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Abstract. We overview techniques for optimal geometric estimation
from noisy observations for computer vision applications. We first de-
scribe estimation techniques based on minimization of given cost func-
tions: least squares (LS), maximum likelihood (ML), which includes re-
projection error minimization (Gold Standard) as a special case, and
Sampson error minimization. We then formulate estimation techniques
not based on minimization of any cost function: iterative reweight, renor-
malization, and hyper-renormalization. Showing numerical examples, we
conclude that hyper-renormalization is robust to noise and currently is
the best method.
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G.L. Gimel’farb et al. (Eds.): SSPR & SPR 2012, LNCS 7626, pp. 11–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

One of the most important tasks of computer vision is to compute the 2-D
and 3-D shapes of objects exploiting geometric constraints, by which we mean
properties that can be described by relatively simple equations such as the ob-
jects being lines or planes, their being parallel or orthogonal, and the camera
imaging geometry being perspective projection. We call the inference based on
such geometric constraints geometric estimation. In the presence of noise, how-
ever, the assumed constraints do not exactly hold. To do geometric estimation
“optimally” in the presence of noise, a lot of efforts have been made since 1980s
by many researchers. This paper summarizes that history and reports the latest
results.

2 Preliminaries

2.1 Definition of Geometric Estimation

The geometric estimation problem we consider here is defined as follows. We
observe some quantity x (a vector), which is assumed to satisfy in the absence
of noise an equation

F (x; θ) = 0, (1)

parameterized by unknown vector θ. This equation is called the geometric con-
straint . Our task is to estimate the parameter θ from noisy instances xα, α = 1,
..., N , of x. Many computer vision problems are formulated in this way, and we
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Fig. 1. (a) Line fitting. (b) Ellipse fitting. (c) Fundamental matrix computation.

can compute from the estimated θ the positions, the shapes, and the motions of
the objects we are viewing. In many problems, we can reparameterize the prob-
lem so that the constraint is liner in the parameter θ (but generally nonlinear
in the data x). Then, Eq. (1) has the form

(ξ(x), θ) = 0, (2)

where ξ(x) is a vector-valued nonlinear function of x. In this paper, we denote
the inner product of vectors a and b by (a, b). Equation (2) implies that the
scale of θ is indeterminate, so we hereafter normalize θ to unit norm: ‖θ‖ = 1.

Example 1. (Line fitting) To a given point sequence (xα, yα), α = 1, ..., N , we
fit a line

Ax + By + C = 0. (3)

(Fig. 1(a).) If we define

ξ(x, y) ≡ (x, y, 1)>, θ ≡ (A, B, C)>, (4)

the line equation is written as

(ξ(x, y), θ) = 0. (5)

Example 2. (Ellipse fitting) To a given point sequence (xα, yα), α = 1, ..., N ,
we fit an ellipse

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0. (6)

(Fig. 1(b).) If we define

ξ(x, y) ≡ (x2, 2xy, y2, 2x, 2y, 1)>, θ ≡ (A, B, C, D, E, F )>, (7)

the ellipse equation is written as

(ξ(x, y), θ) = 0. (8)

Example 3. (Fundamental matrix computation) Corresponding points (x, y) and
(x′, y′) in two images of the same 3-D scene taken from different positions satisfy
the epipolar equation [8]
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where F is called the fundamental matrix , from which we can compute the
camera positions and the 3-D structure of the scene [8] (Fig. 1(c)). If we define

ξ(x, y, x′, y′) ≡ (xx′, xy′, x, yx′, yy′, y, x′, y′, 1)>, (10)
θ ≡ (F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (11)

the epipolar equation is written as

(ξ(x, y, x′, y′), θ) = 0. (12)

2.2 Modeling of Noise

In the context of image analysis, “noise” means uncertainty of image processing
operations, rather than random fluctuations over time or space as commonly
understood in physics and communications. It reflects the fact that standard
image processing operations such as feature extraction and edge detection are
not perfect and do not necessarily output exactly what we are looking for. We
model this uncertainty in statistical terms: the observed value xα is regarded
as a perturbation from its true value x̄α by an independent random Gaussian
variable ∆xα of mean 0 and covariance matrix V [xα]. Furthermore, V [xα] is
assumed to be known up to scale. Namely, we write it as

V [xα] = σ2V0[xα] (13)

for some unknown constant σ, which we call the noise level . The matrix V0[xα],
which we call the normalized covariance matrix , describes the orientation de-
pendence of uncertainty in relative terms and is assumed to be known. The
separation of V [xα] into σ2 and V0[xα] is merely a matter of convenience; there
is no fixed rule. This convention is motivated by the fact that optimal estimation
can be done, as shown shortly, only from the knowledge of V0[xα].

If the observation xα is regarded as a random variable, its nonlinear mapping
ξ(xα), which we write ξα for short, is also a random variable. Its covariance
matrix V [ξα] = σ2V0[ξα] is evaluated to a first approximation in terms of the
Jacobi matrix ∂ξ/∂x of the mapping ξ(x) as follows:

V0[ξα] =
∂ξ

∂x

∣∣∣∣
x=x̄α

V0[xα]
∂ξ

∂x

∣∣∣∣>
x=x̄α

. (14)

This expression contains the true value x̄α, which is replaced in actual compu-
tation by the observation xα. It has been confirmed by experiments that this
replacement does not practically affect the final result. It has also been con-
firmed that upgrading the first approximation to higher orders does not have
any practical effect.
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2.3 Geometric Models for Geometric Estimation

One of the most prominent distinctions of the geometric estimation from the tra-
ditional statistical estimation is that the starting equation, Eq. (1) (or Eq. (2)),
which we call the geometric model , only specifies the necessary constraint and
does not explain the mechanism as to how the data xα are generated. Hence,
we cannot express xα in terms of the parameter θ as an explicit function.

Another big difference is that while the traditional statistical estimation is
based on repeated observations regarded as sampled from the statistical model
(= probability density), and hence accuracy vs. the number N of observations in
the asymptotic limit N → ∞ is a major concern, geometric estimation is done
from one set of data {x1, ..., xN}. Naturally, the estimation accuracy increases
with less observation uncertainty. Hence, accuracy vs. the noise level σ in the
limit of σ → 0 is a major concern [14].

In computer vision applications, the asymptotic analysis of N → ∞ does
not have much sense, because the number of data obtained by image processing
operations is limited in number. Usually, the output of an image processing
operation is accompanied by its reliability index, and we select only those data
that have high reliability indices. If we want to increase the number of data,
we necessarily need to include those with low reliability, but they are often
misdetections. Despite the basic differences, however, two approaches exist in
both statistical and geometric estimation domains:

Minimization approach We choose the value θ that minimizes a specified cost
function. This is regarded as the standard for computer vision applications.

Non-minimization approach We compute the value θ by solving a set of
equations, called estimating equations [6], which need not be derivatives of
some function. Hence, the solution does not necessarily minimize any cost
function. In traditional statistical estimation domains, this approach is re-
garded as more general and more flexible with a possibility of yielding better
solutions than the minimization approach, but it is not widely recognized in
computer vision research.

2.4 KCR Lower Bound

For minimization or non-minimization approaches, there exists a theoretical ac-
curacy limit. We assume that the true values ξ̄α of the observations ξα satisfy
the constraint (ξ̄α,θ) = 0 for some θ. If it is estimated from the observation
{ξα}N

α=1 by some means, the estimate θ̂ is as a function θ̂({ξα}N
α=1) of {ξα}N

α=1,
called an estimator of θ. Let ∆θ be its error, i.e., write θ̂ = θ + ∆θ, and define
the covariance matrix of θ̂ by

V [θ̂] = E[∆θ∆θ>], (15)

where E[ · ] denotes expectation over data uncertainty. If we can assume that
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– each ξα is perturbed from its true value ξ̄α by independent Gaussian noise
of mean 0 and covariance matrix V [ξα] = σ2V0[ξα], and

– the function θ̂({ξα}N
α=1) is an unbiased estimator , i.e., E[θ̂] = θ identically

holds for whatever θ,

then the following inequality holds [3, 11, 12, 14].

V [θ̂] Â σ2

N

( 1
N

N∑
α=1

ξ̄αξ̄
>
α

(θ, V0[ξα]θ)

)−
. (16)

Here, A Â B means that A − B is a positive semidefinite symmetric matrix,
and ( · )− denotes the pseudo inverse. Chernov and Lesort [3] called the right
side Eq. (16) Kanatani-Cramer-Rao (KCR) lower bound .

3 Minimization Approach

First, we overview popular geometric estimation techniques for computer vision
that are based on the minimization approach.

3.1 Least Squares (LS)

Since the true values ξ̄α of the observations ξα satisfy (ξ̄α, θ) = 0, we choose
the value θ that minimizes

J =
1
N

N∑
α=1

(ξα, θ)2 (17)

for noisy observations ξα subject to the constraint ‖θ‖ = 1. This can also be
viewed as minimizing

∑N
α=1(ξα, θ)2/‖θ‖2. Equation (17) can be rewritten in the

form

J =
1
N

N∑
α=1

(ξα, θ)2 =
1
N

N∑
α=1

θ>ξαξ>
α θ = (θ,

1
N

N∑
α=1

ξαξ>
α︸ ︷︷ ︸

≡M

θ) = (θ, Mθ), (18)

which is a quadratic form of M . As is well known, the unit vector θ that mini-
mizes this form is given by the unit eigenvector of M for the smallest eigenvalue.

Since the sum of squares is minimized, this method is called least squares
(LS ). Equation (17) is often called the algebraic distance, so this method is also
called algebraic distance minimization. Because the solution is directly obtained
without any search, LS is widely used in many applications. However, it has
been observed that the solution has a large statistical bias. For ellipse fitting
in Example 2 (Sec. 2.1), for instance, the fitted ellipse is almost always smaller
than the true shape. For this reason, LS is not suited for accurate estimation.
However, LS is convenient for rough estimation for guiding image processing, for
the outlier-detection voting, and for initializing iterative optimization schemes.
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3.2 Maximum Likelihood (ML)

If the noise in each xα is an independent Gaussian variable of mean 0 and co-
variance matrix V [xα] = σ2V0[xα], the Mahalanobis distance of the observations
{xα} from their true values {x̄α} is

J =
1
N

N∑
α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)), (19)

and the likelihood of {xα} is written as Ce−NJ/2σ2
, where C is a normalization

constant that does not depend on x̄α or θ. Thus, maximum likelihood (ML) is
equivalent to minimizing Eq. (19) subject to the constraint

(ξ(x̄α), θ) = 0. (20)

As a special case, if the noise is homogeneous, i.e., independent of α, and
isotropic, i.e., independent of orientation, we can write V0[xα] = I (the identity),
which reduces Eq. (19) to the geometric distance

J =
1
N

N∑
α=1

‖xα − x̄α‖2. (21)

Minimizing this subject to Eq. (20) is called geometric distance minimization by
computer vision researchers and total least squares (TLS ) by numerical analysis
researchers1. If x̄α represents the projection of the assumed 3-D structure onto
the image plane and xα is its actually observed positions, Eq. (21) is called the
reprojection error . Minimizing it subject to Eq. (20) is often called reprojection
error minimization.

Geometrically, ML can be interpreted to be fitting to N points xα in the data
space the parameterized hypersurface (ξ(x), θ) = 0 by adjusting θ, where the
discrepancy of the points from the surface is measured not by the Euclid distance
but by the Mahalanobis distance of Eq. (19), which inversely weights the data by
their covariances, thereby imposing heavier penalties on the points with higher
certainty. In the field of computer vision, this approach is widely regarded as
the ultimate method and often called the Gold Standard [8]. However, this is a
highly nonlinear optimization problem and difficult to solve by a direct means.
The difficulty stems from the fact that Eq. (20) is an implicit function of x̄α. If
we could solve Eq. (20) for x̄α to express it as an explicit function of θ, we could
substitute it into Eq. (19) to obtain an unconstrained optimization problem for
θ alone, but this is generally not possible. In Examples 1 (line fitting), 2 (ellipse
fitting), and 3 (fundamental matrix computation) in Sec. 2.1, for instance, we
cannot express (x, y) or (x, y, x′, y′) in terms of θ.
1 If the data xα are 2-D positions xα = (xα, yα) and the y-coordinate alone undergoes

noise, we only need to minimize (1/N)
PN

α=1(yα − ȳα)2. In general, if only some
components of the data xα contain noise, the problem is called partial least squares
(PLS).
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3.3 Bundle Adjustment

A standard technique for minimizing Eq. (19) subject to Eq. (20) is to introduce
a problem-dependent auxiliary variable to each Xα and express x̄α in terms of
Xα and θ in the form

x̄α = x̄α(Xα, θ). (22)

Then, we substitute this into Eq. (19) and minimize

J({Xα}N
α=1, θ) =

1
N

N∑
α=1

(xα − x̄α(Xα, θ), V0[xα]−1(xα − x̄α(Xα, θ))) (23)

over the joint parameter space of {Xα}N
α=1 and θ.

A typical example of this approach is 3-D reconstruction from multiple im-
ages, for which xα has the form of xα = (xα, yα, x′

α, y′
α, ..., x′′

α, y′′
α), concatenating

the projections (xα, yα), (x′
α, y′

α), ..., (x′′
α, y′′

α) of the αth point in the scene onto
the images. The unknown parameter θ specifies the state of all the cameras,
consisting of the extrinsic parameters (the positions and orientations) and the
intrinsic parameters (the focal lengths, the principal points, the aspect ratios,
and the skew angles). If we introduce the 3-D position Xα = (Xα, Yα, Zα) of
each point in the scene as the auxiliary variable, the true value x̄α of xα can be
explicitly expressed in the form x̄α(Xα,θ), which describes the image positions
of the 3-D point Xα that should be observed if the cameras have the parameter
θ. Then, we minimize the reprojection error , i.e., the discrepancy of the ob-
served projections ξα from the predicted projections x̄α(Xα,θ). The minimum
is searched over the entire parameter space of {Xα}N

α=1 and θ. This process
is called bundle adjustment [23, 32], a term originated from photogrammetry,
meaning we “adjust” the “bundle” of lines of sight so that they pass through
the observed points in images. The package program is available on the Web
[23]. The dimension of the parameter space is 3N + ‘the dimension of θ’, which
becomes very large when many points are observed.

This bundle adjustment approach is not limited to 3-D reconstruction from
multiple images. In Examples 1 (line fitting) and 2 (ellipse fitting) in Sec. 2.1,
for example, if we introduce the arc length sα of the true position (x̄α, ȳα) along
the line or the ellipse from a fixed point as the auxiliary variable, we can express
(xα, yα) in terms of sα and θ. Then, we minimize the resulting Mahalanobis
distance J over the entire parameter space of s1, ..., sN and θ. Instead of the arc
length sα, we can alternatively use the argument φα measured from the x-axis
[30]. A similar approach can be done for fundamental matrix computation [2].

The standard numerical technique for the search of the parameter space is
the Levenberg-Marquardt (LM ) method [27], which is a hybrid of the Gauss-
Newton iterations and the gradient descent. However, depending on the initial
value of the iterations, the search may fall into a local minimum. Various global
optimization techniques have also been studied [7]. A typical method is branch
and bound , which introduces a function that gives a lower bound of J over a given
region and divides the parameter space into small cells; those cells which have
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lower bounds that are above the tested values are removed, and other cells are
recursively subdivided [7, 9]. However, the evaluation of the lower bound involves
a complicated technique, and searching the entire space requires a significant
amount of computational time.

3.4 Gaussian Approximation of Noise in the ξ-Space

The search in a high-dimensional parameter space of the bundle adjustment
approach can be avoided if we introduce Gaussian approximation to the noise
distribution in the ξ-space. If the noise in the observation xα is Gaussian, the
noise in its nonlinear transformation ξα = ξ(xα) is not strictly Gaussian, al-
though it is expected to have a Gaussian-like distribution if the noise is small. If
it is approximated to be Gaussian, the optimization computation becomes much
simpler. Suppose ξα has noise of mean 0 with the covariance matrix V [ξα] =
σ2V0[ξα] evaluated by Eq. (14). Then, the ML computation reduces to minimiz-
ing the Mahalanobis distance

J =
1
N

N∑
α=1

(ξα − ξ̄α, V0[ξα]−1(ξα − ξ̄α)) (24)

in the ξ-space subject to the linear constraint

(ξ̄α, θ) = 0. (25)

Geometrically, this is interpreted to be fitting to N points ξα in the ξ-space the
parameterized “hyperplane” (ξ, θ) = 0 by adjusting θ, where the discrepancy of
the points from the plane is measured by the Mahalanobis distance of Eq. (24)
inversely weighted by the covariances of the data in the ξ-space. Since Eq. (25) is
now “linear” in ξ̄α, this constraint can be eliminated using Lagrange multipliers,
reducing the problem to unconstrained minimization of

J =
1
N

N∑
α=1

(ξα,θ)2

(θ, V0[ξα]θ)
. (26)

Today, Eq. (26) is called the Sampson error [8] after the ellipse fitting scheme
introduced by P. D. Sampson [29].

3.5 Sampson Error Minimization

Various numerical techniques have been proposed for minimizing the Sampson
error in Eq. (26). The best known is the FNS (Fundamental Numerical Scheme)
of Chojnacki et al. [5], which goes as follows:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Computer the matrices

M =
1
N

N∑
α=1

Wαξαξ>
α , L =

1
N

N∑
α=1

W 2
α(θ0, ξα)2V0[ξα]. (27)
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3. Solve the eigenvalue problem (M −L)θ = λθ, and compute the unit eigen-
vector θ for the smallest2 eigenvalue λ.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (28)

and go back to Step 2.

The background of FNS is as follows. At the time of convergence, the matrices
M and L have the form

M =
1
N

N∑
α=1

ξαξ>
α

(θ, V0[ξα]θ)
, L =

1
N

N∑
α=1

(θ, ξα)2V0[ξα]
(θ, V0[ξα]θ)2

. (29)

It is easily seen that the derivative of the Sampson error J in Eq. (26) is written
in terms of these matrices in the form

∇θJ = 2(M − L)θ. (30)

It can be shown that if the above iterations converge, the eigenvalue λ must be
0. Hence, the returned value θ is the solution of ∇θJ = 0.

Other methods exist for minimizing Eq. (26) including the HEIV (Het-
eroscedastic Errors-in-Variables) of Leedan and Meer [22] and Matei and Meer
[24], and the projective Gauss-Newton iterations of Kanatani and Sugaya [18];
all compute the same solution. Note that the “initial solution” obtained in the
beginning by letting Wα = 1 coincides with the LS solution described in Sec. 3.1.

3.6 Computation of the Exact ML Solution

Since the Sampson error of Eq. (26) is obtained by approximating the non-
Gaussian noise distribution in the ξ-space by a Gaussian distribution, the so-
lution does not necessarily coincide with the ML solution that minimizes the
Mahalanobis distance in Eq. (19). However, once we have obtained the solution
θ that minimizes Eq. (26), we can iteratively modify Eq. (26) by using that θ
so that Eq. (26) coincides with Eq. (19) in the end. This means that we obtain
the exact ML solution. The procedure goes as follows [21]:

1. Let J∗
0 = ∞ (a sufficiently large number), x̂α = xα, and x̃α = 0, α = 1, ...,

N .
2. Evaluate the normalized covariance matrices V0[ξ̂α] by replacing xα by x̂α

in their definition.
3. Compute the following ξ∗

α:

ξ∗
α = ξα +

∂ξ

∂x

∣∣∣∣
x=xα

x̃α. (31)

2 We can alternatively compute the unit eigenvector θ for the smallest eigenvalue λ in
absolute value, but it has been experimentally confirmed that convergence is faster
for computing the smallest eigenvalue [18].



20 K. Kanatani

4. Compute the value θ that minimizes the modified Sampson error

J∗ =
1
N

N∑
α=1

(ξ∗
α,θ)2

(θ, V0[ξ̂α]θ)
. (32)

5. Update x̃α and x̂α as follows:

x̃α ← (ξ∗
α, θ)V0[xα]

(θ, V0[ξ̂α]θ)

∂ξ

∂x

∣∣∣∣>
x=xα

θ, x̂α ← xα − x̃α. (33)

6. Evaluate J∗ by

J∗ =
1
N

N∑
α

(x̃α, V0[xα]x̃α). (34)

If J∗ ≈ J0, return θ and stop. Else, let J0 ← J∗ and go back to Step 2.

Since the modified Sampson error in Eq. (32) has the same form as the Sampson
error in Eq. (26), we can minimize it by FNS (or other methods). According
to numerical experiments, this modification converges after four or five rounds,
yet in many practical problems the first four or five effective figures remain
unchanged [19, 20]. In this sense, we can practically identify the Sampson error
minimization with the ML computation.

3.7 Hyperaccurate Correction of ML

It has been widely recognized that the Sampson error minimization solution,
which can be practically identified with the ML solution, has very high accu-
racy. However, it can be shown by detailed error analysis that the solution has
statistical bias of O(σ2) and that the magnitude of the bias can be theoreti-
cally evaluated [14]. This implies that the accuracy can be further improved by
subtracting the theoretically expected bias. This process is called hyperaccurate
correction and goes as follows [13, 14]:

1. Estimate the square noise level σ2 from the computed solution θ and the
corresponding matrix M in Eq. (29) by

σ̂2 =
(θ, Mθ)

1 − (n − 1)/N
, (35)

where n is the dimension of the vector θ.
2. Compute the correction term3

∆cθ=−σ2

N
M−

n−1

N∑
α=1

Wα(eα,θ)ξα +
σ̂2

N2
M−

n−1

N∑
α=1

W 2
α(ξα, M−

n−1V0[ξα]θ)ξα,

(36)
where eα is a vector that depends on individual problems, and M−

n−1 is the
pseudoinverse of M with truncated rank n − 1 (the smallest eigenvalue is
replaced by 0 in its spectral decomposition).

3 The first term of Eq. (36) is omitted in [13, 14].
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3. Correct the ML solution θ in the form

θ ← N [θ − ∆cθ], (37)

where N [ · ] is the normalization operator into unit norm (N [a] ≡ a/‖a‖).

The vector eα is 0 for many problems including line fitting (Example 1 in
Sec. 2.1) and fundamental matrix computation (Example 3 in Sec. 2.1). It is
generally 0 if multiple images are involved. A typical problem of nonzero eα is
ellipse fitting (Example 2 in Sec. 2.1), for which eα = (1, 0, 1, 0, 0, 0)>. However,
the effect is negligibly small, and the solution is practically the same if eα is
replaced by 0.

The above bias correction concerns geometric estimation based on the geo-
metric model of Eq. (2). In statistics, on the other hand, it is known that ML
entails statistical bias in the presence of what is known as “nuisance parameters”,
and various studies exist for analyzing and removing bias in the ML solution.
Okatani and Deguchi [25, 26] applied them to vision problems by introducing
auxiliary variables in the form of Eq. (22). They analyzed the relationship be-
tween the bias and the hypersurface defined by the constraint [25] and introduced
the method of projected scores [26].

For those computer vision researchers who regarded reprojection error min-
imization as the ultimate method, or the Gold Standard [8], the fact that the
accuracy of ML can be improved by the above hyperaccurate correction was
rather surprising. For hyperaccurate correction, however, one first needs to ob-
tain the ML solution by an iterative method such as FNS and also estimate the
noise level σ. Then, a question arises. Is it not possible to directly compute the
corrected solution from the beginning, say, by modifying the FNS iterations?
We now show that this is possible if we adopt the non-minimization approach
of geometric estimation.

4 Non-minimization Approach

4.1 Iterative Reweight

The oldest method that is not based on minimization is the following iterative
reweight :

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Computer the following matrix M :

M =
1
N

N∑
α=1

Wαξαξ>
α . (38)

3. Solve the eigenvalue problem Mθ = λθ, and compute the unit eigenvector
θ for the smallest eigenvalue λ.
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4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (39)

and go back to Step 2.

The motivation of this method is the weighted least squares that minimizes

1
N

N∑
α=1

Wα(ξα, θ)2 =
1
N

N∑
α=1

Wαθ>ξαξ>
α θ = (θ,

1
N

N∑
α=1

Wαξαξ>
α︸ ︷︷ ︸

≡M

θ) = (θ, Mθ).

(40)
This is minimized by the unit eigenvector θ of the matrix M for the smallest
eigenvalue. As is well known in statistics, the optimal choice of the weight Wα

is the inverse of the variance of that term. Since (ξ̄α, θ) = 0, we have (ξα, θ) =
(∆ξα, θ) + · · · , and hence the leading term of the variance is

E[(∆ξα, θ)2] = E[θ>∆ξα∆ξ>
α θ] = (θ, E[∆ξα∆ξ>

α ]θ) = σ2(θ, V0[ξα]θ). (41)

Hence, we should choose

Wα =
1

(θ, V0[ξα]θ)
, (42)

but θ is unknown. So, we do iterations, determining the weight Wα from the
value of θ in the preceding step. The “initial solution” computed with Wα = 1
coincides with the LS solution, minimizing Eq. (17) in Sec. 3.1.

If Eq. (42) is substituted, Eq. (40) coincides with the Sampson error in
Eq. (26). With the iterative update in Eq. (39), it appears that Eq. (26) is min-
imized. However, we are computing at each step the value of θ that minimizes
the numerator part for the fixed value of the denominator terms determined in
the preceding step. Hence, at the time of the convergence, the resulting solution
θ is such that

1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
≤ 1

N

N∑
α=1

(ξα, θ′)2

(θ, V0[ξα]θ)
(43)

for any θ′, but this does not mean

1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
≤ 1

N

N∑
α=1

(ξα, θ′)2

(θ′, V0[ξα]θ′)
. (44)

The fact that iterative reweight does not minimize a particular cost function has
not been well recognized by vision researchers.

The perturbation analysis in [14] shows that the covariance matrix V [θ] of
the resulting solution θ agrees with the KCR lower bound (Sec. 2.4) up to O(σ4).
Hence, it is practically impossible to reduce the variance any further. However, it
has been widely known that the iterative reweight solution has a large bias [11].
Thus, the following strategies were introduced to improve iterative reweight:
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– Remove the bias of the solution.
– Exactly minimize the Sampson error in Eq. (26).

The former is Kanatani’s renormalization [10, 11], and the latter is the FNS of
Chojnacki et al. [5] and the HEIV of Leedan and Meer [22] and Matei and Meer
[24].

4.2 Renormalization

Kanatani’s renormalization [10, 11] goes as follows4:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M =
1
N

N∑
α=1

Wαξαξ>
α , N =

1
N

N∑
α=1

WαV0[ξα]. (45)

3. Solve the generalized eigenvalue problem Mθ = λNθ, and compute the unit
eigenvector θ for the smallest eigenvalue λ in absolute value.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (46)

and go back to Step 2.

The motivation of renormalization is as follows. Let M̄ be the true value of the
matrix M in Eq. (45). Since (ξ̄α, θ) = 0, we have M̄θ = 0. Hence, θ is the
eigenvector of M̄ for eigenvalue 0, but M̄ is unknown. So, we estimate it. Since
E[∆ξα] = 0 to a first approximation, the expectation of M is

E[M ] = E[
1
N

N∑
α=1

Wα(ξ̄α+∆ξα)(ξ̄α+∆ξα)>] = M̄ +
1
N

N∑
α=1

WαE[∆ξα∆ξ>
α ]

= M̄ +
σ2

N

N∑
α=1

WαV0[ξα] = M̄ + σ2N . (47)

Thus, M̄ = E[M ] − σ2N ≈ M − σ2N , so instead of M̄θ = 0 we solve (M −
σ2N)θ = 0, or Mθ = σ2Nθ. Assuming that σ2 is small, we regard it as the
smallest eigenvalue λ in absolute value. As in the case of iterative reweight, we
iteratively update the weight Wα so that it approaches Eq. (42).

Kanatani’s renormalization [10, 11] attracted much attention because it ex-
hibited higher accuracy than any other then known methods. However, questions
4 This is slightly different from the description in [10], in which the generalized eigen-

value problem is reduced to the standard eigenvalue problem, but the resulting
solution is the same [11].
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were repeatedly raised as to what it minimizes, perhaps out of the deep-rooted
preconception that optimal estimation should minimize something. Chojnacki
et al. [4] argued that renormalization can be “rationalized” if viewed as approx-
imately minimizing the Sampson error. However, the renormalization process is
not minimizing any particular cost function.

Note that the initial solution with Wα = 1 solves
(∑N

α=1 ξαξ>
α

)
θ =

λ
(∑N

α=1 V0[ξα]
)
θ, which is nothing but the method of Taubin [31], known to

be very accurate algebraic method without requiring iterations. Thus, renormal-
ization is an iterative improvement of the Taubin solution. According to many
experiments, renormalization is shown to be more accurate than the Taubin
method with nearly comparable accuracy with the FNS and the HEIV. The
accuracy of renormalization is analytically evaluated in [14], showing that the
covariance matrix V [θ] of the solution θ agrees with the KCR lower bound up
to O(σ4) just as iterative reweight, but the bias is much smaller. That is the
reason for the high accuracy of renormalization.

4.3 Analysis of Covariance and Bias

Since the covariance matrix V [θ] of the renormalization solution θ agrees with
the KCR lower bound up to O(σ4), the covariance of the solution cannot be
substantially improved any further. Very small it may be, however, the bias is
not 0. Note that the renormalization procedure reduces to iterative reweight if
the matrix N is replaced by the identity I. This means that the reduction of
the bias is attributed to the matrix N . This observation implies the possibility
of further reducing the bias by optimizing the matrix N in the form

N =
1
N

N∑
α=1

WαV0[ξα] + · · · , (48)

so that the bias is zero up to high order error terms . Using the perturbation
analysis in [14], Al-Sharadqah and Chernov [1] actually did this for ellipse fit-
ting, and Kanatani et al. [15] extended it to general geometric estimation. Their
analysis goes as follows. We write the observation xα as the sum xα = x̄α +∆xα

of the true value x̄α and the noise term ∆xα. Substituting this into ξα = ξ(xα)
and expand it in the form

ξ̄α + ∆1ξα + ∆2ξα + · · · , (49)

where and hereafter the bar denotes the noiseless value and ∆k denotes terms
of O(σk). We similarly expand M , θ, λ, and N and express the generalized
eigenvalue problem in the form

(M̄ +∆1M +∆2M +· · · )(θ̄+∆1θ+∆2θ+· · · )
= (λ̄+∆1λ+∆2λ+· · · )(N̄ +∆1N +∆2N +· · · )(θ̄+∆1θ+∆2θ+· · · ).
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Equating the terms of the same order in σ, we obtain

∆1θ = −M̄
−

∆1Mθ̄, (50)

∆⊥
2 θ = M̄

−
( (θ̄, T θ̄)

(θ̄, N̄ θ̄)
N̄ θ̄ − T θ̄

)
, (51)

where M̄
− is the pseudoinverse of M̄ ; since M̄ has the eigenvector θ̄ of eigen-

value 0, its rank is n − 1 (n is the dimension of θ). The symbol ∆⊥
2 θ denotes

the component of the second order noise term orthogonal to θ̄; since θ is a unit
vector, it has no error in the direction of itself, so we are interested in the error
orthogonal to it. The matrix T in Eq. (51) is defined to be

T ≡ ∆2M − ∆1MM̄
−

∆1M . (52)

From Eq. (50), we can show that the leading term of the covariance matrix of θ
has the following form [14].

V [θ] ≡ E[∆1θ∆1θ
>] =

σ2

N
M̄

−
. (53)

From this we observe:

– The covariance matrix V [θ] is O(σ2).
– The right side of Eq. (16) agrees with the KCR lower bound.
– Eq. (53) does not contain the matrix N .

Thus, we cannot change the value of Eq. (53) by adjusting the matrix N . How-
ever, the root-mean-square (RMS) error of θ is the sum of the covariance term
and the bias term, and the bias term is also O(σ2) (the expectation of odd or-
der noise terms is 0, so the first order bias is E[∆1θ] = 0). Since the second
order bias term contains the matrix N , we can reduce it by adjusting N . From
Eq. (51), the second order bias has the following expression:

E[∆⊥
2 θ] = M̄

−
( (θ̄, E[T θ̄])

(θ̄, N̄ θ̄)
N̄ θ̄ − E[T θ̄]

)
. (54)

4.4 Hyper-renormalization

Equation (54) implies that if we can choose an N such that

E[T θ̄] = cN̄ θ̄ (55)

for some constant c, we will have

E[∆⊥
2 θ] = M̄

−
( (θ̄, cN̄ θ̄)

(θ̄, N̄ θ̄)
N̄ θ̄ − cN̄ θ̄

)
= 0, (56)



26 K. Kanatani

i.e., the second order bias is completely eliminated . Kanatani et al. [15] showed
that if the matrix N̄ is defined by

N̄ =
1
N

N∑
α=1

W̄α

(
V0[ξα] + 2S[ξ̄αe>

α ]
)

− 1
N2

N∑
α=1

W̄ 2
α

(
(ξ̄α, M̄

−
ξ̄α)V0[ξα] + 2S[V0[ξα]M̄−

ξ̄αξ̄
>
α ]

)
, (57)

then E[T θ̄] = σ2N̄ θ̄ holds, where eα is a vector that depends on individual
problems (the same vector as that in Eq. (36)), and S[ · ] denotes symmetriza-
tion (S[A] = (A + A>)/2). In actual computation, the true values in Eq. (57)
are replaced by computed values. This entails errors of O(σ), but since the ex-
pectation of odd order noise terms is 0, Eq. (56) is O(σ4). Thus, we obtain the
following procedure of hyper-renormalization:

1. Let Wα = 1, α = 1, ..., N , and θ0 = 0.
2. Compute the following matrices M and N :

M =
1
N

N∑
α=1

Wαξαξ>
α , (58)

N =
1
N

N∑
α=1

Wα

(
V0[ξα] + 2S[ξαe>

α ]
)

− 1
N2

N∑
α=1

W 2
α

(
(ξα, M−

n−1ξα)V0[ξα] + 2S[V0[ξα]M−
n−1ξαξ>

α ]
)
. (59)

Here, M−
n−1 is the pseudoinverse of M with truncated rank n − 1 (cf.

Eq. (36).
3. Solve the generalized eigenvalue problem Mθ = λNθ, and compute the unit

eigenvector θ for the smallest eigenvalue λ in absolute value.
4. If θ ≈ θ0 up to sign, return θ and stop. Else, let

Wα ← 1
(θ, V0[ξα]θ)

, θ0 ← θ, (60)

and go back to Step 2.

It turns out that the initial solution with Wα = 1 coincides with what is called
HyperLS [16, 17, 28], which is derived to remove the bias up to second order error
terms within the framework of algebraic methods without iterations5. Thus,
hyper-renormalization is an iterative improvement of HyperLS .

Standard linear algebra routines for solving the generalized eigenvalue prob-
lem Mθ = λNθ assume that N is positive definite, but the matrix N in Eq. (59)
5 The expression of Eq. (59) with Wα = 1 lacks one term as compared with the

corresponding expression of HyperLS, but the same solution is produced.
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has both positive and negative eigenvalues. For renormalization, the matrix N
is positive semidefinite, having eigenvalue 0. This, however, causes no trouble,
because the problem can be rewritten as

Nθ =
1
λ

Mθ. (61)

The matrix M is positive definite for noisy data, so we can use a standard
routine to compute the eigenvector θ for the eigenvalue 1/λ with the largest
absolute value. If the matrix M happens to have eigenvalue 0, it indicates that
the data are all exact, so the unit eigenvector for the eigenvalue 0 is the exact
solution.

5 Numerical Examples

We define 30 equidistant points on the ellipse shown in Fig. 1(a). The major and
minor axis are set to 100 and 50 pixels, respectively. We add random Gaussian
noise of mean 0 and standard deviation σ to the x and y coordinates of each
point independently and fit an ellipse to the noisy point sequence using : 1) LS,
2) iterative reweight, 3) the Taubin method, 4) renormalization, 5) HyperLS, 6)
hyper-renormalization, 7) ML, and 8) hyperaccurate correction of ML.

Since the computed θ and its true value θ̄ are both unit vectors, we mea-
sure the discrepancy between them by the orthogonal component ∆⊥θ = P θ̄θ,
where P θ̄ (≡ I − θ̄θ̄

>) is the projection matrix along θ̄. We generated 10000
independent noise instances and evaluated the bias B (Fig. 1(b)) and the RMS
(root-mean-square) error D (Fig. 1(c)) defined by

B =
∥∥∥ 1

10000

10000∑
a=1

∆⊥θ(a)
∥∥∥, D =

√√√√ 1
10000

10000∑
a=1

‖∆⊥θ(a)‖2, (62)

where θ(a) is the solution in the ath trial. The dotted line in Fig. 1(c) indicates
the KCR lower bound. The interrupted plots in Fig. 2(a) for iterative reweight,
ML, and hyperaccurate correction of ML indicate that the iterations did not
converge beyond that noise level. Our convergence criterion is ‖θ − θ0‖ < 10−6

for the current value θ and the value θ0 in the preceding iteration; their signs are
adjusted before subtraction. If this criterion is not satisfied after 100 iterations,
we stopped. For each σ, we regarded the iterations as not convergent if any
among the 10000 trials does not converge.

We can see from Fig. 2(a) that LS and iterative reweight have very large
bias, in contrast to which the bias is very small for the Taubin method and
renormalization. The bias of HyperLS and hyper-renormalization is still smaller
and even smaller than ML. Since the leading covariance is common to iterative
reweight, renormalization, and hyper-renormalization, the RMS error reflects the
magnitude of the bias as shown in Fig. 2(b). Because the hyper-renormalization
solution does not have bias up to high order error terms, it has nearly the same
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Fig. 2. Thirty points on an ellipse (a). The bias (a) and the RMS error (b) of the fitted
ellipse for the standard deviation σ of the added noise over 10000 independent trials.
1) LS, 2) iterative reweight, 3) the Taubin method, 4) renormalization, 5) HyperLS, 6)
hyper-renormalization, 7) ML, 8) hyperaccurate correction of ML. The dotted line in
(c) indicates the KCR lower bound.

accuracy as ML, or reprojection error minimization. A close examination of the
small σ part reveals that hyper-renormalization outperforms ML. The highest
accuracy is achieved, although the difference is very small, by hyperaccurate cor-
rection of ML. However, it first requires the ML solution, and the FNS iterations
for its computation may not converge above a certain noise level, as shown in
Figs. 2(a), (b). On the other hand, hyper-renormalization is very robust to noise.
This is because the initial solution is HyperLS, which is itself highly accurate al-
ready as shown in Fig. 2. For this reason, we conclude that it is the best method
for practical computations.

6 Concluding Remarks

We have overviewed techniques for optimal geometric estimation from noisy
observations for computer vision applications. We first described minimization-
based approaches: LS, ML, which includes reprojection error minimization (Gold
Standard) as a special case, and Sampson error minimization. We then for-
mulated non-minimization approaches: iterative reweight, renormalization, and
hyper-renormalization, which can be viewed as iterative improvement of LS, the
Taubin method, and HyperLS, respectively (Table 1). Showing numerical exam-
ples, we conclude that hyper-renormalization is robust to noise and currently is
the best method.

Table 1. Summary of non-minimization approaches.

initial weight update final

LS −→ iterative reweight
Taubin −→ renormalization

HyperLS −→ hyper-renormalization
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