V0[r′
α])δW α

= (s2ω × RV0[rα]R> + s2RV0[rα](ω × R)>)W α

+(s2RV0[rα]R> + V0[r′
α])δW α

= (s2ω × RV0[rα]R> + s2RV0[rα]R> × ω)W α

+(s2RV0[rα]R> + V0[r′
α])δW α, (15)

where we define the product T ×a of a matrix T and
a vector a by T (a × I)>. Since I on the right-hand

side of Eq. (14) is a constant matrix, Eq. (15) should
vanish, so we obtain

δW α = −s2(s2RV0[rα]R> + V0[r′
α])−1(ω

×RV0[rα]R> + RV0[rα]R> × ω)W α

= −s2W α(ω × RV0[rα]R>

+RV0[rα]R> × ω)W α. (16)

Substituting this into Eq. (12), we can write the sec-
ond term on the right-hand side of Eq. (12) as follows:

−s2

2

N∑
α=1

(r′
α − sRrα − t, W α(ω × RV0[rα]R>

+RV0[rα]R> × ω)W α(r′
α − Rrα))

= −s2

2

N∑
α=1

(W α(r′
α − sRrα − t),

ω × RV0[rα]R>W α(r′
α − sRrα − t))

−s2

2

N∑
α=1

(W α(r′
α − sRrα − t), RV0[rα]R>(ω

×I)>W α(r′
α − sRrα − t))

= −s2

2

N∑
α=1

|W α(r′
α − sRrα − t), ω,

RV0[rα]R>W α(r′
α − sRrα − t)|

+
s2

2

N∑
α=1

(r′
α − sRrα − t, W αRV0[rα]R>(ω

×W α(r′
α − sRrα − t)))

= −s2

2

N∑
α=1

|W α(r′
α − sRrα − t), ω,

RV0[rα]R>W α(r′
α − sRrα − t)|

+
s2

2

N∑
α=1

(RV0[rα]R>W α(r′
α − sRrα − t), ω

×W α(r′
α − sRrα − t))

= −s2

2

N∑
α=1

|W α(r′
α − sRrα − t), ω,

RV0[rα]R>W α(r′
α − sRrα − t)|

+
s2

2

N∑
α=1

|RV0[rα]R>W α(r′
α − sRrα − t), ω,

W α(r′
α − sRrα − t)|

=
s2

2

N∑
α=1

|ω, W α(r′
α − sRrα − t),

RV0[rα]R>W α(r′
α − sRrα − t)|

+
s2

2

N∑
α=1

|ω, W α(r′
α − sRrα − t),

RV0[rα]R>W α(r′
α − sRrα − t)|

= s2
N∑

α=1

(ω, (W α(r′
α − sRrα − t))

×RV0[rα]R>W α(r′
α − sRrα − t)). (17)
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Combining this with Eq. (13), we see that δJ in
Eq. (12) has the form

δJ = s
N∑

α=1

(ω, (W α(r′
α − sRrα − t)) × Rrα)

+s2
N∑

α=1

(ω, (W α(r′
α − sRrα − t))

×RV0[rα]R>W α(r′
α − sRrα − t))

= s
N∑

α=1

(ω, (W α(r′
α − sRrα − t))

×(Rrα + sRV0[rα]R>W α(r′
α − sRrα − t)))

= (ω, s
N∑

α=1

(W α(r′
α − sRrα − t)) × R(rα

+sV0[rα]R>W α(r′
α − sRrα − t))). (18)

This means that the first derivative of J with respect
to the rotation is given by

∇ωJ = s
N∑

α=1

(W α(r′
α − sRrα − t)) × R(rα

+sV0[rα]R>W α(r′
α − sRrα − t)). (19)

Differentiating Eq. (9) with respect to t and s, we
obtain

∇tJ = −
N∑

α=1

W α(r′
α − sRrα − t), (20)

∂J

∂s
= −

N∑
α=1

(Rrα, W α(r′
α − sRrα − t)). (21)

4. Hessian Computation

If Eq. (12) is differentiated with respect to R along
with the Gauss-Newton approximation, i.e., ignoring
terms containing r′

α −Rrα, the second variation of J
is obtained as follows:

δ2J =
N∑

α=1

(−sδRrα, W α(−sδRrα))

= s2
N∑

α=1

(ω × Rrα, W α(ω × Rrα))

= s2
N∑

α=1

−(ω × Rrα, W α((Rrα) × ω))

= s2
N∑

α=1

−(ω × Rrα, W α((Rrα) × I)ω)

= s2
N∑

α=1

(ω × Rrα, (W α × (Rrα))ω)

= s2
N∑

α=1

|ω, Rrα, (W α × (Rrα))ω|

= (ω, s2
N∑

α=1

((Rrα) × W α × (Rrα))ω). (22)

Thus, the second derivative of J for the rotation com-
ponents has the form

∇2
ωJ = s2

N∑
α=1

(Rrα) × W α × (Rrα). (23)

From Eqs. (20) and (21), the second derivatives of J
with respect to t and s are given by

∇2
tJ =

N∑
α=1

W α,
∂2J

∂s2
=

N∑
α=1

(Rrα, W αRrα). (24)

Equation (20) implies that for ti we have

∂J

∂ti
= −

N∑
α=1

3∑
j=1

Wαij(r′
α − sRrα − t)i

= −
N∑

α=1

(wαi, r
′
α − sRrα − t), (25)

where Wαij is the (ij) element of the matrix W α, and
wαi is the ith column of W α (note that W α is a sym-
metric matrix). If the Gauss-Newton approximation
is used, the variation of Eq. (25) for rotation is

δ
∂J

∂ti
= s

N∑
α=1

(wαi, ω × (Rrα)) = s
N∑

α=1

|wαi, ω,Rrα|

= s

N∑
α=1

|ω, Rrα, wαi| = s

N∑
α=1

(ω, (Rrα) × wαi).

(26)

This implies

∇ω
∂J

∂ti
= s

N∑
α=1

(Rrα) × wαi, (27)

which is rewritten as

∇ωtJ =
(
∇ω

∂J

∂t1
,∇ω

∂J

∂t2
,∇ω

∂J

∂t3

)
= s

N∑
α=1

(
(Rrα) × wα1, (Rrα) × wα2, (Rrα) × wα3

)
= s

N∑
α=1

(Rrα) × W α. (28)

Differentiating Eq. (19) with respect to s and using
the Gauss-Newton approximation, we obtain

∂∇ωJ

∂s
= ∇ω

∂J

∂s
= −s

N∑
α=1

(W αRrα) × Rrα

= s
N∑

α=1

(Rrα) × W αRrα. (29)

Finally, we differentiate Eq. (20) with respect to s to
obtain

∂∇tJ

∂s
= ∇t

∂J

∂s
= s

N∑
α=1

W αRrα. (30)
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Figure 1 A grid surface rotates, translates, and
changes the scale. The 3-D position of the grid
points are measured by stereo vision. The ellipsoid
illustrates the measurement uncertainty.

Thus, the Hessian of J with respect to R, t, and s is
given in the following form:

H =

 ∇2
ωJ ∇ωtJ ∇ω∂J/∂s

(∇ωtJ)> ∇2
tJ ∇t∂J/∂s

(∇ω∂J/∂s)> (∇t∂J/∂s)> ∂2J/∂s2

 .

(31)

5. Levenberg-Marquardt Iterations

The Levenberg-Marquardt procedure for minimiz-
ing Eq. (9) is written as follows [23]:

1. Provide the initial guesses of R, t, and s, and
compute the corresponding value of J in Eq. (9).
Let C = 0.0001.

2. Compute the gradients ∇ωJ , ∇tJ , and ∂J/∂s in
Eqs. (19), (20), and (21) and the Hessian ∇2

ωJ in
Eq. (31).

3. Compute ω, ∆t, and ∆s by solving the simulta-
neous linear equations

(
H + CD[H]

)  ω
∆t
∆s

 = −

 ∇ωJ
∇tJ

∂J/∂s

 , (32)

where D[ · ] denotes the diagonal matrix obtained
by selecting the diagonal elements (or we may
simply let D[ · ] = I [23]).

4. Compute the following rotation matrix R̃, the
translation vector t̃, and the scale change s̃:

R̃ = R[ω]R, t̃ = t + ∆t, s̃ = s + ∆s. (33)

Here, R[ω] is the rotation around an axis N [ω]
(N [ · ] denotes normalization to unit norm) by an-
gle ‖ω‖, given by the Rodorigues formula2

R[ω] = I cosΩ+l×I sinΩ+ll>(1−cos Ω), (34)

where l = N [ω] and Ω = ‖ω‖.
5. Let J̃ be the value value of Eq. (9) for R̃, t̃, s̃.
6. If J̃ ≈ J or J̃ < J , go to the next step. Else, let

C ← 10C and go back to Step 3.
7. Let R ← R̃, t ← t̃, and s ← s̃. If J ≈ J̃ , return

R, t, and s and stop. Else, let J ← J̃ and C ←
C/10, and go back to Step 2.

6. Simulated Stereo Vision

We rotate a curved grid surface around the world
origin O, translate it, and change its scale, as depicted

2This is written as exp(ω×I) in Lie group theory and called
the exponential map of ω.

before motion

after motion

Figure 2 Simulated stereo image pairs before and
after the similarity motion.

in Fig. 1. We measure the 3-D positions of the grid
points by stereo vision before and after the similar-
ity motion. The simulated stereo images are shown in
Fig. 2. We set the image size to 500 × 800 pixels and
the focal length to 600 pixels. The two cameras are
positioned so that the disparity angle, or the parallax,
of the world origin O is 10◦. We added independent
Gaussian noise of mean 0 and standard deviation σ
pixels to the x and y coordinates of each of the grid
points in these images and computed their 3-D po-
sitions r̂α and r̂′

α by the method described in [17].
Then, the normalized covariances V0[r̂α] and V0[r̂

′
α]

of the measurement uncertainty were evaluated as de-
scribed in [18, 21] (see Appendix A), and the similarity
was estimated by the Levenberg-Marquardt method,
where we judged the ≈ in Steps 6 and 7 if the differ-
ence is less than 10−10 in absolute value.

Then, we measured the accuracy of the resulting
rotation R̂, the translation t̂, and the scale change
ŝ. Let R̄, t̄, and s̄ be their true values, respectively.
We computed the rotation angle δΩ (in degree) of the
relative rotation R̂R̄

−1, the translation error δt = t̂−t̄
and the scale change error δs = ŝ − s̄. We repeated
this 1000 times with σ fixed, each time using different
image noise, and computed the RMS errors

ER =

√√√√ 1
1000

1000∑
a=1

(δΩ(a))2, Et =

√√√√ 1
1000

1000∑
a=1

‖δt(a)‖2,

Es =

√√√√ 1
1000

1000∑
a=1

(δs(a))2, (35)

where the superscript (a) denotes the value of the ath
trial. We compared the following three methods.

Method 1 Let rc and r′
c be the centroids of {rα}

and {r′
α}, respectively, and let r̃α = rα − rc and

r̃′
α = r′

α − r′
c be the deviations from the cen-

troids. We estimate the scale change by s =√∑N
α=1 ‖r̃

′
α‖2/

∑N
α=1 ‖r̃α‖2 and optimally com-

puted R from {r̃α} and {r̃′
α/s}, assuming ho-

mogeneous and isotropic noise (see Appendix B).
Finally, we let t = r′

c − sRrc.
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(a) (b) (c)

Figure 3 The RMS error vs. the standard deviation σ of the noise added to the stereo images: (a) rotation,
(b) translation, (c) scale change. The numbers 1, 2, and 3 corresponds to Methods 1, 2, 3, respectively.

Table 1 The 3-D data of five points near Istanbul
in October 1997 and March 1998 [1].

October 1997
X Y Z

4233187.8344 2308228.6785 4161469.1229
4233190.6059 2308518.3249 4161336.2582
4233429.1004 2307875.2240 4161292.4034
4233259.8205 2307712.3025 4161553.4880
4233770.4580 2308340.5240 4160740.3286

March 1998
X Y Z

4233187.8612 2308228.7042 4161469.1383
4233190.6124 2308518.3166 4161336.2682
4233429.1008 2307875.2239 4161292.4029
4233259.8309 2307712.2990 4161553.5007
4233770.4534 2308340.5219 4160740.3181

Method 2 In Method 1, we let the normalized co-
variance matrices {r̃α} and {r̃′

α/s} to be V0[rα]
and V0[r′

α]/s2, respectively. Using these, we opti-
mally estimate the rotation R by the method of
Niitsuma and Kanatani [21].

Method 3 The rotation R, the translation t, and the
scale change s are simultaneously optimized by
the Levenberg-Marquardt method, for which the
initial guess is computed by Method 1.

Figure 3 shows the plots of the RMS errors ER, Et,
and Es for the noise level σ. We can see that the
conventional method based on the homogeneous and
isotropic noise assumption has very low accuracy. We
see that Method 2 exhibits a considerable improve-
ment and that Method 3 further improves the accu-
racy. The scale change estimation is also slightly im-
proved by our simultaneous optimization, while the
translation accuracy is more or less the same. Thus,
we can conclude that it is the rotation that is most
affected by the noise assumption and the optimiza-
tion technique. Although the optimal scheme in [21]
produces a highly accurate rotation estimate, our si-
multaneous optimization results in an even better so-
lution.

7. Real Data Example

Turkey is a country with frequent earthquakes, and
researchers monitor the land deformation using GPS
data. Table 1 shows the X, Y , and Z coordinates
(in meter) of five positions selected from a landslide

area near Istanbul in October 1997 and March 1998
[1]. The absolute positions are corrected in reference
to control points in stable areas. The covariance ma-
trices of these values are estimated using a statistical
method. For the 1997 data, their covariance matrices
(in the order listed in the table) are

0

@

34 10 17
10 12 7
17 7 33

1

A,

0

@

234 83 136
83 97 58

136 58 245

1

A,

0

@

24 8 12
8 10 6

12 6 25

1

A,

0

@

63 25 36
25 28 16
36 16 53

1

A,

0

@

22 8 12
8 9 5

12 5 23

1

A,

multiplied by 10−8. For the 1998 data,
0

@

51 18 23
18 18 13
23 13 30

1

A,

0

@

323 140 159
140 148 100
159 100 218

1

A,

0

@

41 14 19
14 16 11
19 11 28

1

A,

0

@

141 47 70
47 49 38
70 38 96

1

A,

0

@

59 20 29
20 24 16
29 16 43

1

A,

multiplied by 10−8. Table 2 lists the translation t,
the scale change s, the rotation (axis l and angle Ω),
and the reprojection error J computed by the three
described in the preceding section. We observe slight
differences among the three methods. A precise esti-
mation for such a small deformation requires an accu-
rate optimization technique such as our simultaneous
ML scheme. In the past, however, various types of
weighted least squares scheme have been widely used
in geodetics [1, 7, 8, 20].

8. Concluding Remarks

Unlike 2-D image data, 3-D data are acquired by
3-D sensing such as stereo vision and laser range find-
ing. Hence, the measurement uncertainty in 3-D is in-
homogeneous and anisotropic, depending on the type,
position, and orientation of the sensor. In this pa-
per, we have presented a numerical scheme for maxi-
mum likelihood (ML) estimation of the similarity (ro-
tation, translation, scale change) between two sets of
3-D measurement data. Using the Lie algebra rep-
resentation of the rotational change, we derived the
Levenberg-Marquardt procedure for simultaneously
optimizing the rotation, the translation, and the scale
change.
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Table 2 The translation t = (t1, t2, t3)
> (in me-

ter), the scale change s, the rotation axis l =
(l1, l2, l3)

> (unit vector), the rotation angle Ω (in de-
gree), and the reprojection error J estimated from
the data in Table 1 by the three methods.

Method 1 Method 2 Method 3
t1 −199.86035620 −237.32542737 −273.58000610
t2 42.52530293 85.27928886 99.29808570
t3 143.65787065 158.06078612 141.67312764
s 1.00000370 1.00000370 1.00000837
l1 −0.04950650 −0.03494625 −0.01117288
l2 0.93285277 0.85967794 0.82289933
l3 −0.35684003 −0.50963968 −0.56807733
Ω 0.00224281 0.00267166 0.00288150
J 9.2429 × 10−6 8.7283 × 10−6 6.4095 × 10−6

We tested the performance of our method using sim-
ulated stereo data and real GPS geodetic sensing data.
We conclude that it is the rotation that is most af-
fected by the noise assumption and the optimization
technique and that the conventional method assuming
homogeneous and isotropic noise produces very inac-
curate results. We demonstrated that our simulta-
neous optimization produces an even better rotation
estimate than using an optimal rotation estimation
scheme.
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Appendix

A. Covariance matrix evaluation

The covariance matrix of a 3-D position recon-
structed by stereo vision can be evaluated as follows.
We consider a reference camera placed at the world
origin O with the optical axis aligned to the Z-axis.
The image xy coordinate system is defined in such a
way that its origin o is at the principal point (the in-
tersection with the optical axis) and the x- and y-axis
are parallel to the X- and Y -axis of the world coordi-
nate system, respectively. Then, the camera is rotated
around O by R and translated by t from the reference
position. The camera imaging geometry is modeled by
perspective projection with focal length f , projecting
a 3-D point onto a 2-D point (x, y) by the following
relationship:

x ' PX, x ≡

 x/f0

y/f0

1

 , X ≡
(

r
1

)
. (36)
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The symbol ' means equality up to a nonzero con-
stant multiplier, and f0 is a scale constant of approxi-
mately the image size for stabilizing finite length com-
putation. The 3 × 4 projection matrix P is given by

P =

 f/f0 0 0
0 f/f0 0
0 0 1

(
R> −R>t

)
, (37)

where the aspect ratio is assumed to be 1 with no
image skews, or so corrected by prior calibration.

We consider two cameras with motion parameters
{R, t} and {R′, t′} with focal lengths f and f ′, re-
spectively. Let P and P ′ be the projection matrices
of the respective cameras, and x and x′ the images of
a point r in 3-D observed by the respective cameras.
Image processing for correspondence detection entails
uncertainty to some extent, and we model it by inde-
pendent isotropic Gaussian noise of mean 0 and stan-
dard deviation σ (pixels). Due to noise, the detected
points x and x′ do not exactly satisfy the epipolar
constraint [14], so we correct x and x′, respectively,
to x̂ and x̂′ that exactly satisfy the epipolar constraint
in an optimal manner [17]. From the corrected posi-
tions x̂ and x̂′, the corresponding 3-D position r̂ is
uniquely determined.

Although the noise in xα and x′
α is assumed to be

independent, the noise in the corrected positions x̂α

and x̂′
α is no longer independent [14]. The normal-

ized covariance matrices V0[x̂] and V0[x̂
′] and the nor-

malized correlation matrices V0[x̂, x̂′] and V0[x̂
′, x̂] are

given as follows [14, 18]:

V0[x̂] =
1
f2
0

(
P k − (P kF x̂′)(P kF x̂′)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
,

V0[x̂
′] =

1
f2
0

(
P k − (P kF>x̂)(P kF>x̂)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
,

V0[x̂, x̂′] =
1
f2
0

(
− (P kF x̂′)(P kF>x̂)>

‖P kF x̂′‖2 + ‖P kF>x̂‖2

)
= V0[x̂

′, x̂]>. (38)

Here, we define P k ≡ diag(1, 1, 0).
Since the vector X̂ reconstructed from x̂ and x̂′

satisfies the projection relationship in Eq. (36), vectors
x̂ and PX̂ are parallel, and so are x̂′ and P ′X̂. Thus,
we have

x̂ × PX̂ = 0, x̂′ × P ′X̂ = 0 (39)

It follows that if the noise in x̂ and x̂′ is ∆x̂ and ∆x̂′,
respectively, the noise ∆X̂ in X̂ satisfies to a first
approximation

∆x̂ × PX̂ + x̂ × P∆X̂ = 0,

∆x̂′ × P ′X̂
′
+ x̂′ × P ′∆X̂ = 0. (40)

From these, we obtain the following relation (the de-
tails are given in [21]):

A∆r̂ = B

(
∆x̂
∆x̂′

)
, (41)

A ≡ ‖x̂‖2P̃
>

PN [x̂]P̃ + ‖x̂′‖2P̃
′>

PN [x̂′]P̃
′
,

B ≡
(
P̃

>(
(x̂, PX̂)I − (PX̂)x̂>

P̃
′>(

(x̂′, P ′X̂)I − (P ′X̂)x̂′>
))

. (42)

PN [x̂] ≡ I−N [x̂]N [x̂]>, PN [x̂′] ≡ I−N [x̂′]N [x̂′]>.
(43)

Hence, we obtain

∆r̂∆r̂>=A−1B

(
∆x̂∆x̂> ∆x̂∆x̂>

∆x̂′∆x̂> ∆x̂′∆x̂′>

)
B>(A−1)>.

(44)
Taking expectation on both sides, we obtain the nor-
malized covariance matrix V0[r̂] of the reconstructed
position r̂ in the following form:

V0[r̂] = A−1B

(
V0[x̂] V0[x̂, x̂′]

V0[x̂
′, x̂] V0[x̂

′]

)
B>(A−1)>.

(45)

B. Homogeneous isotropic noise solution

Various methods are known for optimally estimat-
ing the 3-D rotation for homogeneous and isotropic
noise [2, 9, 10, 13, 26], but all are mathematically
equivalent. The simplest is the following method in
terms of the singular value decomposition (SVD) [12]:

1. Compute the following correlation matrix N be-
tween the 3-D positions rα and r′

α before and
after the rotations:

N =
N∑

α=1

r′
αr>

α . (46)

2. Compute the SVD of N in the form

N = Udiag(σ1, σ2, σ3)V >, (47)

where U and V are orthogonal matrices, and σ1

≥ σ2 ≥ σ3 (≥ 0) are the singular values.
3. Return the following rotation matrix:

R = Udiag(1, 1, det(UV >))V >. (48)
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