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This paper studies the statistical behavior of errors involved in
fundamental geometric computations. We first present a statistical
model of noise in terms of the covariance matrix of the N-vector.
Using this model, we compute the covariance matrices of N-vectors
of lines and their intersections. Then, we determine the optimal
weights for the least-squares optimization and compute the covari-
ance matrix of the resulting optimal estimate. The result is then
applied to line fitting to edges and computation of vanishing points
and focuses of expansion. We also point out that statistical biases
exist in such computations and present a scheme called renormal-
ization, which iteratively removes the bias by automatically ad-
justing to noise without knowing noise characteristics. Random
number simulations are conducted to confirm our analysis. © 1994
Academic Press, Inc.

1. INTRODUCTION

Traditionally, the research of computer vision has
aimed at ‘‘recognizing’’ objects—detecting prominent
features in the scene, separating objects from the back-
ground, inferring their 3D shapes, identifying or classify-
ing them, and finally obtaining symbolic descriptions of
them. Possible applications of this approach include auto-
matic surveillance for airport traffic control, road traffic
control, and automatic security inspection. Recently,
however, the rapid progress of robotics technology has
created a new goal, ‘‘sensing’’ of the environment—Ilocat-
ing objects in the scene, inferring their 3D positions and
motions, and computing the 3D motion of the camera.
Possible applications of this approach include automatic
navigation and robot operations in industrial environ-
ments, hazardous environments, and outer space.

Statistical analysis of error behavior is a key to the
development of such robotics applications, since the relia-
bility of computation is of the utmost importance in such
applications. Understanding error behavior often leads to
new techniques for improving accuracy, and even if errors
are inevitable, the knowledge of how reliable each compu-
tation is is indispensable in guaranteeing performance of
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the systems that use such computations. Also, statistical
reliability estimation becomes vital when using multiple
sensors and fusing the data (sensor fusion), because over-
all reliability does not increase unless individual data are
properly weighted so that reliable data contribute more
than unreliable data.

Statistical approaches to image processing and com-
puter vision problems are not new (e.g., [8-10, 24, 27]),
and many techniques for improving accuracy have been
proposed. The best known is the Kalman filter, which is
essentially linearized iterative optimization: each time
new data is added, the solution is modified linearly under
Gaussian approximation so that it becomes optimal over
the data so far observed. The Kalman filter was originally
devised for linear dynamic systems, but its various varia-
tions and related ideas have been applied to many types
of computer vision problems involving a sequence of im-
age data (e.g., [3-5, 20-22, 26]). However, the main em-
phasis in such studies is the ‘‘techniques’’ for computing
robust and accurate solutions, and not as much attention
has been paid to systematic analysis of error behavior.

In this paper, we first present a statistical model of
noise in terms of the covariance matrix of the N-vector
of a point datum. Using this model, we compute the covar-
iance matrices of N-vectors of lines and their intersec-
tions. Then, we determine the optimal weights for the
least-squares optimization and compute the covariance
matrix of the resulting optimal estimate. The result is
applied to line fitting to edges and computation of van-
ishing points and focuses of expansion. We also point out
that statistical bias exists in the optimization computa-
tions and present a scheme called renormalization, which
iteratively removes the bias by automatically adjusting
to noise without knowing noise characteristics. Random
number simulations are conducted to confirm our
analysis.

Error analysis of vanishing points was given by Weiss et
al. [25], Collins and Weiss [6], and Kanatani [12]. Brillault-
O’Mahony [2] presented a detailed analysis of vanishing
points by introducing a detailed statistical model of line
segments. Errors in focuses of expansion and translational
motions were meticulously analyzed by Snyder [23]. Er-
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ror analysis was also done for optical flow detection [19]
and stereo [1, 7].

In general terms, error analysis means estimating error
magnitudes whether in the statistical sense (i.e., means
and standard deviations) or in the absolute sense (i.e.,
worst case bounds). It consists of a ‘‘model of errors’’ that
idealizes the error sources and ‘‘inference techniques,”
which should be treated separately from the model of
errors. In many existing error analyses, such as those
cited above, the distinction is not clear, and the model
of errors and the inference techniques are based on the
application problem in question. As a result, the error
behavior of that problem may be explained well, but it is
often very difficult to extend the results to other applica-
tions.

The aim of this paper is to give an abstraction of error
analysis in an application independent formalism, al-
though its usefulness is illustrated by applying it to partic-
ular (but fundamental) problems. The approach in this
paper is to some extent similar to that of Brillault-
O’Mahony [2], but our formulation is more general. Based
on the general (and also application independent) compu-
tational theory of Kanatani [11], which he called computa-
tional projective geometry, our approach can be applied
to a much wider range of computer vision problems
[12-185, 17, 18].

2. STATISTICAL MODEL OF NOISE

2.1.

Assume the following camera imaging model [11]. The
camera is associated with an XYZ coordinate system with
origin O at the center of the lens and the Z-axis along the
optical axis (Fig. 1). The plane Z = fis identified with
the image plane, on which an xy image coordinate system
is defined so that the x- and y-axes are parallel to the X-
and Y-axes, respectively. We call the origin O the view-
point and the constant f the focal length.

A point (x, y) on the image plane is represented by the
unit vector m indicating the orientation of the ray starting
from the viewpoint O and passing through that point; a
line Ax + By + C = 0 on the image plane is represented
by the unit surface normal n to the plane passing through
the viewpoint O and intersecting the image plane along
that line (Fig. 1). Their components are given by

S ) N )]

where N[:] denotes normalization into a unit vector. We
call m and n the N-vecrors of the point and the line [11].
If m and n are the N-vectors of a point P and a line /,
respectively, point P is on line /, or line ! passes through

N-Vectors of Points and Lines

(1)
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FIG. 1.
line.

Camera imaging geometry and N-vectors of a point and a

point P, if and only if

(m,n) =0, (2)
where (-, *) denotes the inner product of vectors. If this
equation is satisfied, we say that point P and line / are
incident to each other [11] and call Eq. (2) the incidence
equation.

A point that is on two distinct lines is called their inter-
section; a line that passes through two distinct points is
called their join. Let n, and n, be the N-vectors of two
distinct lines. The N-vector m of their intersection is given
by

m = +N[n, X n,], 3)
because m must satisfy the incidence equation (2) for both
lines: (m, n;) = 0 and (m, n,) = 0. Dually, let m, and m,
be the N-vectors of two distinct points. The N-vector n
of their join is given by

n = =N[m; X m,], )
because n must satisfy the incidence equation (2) for both
lines: (m;, n) = 0 and (m,, n) = 0.

The use of N-vectors for representing points and lines
on the image plane is equivalent to using homogeneous
coordinates known in projective geometry. Although ho-
mogeneous coordinates can be multiplied by any nonzero
number, computational problems arise if they are too large
or too small. So, it is more convenient to normalize the
three components into a unit vector, which is precisely
the N-vector as defined above. Kanatani [11] reformulated
projective geometry from this viewpoint. Rewriting the
relationships of projective geometry as ‘‘computational
procedures,”” he called his formalism computational pro-
jective geometry. In this paper, we adopt his formalism,
regarding a unit vector m whose Z-component is 0 as the
N-vector of an ideal point (a point at infinity) and n = (0,
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0, 1) as the N-vector of the ideal line (the line at infinity).
For the details, see [11, 16].

2.2. Couvariance Matrix of an N-Vector

We now study the effect of noise. In the following, we
extend the meaning of the term ‘‘noise.’’ A digital image
consists of discrete pixels, and the noise in the strict sense
affects the electric signal that carries information about
the gray levels of the pixels. The signal is then quantized
and stored as image data. As a result, point and line data
detected by applying image operations are not accurate.
Consequently, N-vectors computed from them are not
exact. Here, we regard such errors as being caused by
*‘noise.’’ This means that the noise behavior is character-
ized not only by the camera and the memory frame system
but also by the image operations involved—edge opera-
tors, thinning algorithms, etc.

Let m be the N-vector of a point on the image plane
when there is no noise. In the presence of noise, a per-
turbed N-vector m’ = m + Am is observed. We regard
the “‘noise’’ Am as a random variable. Namely, each ob-
servation is regarded as a ‘‘sample’” from a ‘‘statistical
ensemble.’” If the noise Am is sufficiently small compared
with m itself, the error behavior is characterized by the
covariance matrix

V[m] = E[AmAm"], )

where T denotes transpose and E[.] denotes the expecta-
tion over the statistical ensemble. Since m is a unit vector,
the noise Am is always orthogonal to m to a first approxi-
mation; m’ = m + Am is again a unit vector to a first
approximation. We immediately observe the following:
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« The covariance matrix V[m] is symmetric and posi-
tive semi-definite.

+ The covariance matrix V[m] is singular with m itself
as the unit eigenvector for eigenvalue 0: V(m]m = 0.

« If o2, 03, and 0 (o, = o, > 0) are the three eigenvalues
and if {u, v, m} is the corresponding orthonormal system
of eigenvectors, the covariance matrix V [m] is expressed
in the ‘‘spectral decomposition’’ [16]:

Vim] = oluu’ + ovv'(+0mm") (6)

+ The root mean square of the orthogonal projection of
the noise Am onto orientation 1 (unit vector) takes its
maximum for I = u and its minimum for I = v. The maxi-
mum and minimum values are o, and o, respectively.

« The root-mean-square magnitude of Am is
Vir Vim] = Vo?+ o} (“‘tr” denotes trace).

In intuitive terms, noise Am is most likely to occur in
orientation u (= the unit eigenvector of V[m] for the
largest eigenvalue o'}) and least likely to occur in orienta-
tion v (= the unit eigenvector of V[m] for the second
largest eigenvalue o-3). The magnitude ||Aml| is o, in orien-
tation u and o, in orientation v in the sense of root mean
square (Fig. 2a).

2.3. Model of Noise

We assume that noise (in our extended sense) occurs
at each point on the image plane independently with an
identical distribution density. Let s, and s, be the standard
deviations in the x and y orientations, respectively, and
s,y the covariance. From Appendix A, we obtain

THEOREM 1. The covariance matrix V(m] of the N-
vector of a point P on the image plain is given by

(a)

FIG. 2.

(b)

(a) Perturbation of N-vector m and (b) a model of noise.



STATISTICAL ANALYSIS OF GEOMETRIC COMPUTATION
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where P, = I — mm' is the projection matrix along m.

Consider the case where the noise distribution is iso-
tropic. This means that s, = s, and s, = 0. If we put the
root-mean-square magnitude of noise to be

e=Vsi+ 53, ®8)
thens, =5, = e/V2. Let us call £ (measured in pixels)

the image accuracy. We obtain the following.

ProPosITION 1. If the noise is isotropic, the covari-
ance matrix V[m] of the N-vector of a point at distance
r from the image origin is given by

_ 2f2 VVT
Viml =55 o (- ) O
where
1
1+r—2m><k, v=uXm, (10)
and k = (0,0, DT,
Proof. If u and v are defined as above, three vec-

tors {u, v, m} form an orthonormal system, so uu' +
v’ + mm' = I. Hence, P, =1 — mm" = u" + wv'. Since
(u, k) = 0 from Eq. (10), we obtain from Eq. (7)

Vim] = 2OP] ——— (uu" + v — kk"(uu" + vv')

2|OP

s (' + (1 = (v, K)?vv'). (1n

2|0P|

From Egs. (0), three unit vectors k, m, and v are coplanar
and (v, k) = 0. Hence, if @ is the angle between m and k,

we have 1 — (v, k)*> = (u, k) = cos 8. From Fig. 2b, we
see that cos 8 = 1/V1 + r2/f?, sin @ = 1/V1 + f%/r?, and
|OP2 = £V1 + r¥/f%. From these, we obtain Eq. (9). =

If the size of the image is small compared with the focal
length f, we can assume that r < f and hence 1/(1 +
r2/f?) = 1. We call this approximation the small image
approximation. In this approximation, the covariance ma-

trix V[m] of Eq. (9) becomes (e/f)*(un’ + w')/2 = (&/
A — mm")/2. If we put

& = VE[|Am|7],

then 82 = tr V[m] = (¢/f)?, and hence

(12)
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COROLLARY 1.  In the small image approximation,
the covariance matrix V[m] is given by

52
V[m] = ?(I — mm"). (13)

2.4. Effective Focal Length

In our model, the true position of a point coincides with
its expected position to a first approximation. We now
show that this does not hold if higher order effects are
considered. According to our model (Fig. 1), the image
coordinates (x, y) and the corresponding N-vector m =
(m,, my, m;)" are related in the form

= £
x—fm;

y =f%§ (14)

If noise Am occurs, it can be shown (Appendix B) that

m, + Am, ( 8212 3
E [fm3 + Am3] SR gy 1+ r4f? + O(Am)° ],

m,+ Am, | _ ( g2 3)
E [fm3 + Am;] y\l+ 1+ rf? + OAmy’ |,

(15)

where (and hereafter) O(- - -)" denotes a term of order n
or higher in ---. This means that the expected image
coordinates do not agree with their expected values. One
way to remove this statistical bias is to define the N-
vector m not by the first of Egs. (1) but by

[<x
m=N y)], 1
f
where
A 822
f—f<l+]—+r2—/f2). a7

We call this f the effective focal length. The following
can be confirmed (Appendix B):

E [f%] = x + O(Am’,

18
my + Amz ( )

= 3
E[fm3 n Am3] y + O(Am)°.

Hence, all we need to do is treat the correspondence
between points on the image plane and their N-vectors
unsymmetrically: when we define the N-vector of a ‘‘data
point’’ (x, y), we use Eq. (16), while when we interpret
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a “‘computed’’ N-vector m, we use Egs. (14). In the small
image approximation, the effective focal length is approxi-
mated by

R &2
f=f(l+—2-). (19)

The intuitive meaning of the focal length is as follows.
If the N-vector m is defined by the first of Egs. (1), the
error model of Proposition 1 defines an error distribution
symmetric with respect to the axes defined by u and v.
This means that when projected onto the image plane,
noise is more likely to occur away from the image origin
than toward it. Our unsymmetric treatment effectively
displaces data points toward the image origin to cancel
this bias. However, this bias is a second order effect and
extremely small. If e = 1 ~ 10 (pixels) for f = 1000 (pixels),
for example, we have &2 = 107¢ ~ 1074, which can be
negligible compared with 1.

3. COVARIANCE MATRICES OF JOINS
AND INTERSECTIONS

Let u and v be vectors, and A a matrix. We define u X
A to be the matrix constructed by the vector product of
uand each column of A, and A X v the matrix constructed
by the vector product of each row and v. Formally, we
define for vectors u = (#;), u = (v), and matrix A = (45,

uxA
UA3 — UzAg UrAzp — UzA5 UAs3— UsAp
=| A — Ay wAp—uAy A3~ uAL),  (20)
Ay — A WAp — Ay AR — A
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(b)

FIG. 3. (a) Statistical behavior of the join of two points and (b) statistical behavior of the intersection of two lines.

AXv
Apvs —Apv, Apvs—Apyy Ay — Ay,
={Apv; — Apv, Axpvy — Ayl Ayv, —Apv ). Q2D
Apvy — Ay0y  Aply — A3 Ay, — Ay,

The following identity is easy to confirm:

uXxXA)Xv=uX(AXYv), (22)
We simply write thisasu X A X v,

Let m, and m, be the N-vectors of two points. The N-
vector n of their join is given by Eq. (4). If the N-vectors
m, and m, are perturbed by image noise, the computed
N-vector of the join is also perturbed, say by An (Fig.
3a). The covariance matrix V[n] = E[AnAnT] of the join
is given as follows.

PROPOSITION 2. The covariance matrix V[n] of the
N-vector n of the join of two points of N-vectors m, and
m, is

Vin] =
_Pymy X V[m,] X m; + m; X V[m,] X m)P,
1 - (ml, mz)z

» (23)

if the two points are independent,' having covariance
matrices V[m,] and V[m,], respectively, where P, =1 —
nn’.

Proof. Put a = m; X m,. Perturbations m, - m, +
Am; and m, - m, + Am, cause a perturbation Aa of a
and, to a first approximation,

Aa = Am; X m; + m; X Am,. (24)

I'To be exact, we should say that “‘the distributions of the image
noise for the two points are statistically independent of each other,”
but for simplicity we use abbreviated expressions like this.
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Evidently, E[a] = 0. Put

Aa, = Am; X m,, Aa, = m; X Am,. (25)
Since Aa, and Aa, are independent, we obtain
E[AaAa"] = E[Aa,Aa]] + E[Aa,Aa]]. (26)
The first term on the right-hand side becomes
E[Aa,Aa]] = —E[(m; X Am,)(Am, X m,)"]
= —m, X E[Am,;Am]] X m,
= —mz X V[m|] X mz. (27)

Similarly, E[Aa,Aa]] = —m; X V[m,] X m,. Hence,

Via] = —m, X V[m,] X my, —m; X V[m,] X m,. (28)
Since n = NJ[a], we obtain from Appendix A
=1
VIn] = fal? P,V[alP,. (29)

Substituting Eq. (28) into this, together [[al[? = [jm, X my,|*
=1 - (m,, m,)’, we obtain Eq. (23). =

COROLLARY 2. In the small image approximation, the
covariance matrix V[n] of the N-vector n of the join of
two points of N-vectors m; and m, is

=2

T T
8 (,_ ,,,,T_M_mz_mz), 30)

V= =G my 2

if the two points are independent.

Proof. In the small image approximation, m, and m,
have the following covariance matrices (Corollary 1):

a2

=2
Vim,) = %(1 —mm]), Vimy]= %(l -mm]). (D

Using the identity u X I X u = ua" — I for unit vector
u and the relation n = =N[m, X m,] = =m, X m,/|m, X
m,||, we obtain

=2
m, X Vim] Xm, = %(mzm}' — I+ [m, X my|?am"). (32)
Similarly,

=2
m, X V[m,] X m; = %(m,mT — 1+ |m, X my|?n"). (33)
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Since |m, X my|* = 1 — (m,, m,)?, we obtain

m, X V[m] X m, + m; X V[m,] X m,
&
2

(mym] + mym] — 2I + 2(1 — (m;, m,)»nn"). (34)

Hence, from Proposition 2,

Vn] = —%2

« P, (mm] + m,m] — 21 + 2(1 — (m,, my))nn")P,

= (m;, m) (35)

Since P, is the orthogonal projection along the N-vector
n, which is orthogonal to m; and m,, it follows that P2 =
P,, P.n = 0, Pm;, = m;, and P,m, = m,. Using these,
we obtain Eq. (30). =

Consider the intersection of two lines (Fig. 3b). Let n,
and n, be their N-vectors. The N-vector of their intersec-
tion is given by Eq. (3). If noise perturbs n, and n,, the
computed m is also perturbed. Since the formulation is
completely dual if expressed in terms of N-vectors [11],
the covariance matrix V[m] is computed in the same way
as for the join of two points.

PROPOSITION 3. The covariance matrix V(m] of the
N-vector m of the intersection of two lines of N-vectors
n, and m, is

Vim] =

_Py(my X Vimy] X my + my X Vmy) X 0Py,
1 = (n, ny)?

,  (36)

if the two lines are independent, having covariance ma-
trices V[n,) and Vn,], respectively, where Py, =1—mm'.

4. OPTIMAL LEAST-SQUARES ESTIMATION

4.1.

Points that are on acommon line are said to be collinear;
lines that meet at a common intersection are concurrent.
Ifn, = 1,..., N, are the N-vectors of concurrent lines,
and m is the N-vector of their common intersection, we
have the incidence relations (m,n,) =0, =1, ..., N.
Hence, if n, are given, m is robustly computed by the
least-squares optimization

Optimal Weights and Optimal Estimation

N
J=7> W,m,n,)?— min, 37
a=1

where W, are positive weights (Fig. 4a). The weights W,
should be determined so that reliable data are given large
weights while unreliable data are given small weights.
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FIG. 4.

Since

N N
J= W,m,n,)? = (m, (2 WananZ) m) (38)
a=1 a=1

is a quadratic form in unit vector m, it is minimized by
the unit eigenvector of the moment matrix

N
= 22‘,' W,n,n] (39)

for the smallest eigenvalue.

Each inner product (m, n,) is precisely 0 if there is no
noise. If n, is perturbed into n, = n, + An,, each inner
product becomes ¢, = (m, n;) = (m, An,), which is a
random variable of mean 0. Its variance is

ol =El&l]
= E[(m, An,)?] = m"E[An,An]]m = (m, V[n,Jm). (40)

Hence, u, = ¢,/o, approximately obeys the standard
Gaussian distribution of mean 0 and variance 1. If each
N-vector m, is independent, the joint probability density
of {u,}, @ = 1, ..., N, is approximated by

ﬁ 1 e~ = (_I__)N e~ a2,
a=1 2 V2

It is reasonable to estimate the m that maximizes this
density (the maximum likelihood estimation). This is
equivalent to

@1

N N (m nr)2 .
A Z @, Vi~ in- (42)

a=1

KENICHI KANATANI

(b)

(a) The common intersection of concurrent lines, and (b) the common line fitted to collinear points.

Comparing this with (37), we see that we should choose
the weights

1
w,= . Vinam)' 43)
It is easily seen that reliable data have small covariance
matrices and are thereby assigned large weights, while
unreliable data have large covariance matrices and are
thereby assigned small weights.

The above results hold exactly for the common line for
collinear points due to the duality of our formulation [11].
Namely, the N-vector n of the common line for multiple
collinear points of N-vectors {m,}, @ = 1, ..., N, is ro-
bustly computed by the least-squares optimization

M=z

W, (n, m,)>— min (44)

1

a

(Fig. 4b), and the solution s given by the the unit eigenvec-
tor of the moment matrix

N
M= 21 W, m,m] (45)

for the smallest eigenvalue. The optimal weights in the
sense of the maximum likelihood estimation are given by

_ 1
Wa = (n, V[m,ln)" (46)

Let us call these weights optimal weights, and the moment
matrices of Egs. (39) and (45) with optimal weights the
optimal moment matrices.

There arises, however, a computational problem: the
optimal weights contain the N-vectors m and n that we
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want to compute. It seems that this difficulty can be
avoided by using estimates of n and m, say the solution
computed by using uniform weights, and iterate the pro-
cess. It can be shown that if the estimate of n (or m) has
an error An (or Am), the solution computed by using
approximately optimal weights has an error of O(An)?
(or O(Am)?) (Appendix C). However, the use of constant
weights introduces statistical bias however the estimate
is chosen. We discuss more about this problem later.

4.2. Covariance Matrix of Optimal Estimation

Consider the computation of the common intersection
of concurrent lines. If there is no noise, the computed N-
vector mis exact. If the N-vector of each line is perturbed,
the resulting N-vector m is also perturbed, say by Am. Its
covariance matrix V[m] = E[AmAm] is given as follows.

THEOREM 2. Let {m, u, v} be the orthonormal system
of eigenvectors of the optimal unperturbed moment ma-
trix N for eigenvalues 0, \,,, and \,, respectively. If each
line is independent and if\, # 0 and N, # 0, the covariance
matrix V[m] of the N-vector of the optimally estimated
common intersection is

ua’  wv'
Viml=—+—.
A" AU

47

Proof. A perturbation of each N-vector n, = n, +
An, causes a perturbation AN of the optimal moment
matrix N of Eq. (39). To a first approximation,

N
AN = >’ W, (An,n] + n,An]). (48)
a=1

According to the perturbation theorem (Appendix D), the
unit eigenvector m of N for the eigenvalue 0 is perturbed
by

(u, ANm) (v, ANm)

Am = Y u+ o—x, (49)
Since (n,, m) = 0, we have
N
(u, ANm) = 2 W,(u, (An,n] + n,An])m)
z W, (m, An)(u, n,). (50)

Similarly, (v, ANm) = SN
we define

y W, (m, An,)(v, n,). Hence, if

_wn)  un)o

Y X, &)
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Eq. (49) is written as
Am = —ﬁ:‘ W, (m, An,)s,, (52)
so the covariance matrix V[m] is
V[m] = E[AmAmT]
= ) :_] W, WE[(m, An,)(m, Ang)]s,s§. (53)
Since An, are independent, we have
E[(m, An,)(m, Ang)] = m"E[An,An}]m
= 8,5, Vin,Jm) =24, (s4)

w,’

where Eq. (43) was used, and 84 is the Kronecker delta
taking 1 for « = 8 and 0 otherwise. Substituting this into
Eq. (53), we obtain

V[m]-EWssT—E W, (“““"“uuT

+unn (uT+vu)+un

A, A

= ___(u,)\lZIu) wu? + (W) v’ + vu

(55)

Since u and v are eigenvectors of N for the eigenvalues
A, and A, respectively, we have (u, Nu) = A, and (u,
Nv) = 0. Hence, we obtain Eq. (47). =

COROLLARY 3. If each line is independent, the root
mean square of the error Am of the N-vector m of the
optimally estimated intersection is

E[|Am[*] = (56)

1,1
—_—t —
A A
where A, and \, are the positive eigenvalues of the optimal

unperturbed moment matrix N. This is Ow/VN) for
[An,]| = ».

Proof. Note that E[|Am|*] = tr V[m]. From Eq.
(47), we obtain tr V[m] = 1/A, + 1/A,, hence Eq. (56). If
|An,|| = », then V[n,] = O(»?). Consequently, W,
O(1/v?) and hence N = O(N/v?). It follows that the eigen-
values A, and X, of N are also O(N/v?), meaning that Eq.
(56) is Ow/VN). m
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The same results hold for optimal line fitting due to the
duality of our formulation [11].

THEOREM 3. Let {n, u, v} be the orthonormal system
of eigenvectors of the optimal unperturbed moment ma-
trix M for eigenvalues 0, \,,, and \,,, respectively. If each
point is independent and if \,, # 0 and A, # 0, the covari-
ance matrix V[n] of the N-vector of the optimally fitted
line is

_uu’ | w'

Vinl=—+—.

)\u }\u (57)

COROLLARY 4. If each point is independent, the root
mean square of the error An of the N-vector n of the fitted

common line is
VEBAFI = 3+ 1

where \, and \, are the positive eigenvalues of the optimal
unperturbed moment matrix M. This is O(u/V N) for
lam,| ~ .

(58)

Although these results only apply to ‘‘unperturbed”
moment matrices, it can be shown that the covari-
ance matrix V[m] (or V[n]) estimated from N perturbed
N-vectors is different from the true covariance matrix
VIm] (or V[n]) by only Ow¥NVN) (or O(u3/NVN))
for ||An,|| = v (or ||Am,|| = x) (Appendix C).

4.3. Statistical Bias of Optimal Estimation

An estimate is statistically unbiased if the expectation
of its error is zero and statistically biased otherwise.
If we taken the expectation of Eq. (49), we see that
E[Am] = 0, so the optimal estimate appears to be statisti-
cally unbiased. However, this is so because second order
terms are neglected in Eq. (48). The true perturbation of
Nis

N
AN = > W, (An.n] + n,An] + An,An]),  (59)
T a=l
and its expectation is not zero:
N N
E[AN]= > W.E[An,An]]= > W,V[n). (60)
a=1 a=1
Hence, the expectation of Eq. (49) becomes
T ™/ N
E[Am] = —(% + "; )<2 WQV[na]) m.  (61)
] v a=1

Thus, the optimal estimate is in general statistically bi-
ased. Combining this with Theorem 1, we obtain
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THEOREM 4. [feach line has covariance matrix V[n,],
the N-vector m of the optimally estimated intersection is
statistically biased by

N
E[Am] = —V[m] (2 WaV[na]) m. (62)
a=1

THEOREM 5. If each point has covariance matrix
VIm,], the N-vectorn of the optimally fitted line is statisti-
cally biased by

N
E[An] = —V[n] (2 an[ma]) n. (63)
a=1

It should be emphasized that this statistical bias is a
second order effect: if each An, is O(v), the bias E[Am]
is _O(?, whereas the root-mean-square error

E(J|Am|*] is O(v). Similarly, if each Am, is O(w), the
bias E[An] is O(u?), whereas VE[||An|?] is O(u). Hence,
the bias is not very apparent unless the image noise is
very large.

From Eq. (60), we can construct the following optimal
unbiased estimation scheme.

ProOPOSITION 4. The N-vector th of the common inter-
section of lines of N-vectors {n,} with covariance matrices
Vin,] estimated as the unit eigenvector of

N
N= 2"; W, (n.n] — VIn,)) (64)

Sfor the smallest eigenvalue is statistically unbiased.

PROPOSITION 5. The N-vector i of the common line
fitted to points of N-vectors {m,} with covariance matrices
VIm,] estimated as the unit eigenvector of

N
M= 2] W, (m,m] — V[m,]) (65)

for the smallest eigenvalue is statistically unbiased.

Evidently, E[AN] = E[AM] = O for the unbiased mo-
ment matrices N and M, and hence E[Am] = E[AA] = 0
for the resulting estimates r and . It can be shown,
however, that we need not introduce the unbiased mo-
ment matrix if the noise in the N-vectors is isotropic.

COROLLARY 5. If noise enters each N-vector isotropi-
cally, the optimally estimated intersection and the opti-
mally fitted line are statistically unbiased.

Proof. If Anm, is isotropic around mn,, its covariance
matrix has the form

VinJ]= %Z(I -nn)), o’=E[|An*. (66)
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Hence,

R N o?
N=2 W, (nanl -5 - nanl))

a=1
N N
= (1 +"72)(2 Wananl) —"72(2 wa) 1, (67)
o= a=1

which has the same eigenvectors as N = 21, W.n,n;.
Similarly, M has the same eigenvectors as M. =

In particular, optimal line fitting near the center of the
image plane under the small image approximation is statis-
tically unbiased.

S. EDGES, VANISHING POINTS, AND
FOCUSES OF EXPANSION

5.1

Let us call a dense alignment of collinear pixels an edge
segment, and each pixel an edge pixel. Let m,, o =
1, ..., N, be the N-vectors of the edge pixels of an edge
segment aligned in this order. Choose their signs so that
they all point toward the image plane. Let us call the
angle Q between m; and my the disparity of the edge
segment. Define

Error in Line Fitting to Edges

u= iN[mN - m|], mg = tN[mN + ml]. (68)
We call the vector u the orientation of the edge segment,
and the point of the N-vector mg; its center point (Fig.
5). If each pair of consecutive edge pixels has the same

disparity, we can write
m, = usin ¢, + mg COS P,,

_Q (_N+l) (69)
¢=N_1\*" 2 )

———
——

FIG. 5.

Line fitting to an edge segment.
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Assume that all edge pixels are independent. If the edge
segment is short and located near the image origin, the
small image approximation V[m,] = (I — m_m)/2 (Cor-
ollary 2) can be applied, and the optimal weights (46)
become

_ 1 _ 2
Vo=, Vim,n) &X1 - (n, m,)?)

-2
=5 (0

Hence,the optimal moment matrix (45) becomes

N N
M= é (Z sin g uu’ + D cos ¢, sin ¢, (umf; + mgu")

a=1 a=1

N
+ Y cos? ¢,,me5) . (71

a=1

If the edge pixels are dense, the summations can be
approximated by integrations:

N
) N ran . N .
24 2 = -
E sin ¢,, Q J-an sin® ¢pd¢ > (1-sincQ), ((72)

R
]

N

> sin ¢, cos b, = % Qsz sin ¢ cos ¢pdd = 0, (73)
a=1 -
an

2 _N .
_q S8 ddo = > (1 +sincQ), (74)

N
>, cos? ¢, z—g

a=1

where symbol sinc x denotes the function sinc x =
(sin x)/x. Hence,

M= g((l — sinc Quu" + (1 + sinc Qmgmy). (75)

From Theorem 2, the covariance matrix V[n] of the opti-
mally fitted line is given by

_ & uu’
Vin] = N (l — sinc

mgmg
1 + sinc .0.) ) (76)

If the length of the edge segment is w (measured in
pixels), the disparity is approximately Q = w/f. If p is
the edge density (i.e., the number of edge pixels per unit
pixel length), the total number of edge pixels is N = pw.
If the length w is small compared with f, the disparity 0
is small, so sinc Q = 1 — Q%6 + ... Then, we have the
following approximation:

2 Strictly speaking, the summation _, should be =Y, but the differ-
ence can be ignored if N is large.
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2

. Q2w
1—sch~——~6f2,

. Q2
7 1+sincQ=2 ?~2.

77
Then, the covariance matrix V[n] is approximated by

6k K
Vn) = WIIIIT + zf—zwmomz;,

(78)
The constant «, which we call the image resolution, is
small if edge pixels are dense and accurately detected.
This is an image property independent of the geometry
of the data.}

If the length w of the edge segment is very small com-
pared with the focal length f, the right-hand side of Eq.
(78) is dominated by the first term, and Eq. (78) is further
approximated by

Vin] = 6—'; ' (79
w

From this, we have the following observations:

* The error in the N-vector n of the optimally fitted line
is most likely to occur in the orientation u of the fitted
line.

« The error in the optimally fitted line is approximately
proportional to k'’2 of the image resolution « (hence pro-
portional to the image accuracy € and to p~"2 of the edge
density p).

¢ The error in the optimally fitted line is approximately
proportional to w32 of the length w of the edge segment.

From Corollary 5, we also observe that
» The optimally fitted line is statistically unbiased.

Remark. The above observation is obtained with re-
spect to the “*N-vector’’ of the fitted line, which is concep-
tually infinite, with a view to computing its vanishing
point. However, even though the mgmf component is
very small as compared with the uu' component, both
terms cause discrepancies of edge points from the fitted
line by comparable magnitudes. So, if we want to con-
struct a ‘“‘measure of discrepancy’’ of an edge segment
from its ideal position, we must consider both terms (for
the details, see [12, 17]).

5.2. Error in Vanishing Points

If lines I,, « = 1, ..., N, are projections of parallel
lines in the scene, they are concurrent on the image plane.

3 Strictly speaking, the edge density varies with the orientation of the
edge segment: if pixels are aligned in a square grid array, horizontal
edge segments are V2 times as dense as edge segments of orientation
45°, However, we ignore this anisotropy.

KENICHI KANATANI

FIG. 6. The center line /; of concurrent lines. Point P is conjugate
to the vanishing point P on line /;.

Their common intersection is their ‘‘vanishing point’’; its
N-vector m indicates the 3D orientation of the space lines
[11]. Letn,, « = 1, ..., N, be the N-vectors of the N
lines. The N-vector m of the vanishing point is given as
the unit eigenvector for the eigenvalue 0 of the optimal
moment matrix in the form of Eq. (39). Let n; be the unit
eigenvector of N for the largest eigenvalue. Vector ng can
be regarded as the N-vector of a hypothetical center line
l; of the N lines (Fig. 6). Since the three eigenvectors
form an orthonormal system, the unit eigenvector m for
the second largest eigenvalue equals +m X ng. Vector
m¢ is orthogonal to both n; and m and hence can be
identified with the N-vector of the point P ‘‘conjugate’
[11] to the vanishing point P on the center line /;.
The eigenvalue of N for ng is given by

N
(ng, Nng) = Z] W,(ng, n,)%. (80)
The eigenvalue for m. is
N
(m¢, Nmg) = 3, W,(m X ng, n,)?
a=]
N
= 2 Welm,ng, n, [, 81)
a=1

where |a, b, ¢|] (= (@ X b, ¢) = (b X ¢,a) = (¢ X a, b))
denotes the scalar triple product of vectors a, b, and c.
From Theorem 2, the covariance matrix V[m] of the N-
vector m of the vanishing point is given by

mcm{ + ngng
25:1 Walm’ g, na|2 21:=| Wa(“G’ na)z )

Vim] = (82)

If the separations among the lines are small, the right-
hand side is dominated by the first term. If ¢, is the angle
between ng and n,, we have

|m, ng, n |2 = (m, ng X n,)? = sin’ ¢, (83)
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because m is parallel to ng X n,. Let us call ¢, the devia-
tion angle (from the hypothetical center line). If the covar-
iance matrix V[n,] of each line is approximated by Eq.
(79), we have

6k

Ving =~ 20,0 = % (mg, x n)mg, x )T, @)

a

where u, is the orientation of the ath edge segment and
mg, is the N-vector of its center point. Since n, = £mg, X
n,, the optimal weight W, of Eq. (43) is approximated by

3

a

3

w wy,
Wo = 6k(m, u,)?  6kjm, mg,, n >’ ®5)

If 9, is the angle between mg, and m, we have

[m, mg,, n > = (m X mg,, n,)? = sin? 6, (86)

because n, is parallel to m X mg,. The angle 6, indicates
the *‘disparity’’ of the vanishing point from the center
point of the ath edge segment.

Substituting these into Eq. (82), we obtain the approxi-
mation

T
6chmc

SN, wlsin? ¢, /sin’ 6, @7

V[m] =

From this, we have the following observations:

« The error in the vanishing point is most likely to occur
along the center line.

+ The error in the vanishing point is approximately pro-
portional to «!’2 of the image resolution «.

 The error in the vanishing point is approximately pro-
portional to w;*? of the lengths w, of the individual edge
segments.

+ The error in the vanishing point is approximately pro-
portional to 1/sing, of the deviation angles ¢, of the indi-
vidual edge segments from the center line.

» The error in the vanishing point is approximately pro-
portional to sin 8, of the disparities 6, of the vanishing
point from the center points of the individual edge seg-
ments.

From Eq. (84), we have ZY_, W,V[n,] = cuguj;, where
c is a positive constant and ug is the orientation of the
center line. From Eq. (87) and Theorem 4, the statistical
bias of the vanishing point is

Am = (c'mcmE)(cuguf)m = cc'(m¢, ug)(ug, myme, (88)

where ¢’ is a positive constant. If the signs of m and m,
are chosen so that they both point toward the image plane,
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we have (¢, ug)(ug, m) <0, whichever way ug is oriented
(Fig. 6). Thus, we observe that

* The vanishing point is statistically biased along the
center line away from the edge segments.

* The bias is small when the vanishing point is close to
the edge segments or infinitely away from them.

5.3. Error in Focus of Expansion

When correspondences of feature points are given be-
tween two images, we identify their coordinate systems
and call the line passing through two corresponding fea-
ture points their trajectory. As in the case of edge seg-
ments, define

u=*N[m' — m], mg=*N[m'+m]. (89)
We call the vector u the orientation of the trajectory, and
the image point of N-vector mg; its center point (Fig. 7).

Under the small image approximation, the covariance
matrix V[n] of the trajectory passing through two feature
points of N-vectors m and m' is given by Corollary 2. It
is easy to confirm by direct calculation that u and mg are
both eigenvectors of V[n]:

_ &
Vinju= 20 = @m.m) u,

éz

20 + (m,m)) "¢

(90)
|4 [n]mG =

Hence, the covariance matrix V[n] of Eq. (30) is rewritten
as

un’ mgmJ )
—mm) T+rmm,) OV

If the distance w between the two feature points (mea-
sured in pixels) is small compared with f, the right-hand

V[n]=§2—2(

FIG. 7. The orientation u and the center point G of a trajectory.
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side is dominated by the first term, and the approximation

Ez]_ﬁ
f 2f?

can be applied. Hence, the covariance matrix Vn] is

approximated by*
2
Vin]= (E) wu’.

w

(m, m’) = cos (92)

(93)

The “‘focus of expansion’’ is the common intersection
of the image trajectories of feature points translating in
the scene (or viewed from a translating camera). Its N-
vector indicates the 3D orientation of the object (or cam-
era) motion [11]. Since the two images are processed
separately, the noise in each image can be regarded as
statistically independent.’ Let n, be the N-vector of the
ath trajectory. As in the case of vanishing points, the
covariance matrix V[m] of the N-vector m of the focus
of expansion is given by Theorem 2 in the form

ngng
2ll\1’=l Wa(nGa na)z ’

mcmg

Viml =S¥ W_m, ng, n?

(94)

where n is the N-vector of the hypothetical ‘‘center line™
of the N trajectories and m; = =m X ng is the N-vector
of the point ‘‘conjugate’” [11] to the focus of expansion
on the center line. Again, if the separations among the
trajectories are small, the right-hand side is dominated by
the first term. If ¢, is the angle between ng; and n,, we
have

Im, ng, n > = sin® ¢, (95)
where ¢, is the ‘‘deviation angle’’ from the hypothetical
center line. The covariance matrix V[n,] of each trajec-
tory is approximated by Eq. (93). Since u, = tmg, X n,,
W, of Eq. (43) is approximated by

Wa Wy
“ eZ(m’ ua)z 32|m9 Mg,, nalz '

where mg, is the N-vector of the center point of the ath
trajectory. If 6, is the angle between mg, and m, we have

im, mg,, n,|* = sin?4,. 7

4 Again, the remark given at the end of Section 5.1 applies.

5 Strictly speaking, this is not true if noise is due to camera characteris-
tics such as distortion of the lens or distortion of the raster scanning.
For simplicity, we ignore such systematic errors, assuming that noise
is introduced randomly and independently by image operations.
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The angle 6, indicates the ‘‘disparity” of the focus of
expansion from the center point of the ath trajectory.
Substituting these into Eq. (94), we obtain the following
approximation:

& zmcm}:‘
SN_, wl sin? ¢,/sin’ 6,

(98)

Vim] =

From this, we have the following observations:

« The error in the focus of expansion is most likely to
occur along the center line of the trajectories.

« The error in the focus of expansion is approximately
proportional to the image accuracy €.

« The error in the focus of expansion is approximately
proportional to 1/w, of the distance w, between the corre-
sponding feature points.

« The error in the focus of expansion is approximately
proportional to 1/sin ¢, of the deviation angles ¢, of the
individual trajectories from the center line.

+ The error in the focus of expansion is approximately
proportional to sin 8, of the disparities 8, of the focus of
expansion from the center points of the individual trajec-
tories.

As in the case of vanishing points, the statistical bias of
the focus of expansion is evaluated from Eq. (93) and Eq.
(98) in the form of Eq. (88). Hence, we observe that

» the focus of expansion is statistically biased along the
center line away from the feature points.

» The bias is small when the focus of expansion is close
to the feature points or infinitely away from them.

6. RENORMALIZATION

Although the statistical bias of the vanishing point or
the focus of expansion computed as the intersection of
concurrent lines can be removed by using the unbiased
estimation given by Propositions 4 and 5, two problems
arise. First, the optimal weights given by Eq. (43) involve
the N-vector that we want to compute. Second, the com-
putation of the unbiased moment matrix requires knowl-
edge of the covariance matrices of the data points or lines,
which involve image noise characteristics. However,
noise characteristics are difficult to predict a priori for
real images in real environments.

The first problem can be resolved by iterations in princi-
ple, as pointed out earlier. For the second problem, we
take advantage of the fact that, from Eqs. (78) and (91),
the covariance matrix V[n,] can be expressed in the form

Vin,] = ¢Vqin,l, (99)
where ¢ is an unknown constant that characterizes the
magnitude of image noise, while Vy[n,] has a known form.
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FIG. 8. (a) Simulated edge pixels, and (b) representation of a perturbed N-vector.
Since multiplication of the optimal weights by a constant 3. Update ¢ and W, as follows:
does not affect the resulting solution, Eq. (43) can be
replaced by A
+ gid
[ €t S W, Vg 1Y
W, =——. (100)
*  (m, Vyg[n,Jm
( o[n,Jm) w | (105)

Ideally, the constant ¢ should be chosen so that EIN] =
N, but this is impossible unless the statistical characteris-
tics of the noise are known. On the other hand, if
E[N] = N, we have

E[Gm, Nm)] = @, E[NJm) = @, Nm) =0, (101)

because from Eq. (37) J = (m, Nm) takes its absolute
minimum O for the exact solution m in the absence of
noise. This suggests that we require that (m, Nm) = 0 at
each iteration step. If (m, Nm) 5= 0 for the current esti-
mates ¢ and m, we define

N

' — N (m, Nm)
N'=N S| Wg(m, Vg[ngjm) Z' W, Volngl.  (102)

Then, (m, N'm) = 0. Note that (m, Nm) equals the smallest
eigenvalue of N. From this observation, we obtain the
following procedure, which we call renormalization:

renormalization ({n,}, {Vi[n,})

l. Letc=0and W, =1, a=1,...,N.
2. Compute the unit eigenvector m of
R N
N =2 Wm0 - cVyln,)) (103)
a=1|

for the smallest eigenvalue, and let A, be the smallest
eigenvalue.

« " (m, Vin,Jm)"

4. Return m if the update has converged; else go back
to Step 2.

Iterations of renormalization usually converge very rap-
idly. For most applications, three or four iterations are
sufficient. See Appendix D for further discussions on re-
normalization.

7. RANDOM NUMBER SIMULATIONS

7.1. Line Fitting to an Edge

Figure 8a shows simulated edge pixels. The focal length
is set to f = 20. To the x and y coordinates of each pixel
is added noise obeying an independent normal distribution
of mean 0 and standard deviation 0.05. Then, a line is
fitted by the optimal least-squares method of Section 4.1
1000 times, each time using different random numbers.
The computed N-vector of the fitted line is orthogonally
projected onto the plane spanned by u and mg defined by
Egs. 68 (Fig. 8b). Then, the mean and covariance matrix
of the 1000 samples are computed. Fig. 9a shows the
ellipse centered at the sample mean indicating the root
mean square in each direction. The horizontal axis corre-
sponds to the edge orientation u. Figure 9b shows the
corresponding theoretical prediction computed by Eq.
(78). Thus, Eq. (78) is a very good approximation. As
compared with the variation in the direction of u, the
variation in the direction of mg is very small and hence
can be ignored, meaning that the error in n almost always
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(a)

0

(b)

FIG.9. Line fitting: (a) sample distribution and (b) theoretical distri-
bution.

occurs in the direction of u. Thus, Eq. (79) is also a
very good approximation, and the observations made in
Section 4.1 are confirmed.

7.2. Focus of Expansion Estimation

Since vanishing point estimation and focus of expansion
estimation have the same geometric structure (although
the source of noise is different), consider the focus of
expansion estimation. Figure 10a shows simulated trajec-
tories. The disparity of the focus of expansion from the
image origin is 8§ = 45°, and the deviation angle of the
outermost trajectories from the center line is ¢ = 3°. The
focal length is set to f = 20. To the x and y coordinates
of each endpoint is added noise obeying an independent
normal distribution of mean 0 and standard deviation
0.005.

The common intersection is computed by the optimal
least-squares method described in Section 4.1 1000 times,
each time using different random numbers. The computed
N-vector of the estimated focus of expansion is orthogo-
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nally projected onto the plane spanned by m, and n, as
defined in Section 5.3 (Fig. 10b). Then, the mean and
covariance matrix of the 1000 samples are computed. Fig-
ure 1la shows the ellipse centered at the sample mean
indicating the root mean square in each direction. The
horizontal axis corresponds to the orientation of m.. Fig-
ure 11b shows the corresponding theoretical prediction
computed by Eq. (94). Evidently, the statistical bias de-
scribed exists. The black circle in Fig. 11a indicates the
expected bias predicted by Theorem 4. Figure 11c shows
the result obtained by applying the renormalization de-
scribed in Section 6. The computation converges after
three or four iterations. The bias is indeed removed with-
out any knowledge of noise characteristics, and the re-
sulting distribution is well characterized by Eq. (94).

As compared with the variation in the direction of m,
the variation in the direction of n; is very small and hence
can be ignored, meaning that the error in m almost always
occurs in the direction of m¢. Thus, the approximation
of Eq. (98) can be justified.

Figure 12a shows the root mean square error in the N-
vector m for various values of the disparity 8. The solid
line indicates the theoretically predicted values computed
by Eq. (94), and black circles indicate empirical values,
each computed from 1000 samples. It can be confirmed
that the error is indeed approximately proportional to
sin . Figure 12b plots the root mean square error for
various values of the deviation angle ¢, each computed
after 1000 trials. It can be observed that the error is ap-
proximately proportional to 1/sin ¢, as expected. Thus,
the observations in Section 5.3 are confirmed. In Figs.
12a and 12b, white circles indicate the values computed
by uniform weights W, = const. It is clearly seen that
the use of optimal weights produces a better result.

In all the experiments, the effects of the effective focal
length discussed in Section 2.4 are negligibly small, so we
need not introduce the effective focal length, as expected.

(a)

FIG. 10.

(b)

(a) Simulated trajectories and (b) representation of a perturbed N-vector.
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0

(c)

FIG. 11. Focus of expansion estimation: (a) sample distribution and
theoretically predicted bias, (b) theoretical distribution, and (c) sample
distribution obtained by renormalization.

8. CONCLUDING REMARKS

In this paper, we have studied the statistical behavior
of errors involved in fundamental geometric computations
in a general ‘‘application independent’” framework. Fol-
lowing the theory of ‘‘computational projective geome-
try”’ of Kanatani [11], which is also general and applica-
tion independent, we first presented a statistical model of
noise in terms of the covariance matrix of the N-vector
of a pixel. Using this model, we computed the covariance
matrices of N-vectors of lines and their intersections.
Then, we determined the optimal weights for the least-
squares optimization and computed the covariance matrix
of the resulting optimal estimate. The result was applied
to line fitting and computation of vanishing points and
focuses of expansion. In each of these problems, charac-
teristic error behavior was described in detail. We also
pointed out that statistical biases exist in such computa-
tions and presented a scheme called renormalization,
which removes the bias by automatically adjusting to
noise. Finally, random number simulations were con-
ducted to confirm our analysis.

Our statistical model of noise is idealized in many re-
spects, so it may not always describe noise behavior of
real systems completely: images may have a systematic
(i.e., highly correlated) noise due to optical or electronic
distortions; the edge operators we use may detect edges
in systematically biased locations. In general, noise in real
systems usually has components that cannot be accounted
for by such mathematical idealizations as homogeneity,
isotropy, independence, and Gaussian. Hence, predic-
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FIG. 12. Root mean square error vs (a) disparity angle ¢ and
(b) deviation angle ¢.

tions based on such an idealized model are usually under-
estimations of errors.

However, such theoretical predictions can be of great
value if they are properly used. For example, one can
design the system so that theoretically predicted errors
are removed or the reliability of computation is max-
imized, and the analysis is successful if the performance
of the resulting system is improved by it. In order to
pursue such applications effectively, one must avoid in-
troducing unnecessary complications into the theory. If
the improvement of the performance is not sufficient, this
very fact sheds light on the role of the sources of noise
that are not accounted for by the theory, and a new theory
will emerge, and so on. Such practical applications are
discussed in [12-15, 17, 18], to which this paper provides
a theoretical foundation.

APPENDIX

A. Covariance Matrices of Normalized Vectors

Let h be a unit vector. From Fig. Al, we see that

P,=1-hh' (106)



302

(ha)h

| a
/
OLIP**“/

Projection matrix.

FIG. Al

projects a vector a onto a plane perpendicular to h:
Py,a=a— (a, hh. (107)

The matrix Py, is called the projection matrix along h. It
is easy to confirm the following:

Pl =P,, P} =P,. (108)
LEMMA A.l. To a first approximation in Aa,
Nia + Aa] = N[a] + £s82

109
Tal - (109)

Proof. Vector Aais decomposed into Aa = Aa, + Aa,,
where Aa, is parallel to a and Aa, is orthogonal to a. Since
a + Aa, is parallel to a, we have N[a + Aa;] = Nla].
Since Aa, is orthogonal to a, vectors a + Aa, and a have
the same norm [ja + Aa,|| = |ja|| to a first approximation.
Hence,

a+Aa _a+tAa, _ Aa,
Al vy i T T R

The perturbation caused by Aa, + Aa, is the sum of the
perturbations caused by Aa, and Aa, to a first approxima-
tion. Hence, we have N[a + Aa] = N(a] + a,/|ja||. If we
note that Aa, = P,Aa, we obtain the assertion. =

ProPoSITION A.1. Ifn = N[al, then

V[n] = —= P, V[alP,. (111)

fa? lI2

Proof. The perturbation Aa causes a perturbation An
of n = N[a]. From Eq. (109), we obtain to a first approxi-
mation

P Aa

An =
IIaII

(112)

Hence,
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P.E[AaAa’]P]
laf?

Since P] = P,, we obtain Eq. (23).

P V[a]P!

w4

V[n] = E[AnAn"] =

B. Effective Focal Length
PropPosITION B.1.

m, + Am
E [f e Ams] = (' T (/) * O(A'“’s)

m '*‘Amg _ 1 82
E[fmiwms] ‘y(' +m(7) * O(Am)S).

(114)
Proof. Since
fm, + Am, =f(1 + Am,/m,)
my + Amy 1 + Ams/m;
=x (1 + Am| _ Am3 + (Am3)2
m,  m my
-~ (%) <A—"’3—) + O(Am)3) , (115)
its expectation is
m; + Am,
E [fm3 + Am3]
E[Am}
= x (1 o Elam] _ ElamAm] 0(Am)3) . 1e)
m3 myms
If we putk = (0,0, )" and i = (1, 0, 0)", we have m; =

(m, k) and m, = (m, i). Hence, E[Am3] = (k, V[m]k) and
E[Am\Am,) = (i, V[m]Kk). Since u is orthogonal to the Z-
axis, we have (u, k) = 0. From Eq. (9), we have

&4(v, k)?
201 + 33>
gy, i)(v, k)
2(1 + r¥fyH*
where we put & = g/f. In Eqs. (10), the signs of u and v

are irrelevant, so we can choose u = V1 + f%/r’m X k
and v = u X m. From Fig. 2, we observe that

(k, V[m]k) =
(117)
@i, V[m]k) =

1
cos b = my = ——,
? \/1+r2/f2
(118)
sinf=VI1-m;=

e
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Hence,

v,k)=(uxm,k)=(m xk, u)

2
= /1+F(mxk,mxk)

V1 + r¥/f? rif
- l— ’k N = "
(- ) =
=§m3, (119)

(v,i)=(uXxm,i)=(mXxi,u)

= /1+r—2'(m><i,mxk)

VvV T
= —I+—r/-f(m, k)(m’ i): _[ml° (120)
rif ’
Thus,
_ Ermilf?
(k, Vimlk) = 57—,
; ___&mm (121)
& Viml = =50+
Hence,
m + Amy | _ £2/2 3)
E I:fm; + Am3] =X (l 1+ s + O(Am)’ | . (122)

The expression of E[f(m, + Am,)/(m; + Am;)] is obtained
similarly. =

ProposiTION B.2. If

X . =2
m=n|(3) p=r(1e i) o
then
my + Amy 3
E [fm3 T Am,] x + O(Amy’,

124
m,+ Am, | _ 3 (124)
E f—2m3 ¥ Am, =y + O(Am)°.

Proof. Proceeding in exactly the same way as in the
proof of Proposition B.1, we obtain

m +Am | _ om, ( 12 3)

£ [fms + Am;] my et O(Am)

(S 22 3) _ 3
m (f)<l 1T r2f? + O(Am)* | = x + O(Am)’.

(125)

303

The expression for y is obtained similarly. To be strict,
the expression 1 + r?/f? in the above equation must be
1 + r2/f2. However, replacing it with 1 + r/f2 introduces
only a difference of O(&*) in the final result. =

C. Approximately Optimal Estimation

ProposITION C.1. If the N-vector m in the optimal
weights is replaced by its estimate m + Am, the resulting
perturbation of the unit eigenvector of the moment matrix
for the smallest eigenvalue is O(Am)?.

Proof. Ifmis perturbed into m + Am, the perturbation
of the weight W, = 1/(m, V[n,]m) is, to a first approxi-
mation,

sw._ = —2&m, Vin,Jm)

“ (m, V[n,Jm)* (126)

If |An,| is approximately v in the sense of root mean
square, the covariance matrix V[n,] is O(v?). According
to Corollary 3, we can assume that |Am|| = O@/VN).

)
14 N

Let n, + An, be the observed N-vectors. Their moment
matrix with perturbed weights is

W, = 0( (127)

N
N+ AN = > (W, + W, )(n, + An)(n, + An,)". (128)
a=1

Let A,, A,, and 0 be the eigenvalues of the unperturbed
moment matrix N, and {u, v, m} be the orthonormal system
of the corresponding eigenvectors. According to the per-
turbation theorem (Appendix D), the unit eigenvector of
the perturbed moment matrix N + AN for eigenvalue 0
is perturbed in the form

_ (u, ANm)

(v, ANm) v
0-—A, '

Am 0— A,

u+ (129)

Now,

N N
AN = > W.(An.n] + n,An]) + > W,An,An]
a=1 a=1

z

N
+ > 8Wannl + > W, (An,n] + n,An])
I a=1

o

Mz

+ S 6W,An,An]. (130)

a=1
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The first and second terms on the right-hand side do not
depend on 8W,. Since (n,, m) = 0, the third term on the
right-hand side does not contribute to Am. Hence, the
component of the error of Am contributed by the perturba-
tion W, of the weight W, is

_ 3N 8W,(0(1), An)
A

3N 8W,(0(1), An,)
+ 1y V.

om

(13D

Since An, are independent and since u and v are orthogo-
nal unit vectors, the mean square of dm is

ZQLI (awa)z(o(l), V[nu]O(l))
Y
+ Zi1 (BWL)H0(1), ViIn,JO(1))
A

Ef[om]?] =

. (132)

Since V[n,] = 0%, W, = O(v™2), A, = O(N/v?, and A,
= O(N/v?), we have |sm|| = O@38W/V'N) in the sense
of root mean square. If Eq. (127) is substituted, we obtain
[6m| = O@W¥N) = O(Am)>.. m

ProOPOSITION C.2. Let V[m] be the covariance matrix
computed from the unperturbed moment matrix N, and
VIm] be the covariance matrix computed from a per-
turbed moment matrix N. If An, = v, then

Vim] - V[m] = O( (133)

Nsﬁ) '

Proof. Letn, + An, be the observed N-vectors. Their
moment matrix is

N
N+AN= Y W n,+ An)@m, + An)".  (134)
a=1

Let A,, A,, and 0 be the eigenvalues of the unperturbed
moment matrix N, and {u, v, m} the orthonormal system
of the corresponding eigenvectors. If u » u + Au, v —
v+ Ay, m—m+ Am, A\, > A\, + A\, and A\, > A, +
A\, are the perturbations caused by the perturbation
N — N + AN, the covariance matrix V[m] is perturbed
into

(u+ Aw)(u + Au)" | (v + Av)(v + Av)T

V[m)] =

A, + AX, A, + AN,
T T T T
= Vm] + Aun’ + vAu' | Avv' + vAy
A, A,
_AuuT  AwyT

A2 )\—3 (135)
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to a first approximation. From the perturbation theorem
(Appendix D), we have AN, = (u, ANm), AX, = (v, A-Nv)
to a first approximation. Now, to a first approximation

N
AN = >’ W,(n,An] + An,n]). (136)
a=]

Hence,

N
AN, =2, W,(u,n)(u, An,),

a=1

N 137
AN, =2, W,(v,n)(v, An,).

a=1
Since An, are independent, their variances are

N
E[AN] = E[AN2] = 3, W2(O(1), Vn,]O(1)). (138)

a=1

If |An,] = v in the sense of the root mean square, we
have V[n,] = O(? and W, = O(v~?. Hence,

Mﬁo(y_ﬁ)%:o(v_ﬁ)
14 14

is the sense of the root mean square. We also see from
the perturbation theorem (Appendix D) that

(139)

_ (m, ANu)
A —0

(v, ANu) v

Au VES VA

m + (140)

From Eq. (136), we obtain

_ 3N W,(0(1), Any)
= m

Au .
szv=l wa(O(l)v Ana)
Ve (141)

Since An, are independent and since m and v are orthogo-
nal unit vectors, we have

SN woW), Vv
ET|[ul?) = ===t «(0()\)2 [nJO(1))

2fxv=| Wtzx(o(l)’ V[na]o(l))
()\u - Av)z

+

(142)

Since V[n,] = 0(?), W, = O(»™3), A, = O(N/v?, and
A, = O(N/v?), the above expression is O(v*/N). The same
applies to v. Thus,

l=0(L).  Ii=o(L) ae
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in the sense of the root mean square. Substituting Eqgs.
(139) and (127), A, = O(N/v?), and A, = O(N/v?) into Egs.
(135), we obtain Eq. (133). =

D. Convergence of Renormalization

The following perturbation theorem is well known in
quantum physics (e.g., see [16]).

ProposITION D.1. Let A be an n-dimensional sym-
metric matrix having eigenvalues \, . .., \,with{u,, ...,
u,} the corresponding eigenvectors forming an orthonor-
mal system. If matrix A is perturbed into

=A+38A, (144)
each eigenvalue )\, is perturbed into
=\ + (u;, 8Au) + O(BA). (145)

If eigenvalue \, is a simple root, the corresponding eigen-
vector u; is perturbed into

. T O(BA)~.

S (e AW (146)

=7 I VR V3

The procedure for renormalization can be expressed in
an abstract form as follows. What we want to compute
is the unit eigenvector u,, of a positive semi-definite matrix
A for eigenvalue 0. The exact value of A is unknown,
but from a statistical error analysis we know that

A = E[A - ¢B], (147)
where A and B are symmetric matrices we can compute
from image data while c is an unknown constant character-
izing the behavior of image noise. Matrices A and B are
random variables since they are computed from data,
while ¢ has a definite value determined by the statistical
model of noise. Hence, if we put

A=A-cB, (148)
and if we can choose ¢ such that E[A] = A, the unit
eigenvector u,, of A for the smallest eigenvalue is an

unbiased estimate of u,,. However, we cannot do this
unless we know the noise characteristics. On the other

hand, if E[A] = A, then
ElG,, Au,)] = ,, E[Alu,) = @, Au,) =0.  (149)

So, we attempt to compute a unit vector u,, such that (u,,,
Au,) = 0 in each iteration step. If (u,,, Au,,) # 0 for the
current estimate u,, and ¢, we define
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A = A — (ll,,,, A“m)
A'=A —(“m, Bu,) B.

(150)
Then, (u,,, A'u,) = 0. Note that (u,,, A'u,) equals the
smallest eigenvalue A,, of A.

If u, and c are the converged values, we have A\,
(u,, Au,,,) = 0. This does not necessarily ensure that
u,, coincides with ,,. In other words, (u,,, Au,,) is not
necessarily 0, because the current image data are not
necessarily ‘‘typical’’ (i.e., may not be a good representa-
tive of the statistical ensemble). However, we can expect
that u,, is a good approximation with a high probability.

If u,, is the unit eigenvector of the current A for the
smallest eigenvalue \,,, matrix A is updated at the next
step to

A/ — A _ Am
A'=A _(ll,,,,Bu,,,) B.

(151
According to the perturbation theorem, the smallest ei-
genvalue X, of A’ is

B) u,,,)

oy Ay
Am - )\m (“m' <(um’ Bllm)
2
) OM).

+0< A

@, Bu,) (152

This means that A,, converges to 0 quadratically just like
Newton iterations.

Let A, and A, be, respectively, the largest and the second
largest eigenvalues of A, and u, and u, the corresponding
unit eigenvectors. According to the perturbation theorem,
the unit eigenvector u), of A’ at the next step for the
smallest eigenvalue \,, is

. A (u;, Bu,)
U =t + (u, Bu) ;5% A, — N i
+002) = u, + O\, (153

Since A,, converges to 0 quadratically, the convergence
of u,, is also quadratic. If the optimal weights W, are
computed by using the current eigenvector u,,, the con-
vergence of the W, is no longer quadratic. However, the
convergence is usually very rapid, and three or four itera-
tions are sufficient for most cases.

It should be emphasized that the converged values are
not necessarily the exact values, because the noise is
random and unpredictable: the purpose of renormaliza-
tion is to remove statistical bias (not completely, though).
As shown in Appendix C, if each datum has an indepen-
dent error of root-mean-square magnitude » and if the
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number of data is N, the optimal unbiased estimate has
an error of root-mean-square magnitude O(V/\/N), which

is

the lowest bound that can be achieved.

ACKNOWLEDGMENTS

The author thanks Michael Brady, Andrew Zisserman, and Andrew

Blake of the University of Oxford and Azriel Rosenfeld, Yiannis Aloi-
monos, and Rama Chellappa of the University of Maryland for various
discussions on statistical aspects of geometric computation. He also
thanks Kouji Urasawa of Oki Electric Industries for helping with the
numerical experiments.

11.

REFERENCES

. S. D. Blostein and T. S. Huang, Error analysis in stereo determina-
tion of 3-D point positions, I[EEE Trans. Pattern Anal. Mach. Intell.
9, 1987, 752-765. [Corrected in 10, 1988, 765.]

. B. Brillault-O’Mahony, New method for vanishing point detection,
CVGIP: Image Understanding 54, 1991, 289-300.

. T.J. Broida, S. Chandrashekhar, and R. Chellappa, Recursive esti-
mation of 3-D motion from a monocular image sequence, /EEE
Trans. Aerospace Electron. Systems 26, 1990, 639-656.

. T.J. Broida and R. Chellappa, Estimation of object motion parame-
ters from noisy images, IEEE Trans. Pattern Anal. Mach. Intell.
8, 1986, 90-99.

. T. J. Broida and R. Chellappa, Performance bounds for estimating
three-dimensional motion parameters from a sequence of noisy im-
ages, J. Opt. Soc. Amer. A 6, 1989, 879-998.

. R. T. Collins and R. S. Weiss, Vanishing point calculation as a
statistical data, Proceedings, Third International Conference on
Computer Vision, Osaka, Japan, Dec. 1990, pp. 460-403.

. B. Kamgar-Parsi and R. D. Eastman, Calibration of a stereo system
with small relative angles, Comput. Vision, Graphics, Image Pro-
cess. 51, 1990, 1-19.

. B. Kamgar-Parsi and B. Kamgar-Parsi, Evaluation of quantization

error in computer vision, IEEE Trans. Pattern Anal. Mach. Intell.
11, 1989, 929-940.

. B. Kamgar-Parsi, B. Kamgar-Parsi, and N. Netanyahu, A nonpara-

metric method for fitting a straight line to a noisy image, IEEE
Trans. Pattern Anal. Mach. Intell. 11, 1989, 998-1001.

. K. Kanatani, Errors of the incremental method for curves, Comput.

Vision, Graphics, Image Process. 26, 1984, 130-133.

K. Kanatani, Computational projective geometry, CVGIP: Image
Understanding 54, 1991, 333-448.

12.

17.

18.

19.

20.

21,

22,

23.

24,

25.

26.

27.

KENICHI KANATANI

K. Kanatani, Hypothesizing and testing geometric properties of
image data, CVGIP: Image Understanding 54, 1991, 349-357.

. K. Kanatani, Statistical analysis of focal-length calibration using
vanishing points, IEEE Trans. Robotics Automation 8, No. 6, 1992,
767-7175.

. K. Kanatani, Unbiased estimation and statistical analysis of 3-D
rigid motion from two views, IEEE Trans. Pattern Anal. Mach.
Intell. 15, No. 1 1993, 37-50.

. K. Kanatani, Statistical bias of conic fitting and renormalization,
IEEE Trans. Pattern Anal. Mach. Intell., 16, No. 3, 1994.

. K. Kanatani, Geometric Computation for Machine Vision, Oxford

Univ. Press, Oxford, 1993.

K. Kanatani, Statistical foundation for hypothesis testing of image

data, CVGIP: Image Understanding, to appear.

K. Kanatani and Y. Onodera, Anatomy of camera calibration using

vanishing points, IEICE Trans. Inform. and Systems 74, No. 10,

1991, 3369-3378.

J. K. Kearney, W. B. Thompson, and D. L. Boley, Optical flow
estimation: An error analysis of gradient-based methods with local
optimization, /EEE Trans. Pattern Anal. Mach. Intell. 9, 1987,
229-244,

S. Lee and Y. Kay, A Kalman filter approach for accurate 3D
motion estimation from sequence of stereo images, CVGIP: Image
Understanding 54, 1991, 244-258.

L. Matthies, T. Kanade, and R. Szeliski, Kalman filter-based algo-
rithms for estimating depth from image sequences, Internat. J. Com-
put. Vision 3, 1989, 209-236.

1. Porill, Fitting ellipses and predicting confidence envelopes using
a bias corrected Kalman filter, Image Vision Comput. 8, 1950,
37-41.

M. A. Snyder, The precision of 3-D parameters in correspondence
based techniques: The case of uniform translation motion in a rigid
environment, JEEE Trans. Patiern Anal. Mach. Intell. 11, 1989,
523-528.

1. Weiss, Line fitting in a noisy images, IEEE Trans. Pattern Anal.
Mach. Inteli. 11, 1989, 325-329.

R. Weiss, H. Nakatani, and E. M. Riseman, An error analysis
for surface orientation from vanishing points, IEEE Trans. Pattern
Anal. Mach. Intell. 12, 1990, 1179-118S.

G.-S. J. Young and R. Chellappa, 3-D motion estimation using a
sequence of noisy stereo images: Models, estimation, and unique-
ness results, IEEE Trans. Pattern Anal. Mach. Intell. 12, 1990,
735-759.

Y. T. Zhou, V. Venkateswar, and R. Chellappa, Edge detection
and linear feature extraction using a 2-D random field model, IEEE
Trans. Pattern Anal. Mach. Intell. 11, 1989, 84-95

‘s



