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Abstract. A higher order scheme is presented for the opti-
mal correction method previously proposed by the authors
for computing the 3-D position of corresponding points in
a stereo image pair, and this method is compared with the
Hartley-Sturm method. It is pointed out that the epipole
is a singularity of the Harley-Sturm method, while the our
method has no singularity. It is confirmed by numerical
simulation that both compute identical solutions at other
points. It can be shown, however, that our method is sig-
nificantly faster.

1. Introduction

Stereo vision is a method for reconstructing the 3-D
structure of a scene from corresponding points over
two images by triangulation: if the configuration of
the cameras and their intrinsic parameters are known,
one can compute the “line of sight” of each pixel, and
the intersection of the lines of sight of corresponding
pixels gives their 3-D position. If the camera config-
uration and the intrinsic parameters are not known,
they can be estimated from point correspondences by
computing the fundamental matrix; this procedure is
known as structure from motion [4, 5].

However, correspondence detection entails uncer-
tainty to some extent, and the lines of sight of de-
tected corresponding pixels do not necessarily meet in
the scene. In the old days, this was handled by a prac-
tical compromise such as regarding the “midpoint” of
the shortest line segment connecting the two lines of
sight as the intersection (Fig. 1(a)).

In early 1990s, the authors pointed out that such
a compromise is not optimal and that the optimal
method is to displace the corresponding pixels so that
their lines of sight intersect in such a way that the
amount of the displacement is minimum (Fig. 1(b)).
This is the principle of optimal correction [5], for which
the authors showed a simple numerical procedure [7].

Later, Hartley and Sturm [3] introduced a similar
idea and presented a numerical scheme of reducing the
problem to solving a 6-degree polynomial1 (see Ap-
pendix). However, they only compared their method
with the “mid-point method” and made no mention
of the authors’ optimal correction.

Yet, some researchers were aware that the authors’
method was far more practical than the Hartley-

1Their original paper [3] contained mathematical errors,
which were corrected in a later published book [4].

(a) (b)

Figure 1 Triangulation. (a) The mid-point
method. (b) Optimal correction.

Sturm method. For example, Torr and Zissermann [9]
pointed out that the authors’ method produced prac-
tically the same solution as the Hartley-Sturm method
but was several orders of magnitude faster2. Never-
theless, the Hartley-Sturm method has won popularity
and currently is widely regarded as a standard tool for
triangulation.

The aim of this paper is to compare the Hartley-
Sturm method with our optimal correction. First, we
state the problem in mathematical terms (Sec. 2) and
describe our previous formula of optimal correction
(Sec. 3), which gives a first approximation. Then, we
extend it to higher orders so that an exact optimal so-
lution is computed (Sec. 4) and reformulate it into a
very compact form suitable for numerical computation
(Sec. 5). We point out that the Hartley-Sturm method
has a singularity at epipoles, where their computation
fails, while our method does not, and discuss the con-
vergence issue (Sec. 6). From simulation, we observe
that the Hartley-Strum method and our method com-
pute identical solutions other than at epipoles, while
our method is far significantly faster than the Hartley-
Strum method (Sec. 7). We conclude that our method
best suits practical use (Sec. 8).

2. Mathematical Background

Suppose point (x, y) in the first image corresponds
to point (x′, y′) in the second. We represent them in

2“... Hartley and Sturm [13] provide ... This turns out
to be equivalent to the optimally corrected correspondence of
Kanatani [16]. Comparisons of the computation of x̂ and x̂′ by
Hartley and Sturm’s method and that of Kanatani have again
shown agreement to three or four significant figures, as men-
tioned, but Kanatani’s method is several orders of magnitude
faster, being a linear method and hence preferable for rapid
evaluation purposes. ...”
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3-D vectors in the form

x =

 x/f0

y/f0

1

 , x′ =

x′/f0

y′/f0

1

 , (1)

where f0 is a scale constant of approximately the im-
age size3. Hereafter, we refer to the point represented
by vector x simply as “point x”.

As is well known [4, 5], the necessary and sufficient
condition for the lines of sight of points x and x′ meet
in the scene is the following epipolar equation:

(x, Fx′) = 0. (2)

Throughout this paper, we denote the inner product
of vectors a and b by (a, b). In Eq. (2), F is a matrix
of rank 2, called the fundamental matrix 4, determined
by the relative configuration of the two cameras and
their intrinsic parameters but independent of the 3-D
structure of the scene or the choice of the correspond-
ing points [4, 5]. The fundamental matrix F is deter-
mined by camera calibration. It can also be estimated
from multiple pairs of point correspondences in the
images [4, 5, 6]. Here, we assume that the fundamen-
tal matrix F is already given.

In practice, the detected corresponding points x and
x′ may not exactly satisfy Eq. (2) due to uncertainty of
image processing operations. The principle of optimal
correction [5] is to optimally correct points x and x′

to points x̂ and x̂′ so that Eq. (2) is satisfied, where by
“optimally” we mean that the sum of square distances,
or the reprojection error [4],

E = ‖x − x̄‖2 + ‖x′ − x̄′‖2, (3)

is minimized. In mathematical terms, we minimize
Eq. (3) with respect to x̄ and x̄′ subject to

(x̄, F x̄′) = 0. (4)

In statistical terms, this is interpreted as follows. Sup-
pose the points x and x′ are observed after displaced
from their true positions x̄ and x̄′ by noise in the form

x = x̄ + ∆x, x′ = x̄′ + ∆x′. (5)

If the noise terms ∆x and ∆x′ are independent and
isotropic Gaussian random variables of mean 0 and a
constant variance σ2, minimization of Eq. (3) is equiv-
alent to maximum likelihood (ML) estimation of the
true positions x̄ and x̄′.

3. Optimal Correction Procedure

The optimal correction formula in [5, 7] is derived
as follows. Instead of directly estimating x̄ and x̄′, we
write

x̄ = x − ∆x, x̄′ = x′ − ∆x′, (6)
3This is for numerical stability [1]. In our experiment, we

set f0 = 600 pixels.
4In [1, 3], its transpose is defined to be the “fundamental

matrix”.

and estimate the correction terms ∆x and ∆x′. If
Eqs. (6) are substituted, Eq. (3) is written as

E = ‖∆x‖2 + ‖∆x′‖2, (7)

and Eq. (4) becomes

(x − ∆x,F (x′ − ∆x′)) = 0. (8)

Expanding this and ignoring second order terms in ∆x

and ∆x′, we obtain

(Fx′, ∆x) + (F>x, ∆x′) = (x, Fx′). (9)

Since the correction is done on the image plane, the
third components of the correction terms ∆x and ∆x′

should be zero, so we have

(k, ∆x) = 0, (k, ∆x′) = 0. (10)

Throughout this paper, we define k ≡ (0, 0, 1)>. In-
troducing Lagrange multipliers to Eqs. (9) and (10) in
the form

‖∆x‖2 + ‖∆x′‖2 − λ
(
(Fx′, ∆x) + (F>x, ∆x′)

)
−µ(k, ∆x) − µ′(k,∆x′), (11)

and letting the derivatives with respect to ∆x and
∆x′ be zero, we obtain

2∆x−λFx′−µk = 0, 2∆x′−λF>x−µ′k = 0. (12)

Multiplying these by the projection matrix

P k ≡ diag(1, 1, 0), (13)

which makes the third component 0, and noting that
P k∆x = ∆x, P k∆x′ = ∆x′, and P kk = 0, we obtain

2∆x − λP kFx′ = 0, 2∆x′ − λP kF>x = 0. (14)

Hence, we have

∆x =
λ

2
P kFx′, ∆x′ =

λ

2
P kF>x. (15)

Substituting these into Eq. (9), we obtain

(Fx′,
λ

2
P kFx′) + (F>x,

λ

2
P kF>x) = (x, Fx′),

(16)
from which λ is determined in the form

λ

2
=

(x, Fx′)
(Fx′,P kFx′) + (F>x, P kF>x)

. (17)

Hence, Eqs. (15) becomes

∆x =
(x, Fx′)P kFx′

(Fx′,P kFx′) + (F>x, P kF>x)
,

∆x′ =
(x,Fx′)P kF>x

(Fx′,P kFx′) + (F>x, P kF>x)
. (18)

Thus, the true positions x̄ and x̄′ are estimated from
Eqs. (6) in the form

x̂ = x − (x, Fx′)P kFx′

(Fx′, P kFx′) + (F>x, P kF>x)
,

x̂′ = x′ − (x, Fx′)P kF>x

(Fx′,P kFx′) + (F>x, P kF>x)
. (19)

This is the optimal correction formula given in [5, 7].
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4. Higher Order Extension

Since Eq. (9) is a first approximation, the points x̂

and x̂′ computed by Eqs. (19) may not strictly satisfy
the epipolar equation (x̂, F x̂′) = 0. We now show an
iterative scheme for computing x̄ and x̄′ that exactly
minimize Eq. (3). Instead of directly estimating x̄ and
x̄′, we write

x̄ = x̂ − ∆x̂, x̄′ = x̂′ − ∆x̂′, (20)

and compute the second order correction terms ∆x̂

and ∆x̂′, which are small quantities of a higher order.
Substituting Eqs. (20) into Eq. (3), we have

E = ‖x̃ + ∆x̂‖2 + ‖x̃′ + ∆x̂′‖2, (21)

where we define

x̃ = x − x̂, x̃′ = x′ − x̂′. (22)

Equation (4) now becomes

(x̂ − ∆x̂,F (x̂′ − ∆x̂′)) = 0. (23)

Expanding this and ignoring second order terms in ∆x̂

and ∆x̂′, we obtain

(F x̂′, ∆x̂) + (F>x̂, ∆x̂′) = (x̂, F x̂′). (24)

Since ∆x̂ and ∆x̂′ are small quantities of a higher
order, Eq. (24) is a higher order approximation of
Eq. (4). The correction is done on the image plane,
so we have the constraint

(k, ∆x̂) = 0, (k, ∆x̂′) = 0. (25)

Introducing Lagrange multipliers to Eqs. (24) and (25)
in the form

‖x̃ + ∆x̂‖2 + ‖x̃′ + ∆x̂′‖2 − λ
(
(F x̂′, ∆x̂)

+(F>x̂, ∆x̂′)
)
− µ(k,∆x̂) − µ′(k, ∆x̂′), (26)

and letting the derivatives with respect to ∆x̂ and
∆x̂′ be zero, we obtain

2(x̃ + ∆x̂) − λF x̂′ − µk = 0,

2(x̃′ + ∆x̂′) − λF>x̂ − µ′k = 0. (27)

Multiplying these by the projection matrix P k in
Eq. (13) and noting that P kx̃ = x̃, P kx̃′ = x̃′ from
the definition of x̃′ in Eq. (22), we obtain

2x̃ + 2∆x̂ − λP kF x̂′ = 0,

2x̃ + 2∆x̂′ − λP kF>x̂. = 0 (28)

Hence, we have

∆x̂ =
λ

2
P kF x̂′ − x̃, ∆x̂′ =

λ

2
P kF>x̂ − x̃′. (29)

Substituting these into Eq. (24), we obtain

(F x̂′,
λ

2
P kF x̂′ − x̃) + (F>x̂,

λ

2
P kF>x̂ − x̃′)

= (x̂, F x̂′), (30)

from which λ is determined in the form

λ

2
=

(x̂, F x̂′) + (F x̂′, x̃) + (F>x̂, x̃′)
(F x̂′,P kF x̂′) + (F>x̂, P kF>x̂)

. (31)

Hence, Eq. (29) becomes

∆x̂ =

(
(x̂, F x̂′)+(F x̂′, x̃)+(F>x̂, x̃′)

)
P kF x̂′

(F x̂′, P kF x̂′)+(F>x̂, P kF>x̂)
−x̃,

∆x̂′ =

(
(x̂, F x̂′)+(F x̂′, x̃)+(F>x̂, x̃′)

)
P kF>x̂

(F x̂′, P kF x̂′)+(F>x̂, P kF>x̂)
−x̃′.

(32)

Thus, the true positions x̄ and x̄′ are estimated from
Eqs. (22) and (20) in the form

ˆ̂x =x−

(
(x̂, F x̂′)+(F x̂′, x̃)+(F>x̂, x̃′)

)
P kF x̂′

(F x̂′, P kF x̂′)+(F>x̂, P kF>x̂)
,

ˆ̂x
′
=x′−

(
(x̂, F x̂′)+(F x̂′, x̃)+(F>x̂, x̃′)

)
P kF>x̂

(F x̂′, P kF x̂′)+(F>x̂, P kF>x̂)
.

(33)

This is a second order approximation. Still, they may
not strictly satisfy the epipolar equation (ˆ̂x, F ˆ̂x

′
) =

0, so we let

x̂ ← ˆ̂x, x̂′ ← ˆ̂x
′

(34)

and repeat the same computation until the iterations
converge. In the end, ∆x̂α and ∆x̂′

α in Eq. (23) be-
come 0.

5. Compact Numerical Scheme

The computation described in the preceding sec-
tions looks very complicated. We now show that it
reduces to a very compact form suitable for numerical
computation. This is the core of our algorithm.

First, we encode the fundamental matrix F = (Fij)
and the corresponding point pair {(x, y), (x′, y′)} in
the following 9-D vectors:

u = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>,

ξ = (xx′, xy′, f0x, yx′, yy′, f0y, f0x
′, f0y

′, f2
0 )>. (35)

The epipolar equation in Eq. (2) now becomes sim-
ply (u, ξ) = 0 [6]. We can also rewrite part of the
numerators and denominators in Eqs. (19) as follows:

(x, Fx′) =
1
f2
0

(u, ξ), (36)

(Fx′, P kFx′) + (F>x,P kF>x) =
1
f2
0

(u, V0[ξ]u).

(37)
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Here, we define the matrix V0[ξ] as follows5:

V0[ξ] =



x2 + x′2 x′y′ f0x
′ xy

x′y′ x2 + y′2 f0y
′ 0

f0x
′ f0y

′ f2
0 0

xy 0 0 y2 + x′2

0 xy 0 x′y′

0 0 0 f0x
′

f0x 0 0 f0y
0 f0x 0 0
0 0 0 0

0 0 f0x 0 0
xy 0 0 f0x 0
0 0 0 0 0

x′y′ f0x
′ f0y 0 0

y2 + y′2 f0y
′ 0 f0y 0

f0y
′ f2

0 0 0 0
0 0 f2

0 0 0
f0y 0 0 f2

0 0
0 0 0 0 0


. (38)

From Eqs. (36) and (37), Eqs. (19) can be written as

x̂ = x − (u, ξ)P kFx′

(u, V0[ξ]u)
, x̂′ = x′ − (u, ξ)P kF>x

(u, V0[ξ]u)
.

(39)
Now, if we define the vector

ξ̂ =



x̂x̂′ + x̂′x̃ + x̂x̃′

x̂ŷ′ + ŷ′x̃ + x̂ỹ′

f0(x̂ + x̃)
ŷx̂′ + x̂′ỹ + ŷx̃′

ŷŷ′ + ŷ′ỹ + ŷỹ′

f0(ŷ + ỹ)
f0(x̂′ + x̃′)
f0(ŷ′ + ỹ′)
f2
0


, (40)

part of the numerators and denominators in Eqs. (33)
can be rewritten as

(x̂, F x̂′) + (F x̂′, x̃) + (F>x̂, x̃′) =
1
f2
0

(u, ξ̂), (41)

(F x̂′, P kF x̂′) + (F>x̂,P kF>x̂) =
1
f2
0

(u, V0[ξ̂]u),

(42)
where V0[ξ̂] is the matrix obtained by replacing x, y,
x′, and y′ by x̂, ŷ′, x̂′, and ŷ′, respectively, in Eq. (38).
From Eqs. (41) and (42), we can write Eqs. (33) as

ˆ̂x = x − (u, ξ̂)P kF x̂′

(u, V0[ξ̂]u)
, ˆ̂x

′
= x′ − (u, ξ̂)P kF>x̂

(u, V0[ξ̂]u)
.

(43)
Thus, we can obtain the following compact procedure:

1. Let E0 = ∞ (a sufficiently large number), and let

x̂ = x, x̂′ = x′, x̃ = x̃′ = 0 (44)
5This coincides, up to scale, with the covariance matrix of ξ

in Eqs. (35) obtained by assuming that independent and iden-
tical Gaussian noise of mean 0 and a constant variance is added
to each coordinate of the point pair [6].

2. Compute the 9-D vector ξ̂ in Eq. (40) and the
9 × 9 matrix V0[ξ̂] in Eq. (38).

3. Update x̃ and x̃′ as follows:

x̃ ← (u, ξ̂)P kF x̂′

(u, V0[ξ̂]u)
, x̃′ ← (u, ξ̂)P kF>x̂

(u, V0[ξ̂]u)
. (45)

4. Compute the reprojection error E by

E = ‖x̃‖2 + ‖x̃′‖2. (46)

5. If E ≈ E0, return x̂ and x̂′ and stop. Else, let

E0 ← E, x̂ ← x − x̃, x̂′ ← x′ − x̃′, (47)

and go back to Step 3.

If we stop at Step 3, we compute the first approxima-
tion solution given in [5, 7].

6. Theoretical Issues

6.1 Effect of Epipoles

Point x in the first image is called its epipole if F>x

= 0; point x′ in the second image is called its epipole
if Fx′ = 0. They represent the projections of the
viewpoints of the other cameras [4].

The Hartley-Sturm method [3] first translates the
images so that the corresponding points are at the
coordinate origins and then rotates the images so that
their epipoles are on the x-axes (see Appendix). Then,
the observed points at the origins are displaced to the
foot of the perpendicular lines to the parameterized
epipolar lines passing through the respective epipoles.
The parameter of the epipolar lines is determined so
that the sum of the square distances from the origins
is minimized.

If either of the corresponding points is at the
epipole, no epipolar line is defined and the compu-
tation breaks down, so Hartley and Sturm [3] state
that one needs an ad hoc procedure. In our proce-
dure, (u, V0[ξ̂]u) is the only quantity that appears in
denominators. From Eqs. (36), (37), (41), and (42),
we see that it becomes zero only when x and x′ (or
x̂ and x̂′ in the course of iterations) are both at the
epipoles, in which case the numerators in Eqs. (45)
are also zero, so no correction is done and the compu-
tation ends6.

If one of the corresponding points are at the epipole,
we see from Eqs. (45) that our method displaces it
away from the epipole, while the other point (not at
the epipole) is unchanged. In contrast, the ad hoc
rule of the Hartley-Sturm method [3] moves the point
not at the epipole to the epipole. Thus, our method is
theoretically more consistent than the Hartley-Sturm
method [3], although this this difference has little ef-
fect in practical situations.

6We regard a fraction as zero if the numerator is zero, what-
ever the denominator.
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6.2 Convergence

Our method consists of iterative updates, so one
may wonder if the search is trapped into local minima.
In fact, Hartley and Sturm [3] emphasized this aspect
as the raison d’être of their method. They parameter-
ized the pair of corresponding epipolar lines and ar-
gued, showing numerical examples, that Newton-type
search could be trapped into local minima if arbitrar-
ily started in the parameter space. This is true in
general. However, our method does not parameterize
anything. We directly search the joint image plane
for the positions x̂ and x̂′ that satisfy the epipolar
equation.

Evidently, local search in a parameter space should
start near the true solution to converge to it, since we
may be trapped into a false solution if it is located
closer to us than the true solution. In our problem,
however, we are searching for the positions x̂ and x̂′

that are the closest to the data x and x′, starting from
them. If there happens to be a “false” solution that
satisfies the epipolar equation and is closer to us than
the true solution, it should be the true solution by the
very definition of the reprojection error. The under-
lying principle is the same as the well-known global
optimization technique of gradually raising the repro-
jection error threshold from 0 and testing if a feasible
solution exists [2]; the one first found is the globally
optimal solution.

7. Experiments

7.1 Setting

Figure 2(a), (b) shows simulated images (suppos-
edly 400× 400 pixels) of a grid pattern viewed by two
cameras with focal length 1200 pixels. In Fig. 2(a), the
baseline is nearly perpendicular to the camera optical
axes (call this the “stable camera configuration”); in
Fig. 2(b), it is nearly parallel to them (call this the
“unstable camera configuration”). Some of the corre-
sponding epipolar lines are overlaid; the epipoles are
located at their intersections.

Adding independent Gaussian noise of mean 0
and standard deviation σ pixels to the x- and y-
coordinates of the grid points, we computed their 3-D
positions. To see if our method works even in the pres-
ence of extremely large noise, we varied σ from 0 to 10
pixels. The iterations of our method are terminated
when the update of the reprojection error E is less
than 10−6.

7.2 Reprojection Error

Figure 3 plots, for each σ, the “root mean reprojec-
tion error”, i.e., the square root of the average of the
reprojection error

E = ‖x − x̂‖2 + ‖x′ − x̂′‖2 (48)

(a)

(b)

Figure 2 Stereo image pairs of a planar
grid (the epipolar lines are overlaid), and
the camera configuration. (a) Stable camera
configuration. (b) Unstable camera configu-
ration.

 0

.01

 0  2  4  6  8  10σ

.01

 0  2  4  6  8  10σ

(a) (b)

Figure 3 Root mean reprojection error.
Solid line: Our optimal correction. Dashed
line: The Hartley-Sturm method. (a) Stable
camera configuration. (b) Unstable camera
configuration.

over all the grid points and over 1000 independent
trials. The solid line shows the result of our optimal
correction; the dashed line the Hartley-Sturm method.
The two plots completely coincide in whichever cam-
era configuration. In fact, the solutions of the two
methods completely agree to significant digits, con-
firming that the two algorithms are mathematically
equivalent.

7.3 Depth Error

As Fig. 3 shows, the reprojection error is basically
the same in the stable and unstable camera configu-
rations. This is because optimal correction depends
only on the statistical properties of noise. Namely, if
the noise distribution is the same, say Gaussian, mini-
mization of the reprojection error does not depend on
the camera configuration, the image content, or the
3-D structure of the scene.

What the camera configuration affects is the relia-
bility of 3-D reconstruction. To see this, Fig. 4 plots
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Figure 4 Root mean square of the inverse
depth of 3-D reconstruction. Solid line:
Our optimal correction. Dashed line: The
Hartley-Sturm method. (a) Stable camera
configuration. (b) Unstable camera config-
uration.
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Figure 5 Computation time (in ms). Solid
line: Our optimal correction. Dashed line:
The Hartley-Sturm method. (a) Stable cam-
era configuration. (b) Unstable camera con-
figuration.

the root mean square of the “inverse depth”7. For
the computed depth Z, we let ρ̄ = 1/Z̄ and ρ = 1/Z

and averaged (ρ− ρ̄)2 over all the grid points and over
1000 independent trials. As had been predicted, we
observed very irregular and meaningless results when
σ is extremely large, so we restrict σ here to a realistic
range of [0, 0.5].

We can confirm from Fig. 4(a),(b) that if the cam-
era configuration is unstable, a small amount of noise,
even if the points are optimally corrected, results in
a large variation of the reconstructed depth, and our
method and the Hartley-Sturm methods compute the
same solution.

7.4 Computation Time

We have seen that our method and the Hartley-
Strum method compute identical solutions (except
theoretically at epipoles). The biggest difference be-
tween them is the computation time. Figure 5 shows
the average computation time over 1000 trials.

We implemented the two method using the C lan-
guage and used the eigenvalue method [8] for solving a
6-degree polynomial. We used Intel Core2Duo E6700
2.66GHz for the CPU with main memory 4GB and
Linux for the OS.

7The inverse depth is widely used for evaluating the relia-
bility of depth computation to handle the cases where the 3-D
position is computed to be very far a way in front of the cam-
eras or very far a way behind the cameras in the presence of
large noise.

We can see from Fig. 5 that the computation time of
the Hartley-Sturm method almost does not depend on
the noise level σ. As we confirmed, most of the time
is spent on solving a 6-degree polynomial, doing the
same computation for whatever data. The exception
is at σ = 0, at which the computation is faster (see
the black dot on the vertical axis). If the data are
exact, the 6-degree polynomial degenerates into degree
5, which is probably easier to solve. We also observe
that the computation is faster for the unstable camera
configuration, in which case the 6-degree polynomial
is probably easier to solve, but we did not analyzed
the details.

Our method is, in contrast, iterative. From Fig. 5,
we observe that the number of iterations slightly in-
creases as noise increases and also when the camera
configuration is unstable. However, the increase is
very small, converging after at most three to four iter-
ations. We have also found that because our method
consists of simple vector and matrix operations only,
the computation time depends to a large extent on the
vector-matrix calculus library and the complier that
we use, while the Hartley-Sturm method takes almost
the same time in whatever implementation. Overall,
however, as demonstrated by Fig. 5, our method is
significantly faster than the Hartley-Sturm method.

8. Conclusions

We have extended the first order optimal correction
of the authors [5, 7] for computing the 3-D position of
corresponding points in stereo images by triangulation
to higher orders and shown that it can be written in
a very compact form suitable for numerical computa-
tion. We compared it with the Hartley-Sturm method
[3], widely regarded as a standard tool for triangula-
tion.

We have pointed out that the epipole is a singularity
of the Hartley-Sturm method, at which the computa-
tion breaks down, while our method does not. We
have also argued that we need not worry about lo-
cal minima for our iterations. By simulation, we have
demonstrated that our method and the Hartley-Sturm
method compute identical solutions, yet our method is
significantly faster, confirming the observation of Torr
and Zissermann [9]. We conclude that our method
best suits practical use.
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Appendix: Hartley-Sturm Method

The Hartley-Sturm method [3] consists of the fol-
lowing computation (symbols are somewhat altered
to conform to our usage):

Input: The fundamental matrix F and correspond-
ing points (x, y) and (x′, y′).

Output: The corrected positions (x̂, ŷ) and (x̂′, ŷ′).
Procedure:

1. Let e = (e1, e2, e3)> and e′ = (e′1, e
′
2, e

′
3)

> be the
unit eigenvectors of FF> and F>F , respectively,
with eigenvalue 0.

2. Compute the angles

θ = arg(f0e1 − xe3, f0e2 − ye3),

θ′ = arg(f0e
′
1 − x′e′3, f0e

′
2 − y′e′3), (49)

where arg(x, y) denotes the argument of point
(x, y) measured from the x-axis.

3. Compute the following matrices:

L =

 1 −x/f0

1 −y/f0

1

 , L′ =

 1 −x′/f0

1 −y′/f0

1

 ,

R =

 cos θ sin θ
− sin θ cos θ

1

 ,

R′ =

 cos θ′ sin θ′

− sin θ′ cos θ′

1

 . (50)

4. Transform the fundamental matrix F as follows:

F̃ = R(L−1)>FL′−1R′−1. (51)

5. Compute the following a, b, c, d, f , and f ′.

a = F̃22, b = F̃32, c = F̃23, d = F̃33,

f =


− F̃12

b
|b| ≥ |d|

− F̃13

d
|b| < |d|

,

f ′ =


− F̃21

c
|c| ≥ |d|

− F̃31

d
|c| < |d|

(52)

6. Solve the 6-degree polynomial in t

a6t
6+a5t

5+a4t
4+a3t

3+a2t
2+a1t+a0 = 0, (53)

where

a6 = −f4ac(ad − bc)

a5 = (a2 + f ′2c2)2 − f4(ad − bc)(ad + bc)

a4 = 2(a2 + f ′2c2)(ab + f ′2cd)

−f2(ad − bc)(2ac + f2bd)

a3 = 2(a2 + f ′2c2)(b2 + f ′2d2) + 4(ab + f ′2cd)2

−2f2(ad − bc)(ad + bc)

a2 = 4(ab + f ′2cd)(b2 + f ′2d2)

−(ad − bc)(ac + 2f2bd)

a1 = (b2 + f ′2d2)2 − (ad − bc)(ad + bc)

a0 = −(ad − bc)bd. (54)

7. From the (at most 6) real roots, let t0 the one
that minimizes.

E(t) =
t2

1 + f2t2
+

(ct + d)2

(at + b)2 + f ′2(ct + d)2
. (55)

8. If E(t0) ≤ E(∞), the compute

x̃ =
f0ft20

1 + f2t20
, ỹ =

f0t0
1 + f2t20

,

x̃′ =
f0f

′(ct0 + d)2

f ′2(ct0 + d)2 + (at0 + b)2
,

ỹ′ = − f0(at0 + b)(ct0 + d)
f ′2(ct0 + d)2 + (at0 + b)2

. (56)

Else, let

x̃ =
f0

f
, ỹ = 0,

x̃′ =
f0f

′c2

f ′2c2 + a2
, ỹ′ = − f0ac

f ′2c2 + a2
. (57)

9. Compute (x̂, ŷ) and (x̂′, ŷ′) by x̂/f0

ŷ/f0

1

 = L−1R−1

 x̃/f0

ỹ/f0

1

 ,

 x̂′/f0

ŷ′/f0

1

 = L′−1R′−1

 x̃′/f0

ỹ′/f0

1

 . (58)
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