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A statistical foundation is given to the problem of hypothesizing
and testing geometric properties of image data heuristically derived
by Kanatani (CVGIP: Image Understanding 54 (1991), 333-348).
Points and lines in the image are represented by “N-vectors” and
their reliability is evaluated by their “covariance matrices”. Under
a Gaussian approximation of the distribution, the test takes the
form of a x? test. Test criteria are explicitly stated for model
matching and testing edge groupings, vanishing points, focuses of
expansion, and vanishing lines. © 1994 Academic Press, Inc.

1. INTRODUCTION

Statistical analysis of error behavior is a key to the
development of robotics applications of computer vision.
Understanding of error behavior often leads to finding
techniques for improving accuracy, and even if errors are
inevitable, the knowledge of how reliable each computa-
tion is is indispensable in guaranteeing performance of
the systems that use such computations. Also, statistical
reliability estimation is vital if one attempts to enhance
the robot performance by using multiple sensors and fus-
ing the resulting multiple data (sensor fusion), because in
order for multiple data to be fused they must be properly
weighted so that reliable data contribute more than unreli-
able data.

In general, all geometric configurations of points and
lines in images ultimately reduce to atomic elements.
Hence, the “‘covariance matrices’’ of all quantities can
be computed by propagating the error behavior bottom-
up from atomic to primitive to complex configurations.
Covariance matrices thus computed indicate the reliabil-
ity of computation in quantitative terms, and the reliabili-
ties of different computations can be compared on the
same basis. A rigorous mathematical foundation has been
given to such statistical evaluation by Kanatani [10], who
computed covariance matrices of various types of geomet-
ric computations from the statistical model of pixels,
which he regarded as atoms.

This approach is appropriate if the true configuration
is known. By this approach, however, one cannot infer the
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true configuration from a given configuration. However,
such inference is indispensable for automatic 3-D image
interpretation. For example, a decision must be made as to
whether an assumed object model matches the observed
image or not, edge segments can be grouped together or
not, lines are concurrent or not, points are collinear or
not, and so on. In the past, such inference has often
been based on arbitrarily set discrepancy measures and
thresholds [1, 3, 5, 12-14]. Lacking theoretical grounds,
each threshold value must be adjusted to a particular
environment empirically.

Kanatani [9] presented a hypothesizing and testing ap-
proach to this problem, which is in a sense ‘‘dual’’ to
the error estimation process: one considers how a given
geometric configuration should be altered into a hypothe-
sized form, then considers how primitives should be al-
tered to achieve that, and so on. In other words, the
discrepancy between the observed configuration and its
hypothesized form is propagated rop-down from complex
to primitive to atomic quantities. In the end, the ‘‘credibil-
ity” of a configuration is computed in quantitative terms
based on the statistical model of atoms, and the credibili-
ties of different configurations can be compared on the
same basis.

Regarding edges as atoms, Kanatani [9] computed to
what extent individual edge segments must be displaced
in order to support the hypothesis. This is a realistic ap-
proach because edge detection is usually the first step of
image processing for machine vision applications. How-
ever, all the testing criteria were derived rather heuristi-
cally. As a result, the following issues have remained
unsettled:

+ Although the geometric meaning of the edge displace-
ment measure introduced in [9] is very clear, other types
of measures could be used for the same purpose. Can we
justify one particular measure on statistical grounds?

« In [9], estimation and testing were treated separately
in the sense that any estimation can be tested by the same
procedure. Can we derive an ‘‘optimal estimate’’ based
on the hypothesis by theoretical means?

« Although all types of tests were reduced to a single
measure of edge displacement with a single threshold, the

82

1049-9660/94 $6.00
Copyright © 1994 by Academic Press, Inc.
Al rights of reproduction in any form reserved.



NOTE

threshold must be empirically adjusted. This is certainly
an advance as compared with adjusting problem-depen-
dent thresholds each time, but can we determine the
threshold value by a statistical argument?

We now present a theory to answer all these issues.
The second issue has already been settled by Kanatani
[10]. Here, we focus on the first and third and give them
a mathematical solution by employing the statistical anal-
ysis of [10]. Adopting the formalism of ‘‘computational
projective geometry’’ [8], we represent points and lines
in the image by ‘‘N-vectors’’ and evaluate their reliability
by their ‘‘covariance matrices’’ based on [10]. Under a
Gaussian approximation of the distribution, the test takes
the form of a x? test. The test criterion is explicitly stated
for model matching and testing edge groupings, vanishing
points, focuses of expansion, and vanishing lines; a real
image example is given.

Error analysis of vanishing point estimation was dis-
cussed by Weiss et al. [16] and Collins and Weiss [4]
using heuristically derived error models, and by Brillault-
O’Mahony [2] by a rigorous statistical model of line seg-
ments expressed in image coordinates. The statistical
analysis of Kanatani [10] is similar to that of Brillault-
O’Mahony [2] in spirit but is more general, and is more
convenient to apply to the hypothesizing and testing ap-
proach.

2. PERSPECTIVE PROJECTION AND N-VECTORS

Assume the following camera imaging model [8]. The
camera is associated with an XYZ coordinate system with
origin O at the center of the lens and Z-axis along the
optical axis (Fig. 1). The plane Z = f is identified with
the image plane, on which an xy image coordinate system
is defined so that the x- and y-axes are parallel to the X-
and Y-axes, respectively. Let us call the origin O the
viewpoint and the constant f the focal length.

A point (x,y) on the image plane is represented by the
unit vector m indicating the orientation of the ray starting
from the viewpoint O and passing through that point; a
line Ax + By + C = 0 on the image plane is represented
by the unit surface normal n to the plane passing through
the viewpoint O and intersecting the image plane along
that line (Fig. 1). Their components are given by

X A
m= *N y), n=1N(B), )
CIfs

where N[:] denotes normalization into a unit vector. We
call m and n the N-vectors of the point and the line [8].
In the following, we adopt the formulation of *‘computa-
tional projective geometry’’ [8], regarding a unit vector
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FIG. 1. Camera imaging geometry and N-vectors of a point and a
line.

m whose Z-component is 0 as the N-vector of an ideal
point (a point at infinity) and n = (0, 0, =1) as the N-vector
of the ideal line (the line at infinity). The following is a
brief summary of the facts relevant to this paper.

The N-vector of a point in the scene is defined to be
the N-vector of its projection on the image plane. The
N-vector of aline in the scene is defined to be the N-vector
of its projection on the image plane. In order to avoid the
confusion of whether we are referring to a point in the
scene or its projection on the image plane, we call a point
in the scene a space point and a point on the image plane
an image point. Similarly, we call a line in the scene a
space line and a line on the image plane an image line.

Let m and n be the N-vectors of an image point P and
an image line I, respectively. It is immediately seen that
image point P is on image line [/, or image line [ passes
through image point P, if and only if

(m,n) =0, (2

where (-, -) denotes the inner product of vectors. If this
is the case, we say that image point P and image line [
are incident to each other [8]. We call Eq. (2) the incidence
equation.

An image point that is on two distinct image lines is
called their intersection; An image line that passes through
two distinct image points is called their join. Let n; and
n, be the N-vectors of two distinct image lines. The
N-vector m of their intersection is given by

m= *=N[n, X ny], 3)
because m must satisfy the incidence equation (2) for both
image lines: (m, n;) = 0 and (m, ny) = 0. Dually, let m,
and m, be the N-vectors of two distinct image points. The
N-vector n of their join is given by

n=xN[m, X m,], @)

because n must satisfy the incidence equation (2) for both
image points: (m,, n) = 0 and (m,, n) = 0.
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FIG. 2.

Projections of parallel space lines meet at a common
vanishing point on the image plane. Formally, the van-
ishing point of a space line is the limit of the projection
of a point that moves along the space line indefinitely in
one direction (both directions define the same vanishing
point). From Fig. 2a, it is easy to confirm the following
theorem [8]:

THEOREM 1. A space line extending along unit vector
m has, when projected, a vanishing point of N-vector
+m.

Projections of planar surfaces that are parallel in the
scene define a common vanishing line. Formally, the van-
ishing line of a planar surface in the scene is the set of
all the vanishing points of space lines lying on it. From
Fig. 2b, it is easy to confirm the following theorem [8]:

THEOREM 2. A planar surface of unit surface normal
n has, when projected, a vanishing line of N-vector *n.

3. STATISTICAL MODEL OF EDGE FITTING

In conventional image processing, edges are detected
by the Hough transform or an edge operator, and a se-
quence of edge pixels are obtained after thresholding and
thinning processes are applied. Then lines are fitted to
them, say, by least squares. According to this scenario,
the reliability of subsequent computations reduces to the

FIG. 3.

(a) Line fitting to an edge segment. (b) Gaussian approxima-
tion of the distribution of Am.
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(a) The vanishing point of a space line. (b) The vanishing line of a planar surface in the scene.

reliability of line fitting to edges. Thus, we need a statisti-
cal model of error behavior for line fitting.

Let n be the N-vector of the image line fitted to ideal
edge pixels with no noise. In the presence of noise, each
edge pixel is displaced from its ideal position. Let n' =
n + An be the N-vector of the image line fitted to such
displaced edge pixels. Since noise behavior is random,
the error An is a random-valued vector (Fig. 3a). The
covariance matrix of n is defined by

V[n] = E[AnAnT], &)

where E[-] means expectation and T denotes transpose
[10]. The expression for this covariance matrix is theoreti-
cally derived in [10]:

PrOPOSITION 1. The covariance matrix of the
N-vector n of an edge segment of length w in orientation
u is given by

~§5 Ty _K T
V[n]-—w3 uu +2f2wm6mc’ ©

where mg, is the N-vector of the center point of the edge
and k is the image resolution.

Here, the length w is measured in pixels. If m, and m,
are the N-vectors of the end points of the edge segment,
the vectors u and mg are formally defined by

n==N[m,—my)], mg==x=N[m,+ my], )
and the three vectors {u, m;, n} form an orthonormal
system of unit eigenvectors of V[n] for eigenvalues
6x/w3, k/2f*w, and 0, respectively [10]. The image resolu-
tion « is defined by

[ ]

k==, (8)

P
where ¢ is the image accuracy, defined as the root mean
square of the displacement of each edge pixel, and p is
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the edge density, defined as the number of edge pixels
per unit pixel length (10].

4. GAUSSIAN APPROXIMATION

Let V[n] be the covariance matrix of N-vector n. Theo-
retically, there exist infinitely many distributions that
have mean 0 and covariance V[n]. Among them, the most
natural one is the Gaussian distribution. We assume that
the perturbation An is sufficiently small as compared
with n.

ProPOSITION 2. If
Vinl = olw’ + 03w, 0,20,>0, )

is the spectral decomposition of the covariance matrix
V[n)] of the N-vector n, the Gaussian distribution density
of An with mean 0 and covariance matrix V[n] is given
by

F(An) = o —4n.V(n]-4n)2 (10)
2700, ’
where
T T
Vil =T + 05 (11)

Proof. Since n is normalized into a unit vector, the
perturbation An is orthogonal to m to a first approximation.
Hence, if An is sufficiently small, it defines a two-dimen-
sional distribution over the plane perpendicular to n (Fig.
3b). Eq. (9) implies that An is most likely to occur in
orientation u and least likely to occur in orientation v.
The mean square of projected An is o3 in orientation u,
and o'} in orientation v. Such a Gaussian distribution is
given by Eq. (10). =

The matrix V[n]~ is called the pseudo-inverse of V[n].
Given that a particular N-vectorn’ = n + Anis observed,
let us consider whether or not this value can be regarded
as a sample from distribution (10). A well known statistical
technique is the following x? test. If m obeys the distribu-
tion (10), the quadratic form (An, V[n] An) obeys a x*
distribution with two degrees of freedom. Hence, we can
infer that An cannot be regarded as a sample from the
distribution (10) with (100 —a)% confidence if

(An, V[n]~An) > x2, (12)
where x2 , is the a% point of the x2 distribution with two
degrees of freedom. It is easy to show that

2 = a
Xa2 2log 100" (13)
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If we note that n is the eigenvector of V[n]~ for eigenvalue
0 (hence V[n]™n = 0), we see that

(n',V[n]™n’) = (n + An, V[n]"(n + An)) (14)
= (An, V[n]"An).

Hence, we obtain the following criterion.

ProPOSITION 3. If V[n] is the covariance matrix of
N-vector n, an N-vector 0’ cannot be regarded as a sam-
ple of n with confidence (100 — a)% if

(', Vn]'n') > x2,. (15)

A similar criterion was suggested by Collins and Weiss
[4] as a Gaussian approximation of the Bingham distribu-
tion, which they introduced heuristically. However, our
criterion has a distinctive difference from theirs: they
replaced the covariance matrix V[n] by the sample covari-
ance computed from a large number of samples. Here,
the covariance matrix V[n] is not a sample covariance;
it has a theoretically derived analytical expression (6).
Thus, our criterion can be applied to a single sample.

5. MODEL MATCHING

Consider the following problems of model-based object
recognition.

+ We have multiple candidates of 3-D wireframe models
in a database. Given an image, we detect edges and try
to match the 3-D models one by one by changing the
3-D position and orientation. Finally, the one that best
matches is chosen as the true object in the scene.

+ The object in the image is identified but its 3-D posi-
tion and orientation are not known. So, its 3-D wireframe
model is matched to the edge image by changing the pa-
rameters of the 3-D position and orientation, and those
parameters which yield the best match are determined.

In such processes, it is natural to measure the degree
of matching by the discrepancies of the detected edge
segments from the supposed line segments of the model
(Fig. 4a). In the past, various parameters indicating the
discrepancies in position and orientation are heuristically
introduced for this purpose (3, 5, 12, 13].

-'\“VAN‘/“T

a b

FIG. 4. (a) Model matching for object recognition. (b) How should
we group these edge segments together?
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Now, Eq. (15) describes to what extent the “‘line”’ fitted
to an edge segment is likely to deviate from the edge
segment, but this can be interpreted to describe to what
extent an ‘‘edge segment’’ is likely to deviate from a line
on which the edge segment is supposed to lie. Thus, we
can decide whether or not an edge segment is unreason-
ably deviated without introducing any ad hoc parameters.
Substituting eq. (6), we obtain the following criterion:

PropOSITION 4. Let mg,, u,, and w, be the N-vector
of the center point of an edge segment, its orientation,
and its length, respectively, and let & be the N-vector of
a line. If

w3 2w,
Yemuy+ L@ mer a9

is satisfied, the edge segment cannot be regarded as lying
on the line with confidence (100 — a)%.

6. TESTING EDGE GROUPINGS

Suppose multiple fragmented edge segments are de-
tected by an edge operator. We want to know if they can
be combined together to be fitted by a single line (Fig.
4b). A naive idea is to set thresholds for the discrepancies
in the positions and orientations of two consecutive edge
segments, replacing them by a single edge segment if the
discrepancies are below their thresholds [1, 15]. However,
this can cause inconsistencies, as discussed in [9]. The
hypothesizing and testing principle was proposed by Ka-
natani [9], but he did not mention how the estimation
should be done optimally or how the test should be done
on a statistical basis.

First, consider the hypothesizing stage. It can be shown
[10] that the N-vector n of the line fitted to points of
N-vectors m,, ¢ = 1, ..., N, is computed optimally as
the unit eigenvector of the moment matrix

N
M= W,mm], (17
a=1
where W, are the optimal weights [10] given by
1
W, (18)

~ @, Vimn)’

and V[m,] is the covariance matrix of the N-vector m,
of the ath point. If an edge segment of length w (pixels)
is a dense alignment of edge pixels, it can be shown [10]
that the moment matrix M is approximated by

=
K

memy, (19)
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where mg is the N-vector of its center point and « is the
image resolution (Fig. 3). Consider N edge segments, and
let mg, be the N-vector of the center point of the «th
edge segment, and u,, its orientation, &« = 1, ..., N. Since
the moment matrix M, of each edge segment is given
in the form of Eq. (19), the total moment matrix M is
approximated by

M=

N
M=>M,=~ %{—2 > w,mg,mg,. 0)
a=1

o

The N-vector 1 of the line [ fitted to the N edge segments
is given by the unit eigenvector of M for the smallest
eigenvalue. This is equivalent to computing i

N
> w, (i, mg,)?— min,

a=1

@n

i.e., fitting a line to the center points of the N edge seg-
ments by least squares with lengths w, as their weights.
Thus, the heuristic method suggested in [9] is given a
theoretical justification.

Now, consider the second stage of testing. It makes
sense to accept the hypothesis that all the edge segments
are collinear if the individual edge segments are very close
to the line fitted to all the lines. The closeness can be
measured by the criterion of Proposition 3. Substituting
Eq. (6) and applying the addition theorem of the x? distri-
bution, we obtain the following criterion:

PROPOSITION 5. Let n,, mg,, u,, and w, be the N-
vector of the ath edge segment, the N-vector of its center
point, its orientation, and its length, respectively, a =
1, ..., N. If the N-vector 1 of the line fitted to all the edge
segments satisfies

N /3
Z:l (?a (1, u)? + 212w, (A, mer)z) > KXo, (22)

the N edge segments cannot be regarded as collinear
with confidence (100 — a)%.

This criterion is almost the same as the one proposed
in [9]. The only difference is that the criterion in [9] in-
cludes a threshold to be adjusted empirically while this
criterion includes no such threshold: all constants have
theoretically well defined values. It is true that the image
resolution « is difficult to estimate for a given image, so
in practice we must adjust it empirically, and it may seem
that there exists no practical difference. However, there
is a significant difference in application potential between
simply assuming an empirical value and approximating
a theoretically well defined value empirically.



NOTE

7. TESTING VANISHING POINTS

Vanishing points provide one of the most important
clues to 3-D interpretation, because their N-vectors indi-
cate the 3-D orientations of the corresponding space lines
(Theorem 1). Let n,, @ = 1, ..., N, be the N-vectors of
the edge segments. It can be shown [10] that the N-vector
m of the vanishing point is optimally computed as the unit
eigenvector of the moment matrix

N
N=> W,n,n], (23)
a=1
where W, are the optimal weights [10] given by
1
W, 249

«~ (m, Vn,jm)’

and V[n,] is the covariance matrix of the N-vector n,
of the ath edge segment. The covariance matrix of the
N-vector m of thus estimated vanishing point can be theo-
retically computed [10].

There remains, however, one crucial problem. The van-
ishing point is computed on the assumption that the edge
segments are projections of parallel space lines. In real-
ity, how can we tell which edge segments are projections
of parallel space lines? A well known heuristic is to as-
sume that edge segments are projections of parallel space
lines if they are concurrent, i.e., meeting at a common
intersection when extended [6, 7, 14]. Theoretically, non-
parallel space lines could be projected to concurrent edge
segments, but such an exceptional coincidence cannot be
expected in general.

Still, a problem remains. Since edge segments are de-
tected by processing real images, they are bound to con-
tain errors. As a result, projections of parallel space lines
may not be concurrent (Fig. 5a). How can we decide
whether or not such edge segments are concurrent? A
naive idea is to set a threshold and regarding them as
concurrent if the mutual discrepancies are below the
threshold [6, 7). However, the threshold cannot be fixed,

.
e
i
,',’ II,’, la P
r/ G l
/I o a
a b

FIG. 5. (a) How can we judge the concurrency of edge segments?
(b) Testing the concurrency hypothesis.
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since small displacements of the individual edge segments
can cause large deviations of their intersections as dis-
cussed in [9].

Kanatani [9] introduced the hypothesizing and testing
principle to this problem by a heuristic method. We now
modify his method into the form of a statistical test as
follows. We first hypothesize that given edge segments
are projections of parallel space lines, and fit a line to
each of them optimally by the method mentioned in the
preceding section. Then, we optimally estimate their van-
ishing point as stated above. Let P be the estimated van-
ishing point, and m its N-vector. We accept the hypothesis
if the individual edge segments are very close to the lines
passing through the supposed vanishing point. Let G, be
the center point of the ath edge segment (Fig. 5b). The
N-vector of the line I, passing through P and G, is

m X mg_
n

a

= =N[m X mg,) = 25)

t——.
l - (m, mGa)2

According to Proposition 3, if V[n,] is the covariance
matrix of the N-vector n, of the ath line 1,, the discrep-
ancy of line I, from line I, is measured by (@,, V[n,] 1,).
The covariance matrix V[n,] of the ath edge segment is
given by Eq. (6). Since the second term on the right-hand
side is negligible as compared with the first term when
computing the vanishing point [10], we obtain the approxi-
mation

w3
@,, V[n,]™n,) = :(ﬁm u)’, (26)

6k
where w, is the length of the ath edge segment. Note that

line 7 passes through G,, so (fi,, mg,) = 0. Since u, =
*n, X mg,, we have

@, , u,)? = (,, n, X mg,)*= (i, X n,, mg)>.  (27)

Since the error n, — 1, is most likely to occur in orienta-
tion u,, which is orthogonal to both n, and mga, vector
fi, X n, is nearly parallel to mg,. Hence,

(|, X n,,mg,)* =i, X n, [t =1- (@, n). (28)
Substituting Eq. (25) into this and applying the addition

theorem for the x? distribution, we obtain from Eq. (26)
and Proposition 3 the following criterion:

PROPOSITION 6. Let n,, mg,, and w, be the N-vector
of the ath edge segment, the N-vector of its center point,
and its length, respectively, a = 1, ..., N. A point of
N-vector m cannot be regarded as their vanishing point
with confidence (100 — a)% if
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& |m, n, , mg,
211~ P2 ) > S

(29)

Again, this criterion is almost the same as the one pro-
posed in [9]—the difference is that the criterion in [9]
includes a threshold to be adjusted empirically while this
criterion includes no such threshold. As for edge group-
ings, this is a significant advantage even if we are obliged
to empirically adjust the image resolution «.

8. TESTING FOCUSES OF EXPANSION

If space points are rigidly translating in the scene (or
the camera is translating relative to them), their trajector-
ies are parallel in the scene, defining a common intersec-
tion on the image plane—known as the focus of expansion
({81; Fig. 6). Since the geometric relationship is the same
as for vanishing points, focuses of expansion also provide
important clues to 3-D motion: their N-vectors indicate
the 3-D orientations of the corresponding 3-D translations
(see Theorem 1).

The procedure for testing vanishing points described
in the preceding section can also be applied to testing
focuses of expansion. This was not mentioned in [9] be-
cause all the tests in [9] were based on ‘‘edge’’ displace-
ments, while focuses of expansion are not defined in terms
of edges: they are the common intersections of the ‘‘tra-
jectories’’ connecting corresponding feature points in two
images taken at different time instants.

Consider a trajectory segment passing through two cor-
responding feature points. Since the two feature points
belong to different images, the error behaviors can be
assumed to be independent. Then, we can theoretically
derive the covariance matrix of the N-vector n of the
resulting trajectory [10].

PROPOSITION 7. The covariance matrix of the
N-vector n of a trajectory of orientation u is given by
2 2
w €
Vin]==Suw' + ———msm¢,
[n] s py- Mg

— (30)

where w is the distance between the two feature points
that define the trajectory, and mg the N-vector of their
center points.

P

FIG. 6. Focus of expansion.
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If m, and m,, are the N-vectors of the end points of the
trajectory, the vectors u and mg are formally defined by
Egs. (7).

Letn,,a=1,..., N, be the N-vectors of N trajectories
on the image plane defined by translating space points.
It can be shown [10] that the N-vector m of their focus
of expansion is optimally computed as the unit eigenvec-
tor of the moment matrix defined by Eq. (23), where the
optimal weights are given by Eq. (24) if V[n,] is regarded
as the covariance matrix of the N-vector of the ath trajec-
tory. The covariance matrix of the N-vector m of the thus
estimated vanishing point can be theoretically computed
[10].

Again, a crucial problem is how to find pairs of corre-
sponding feature points. As in the case of vanishing
points, we first hypothesize that given pairs of points
are projections of translating space points, and optimally
estimate their focus of expansion as stated above. Then,
we accept the hypothesis if individual pairs are close to
the trajectories passing through the estimated focus of
expansion.

Let m be the N-vector of the estimated focus of expan-
sion P. Let mg, be the N-vector of the center point G,
of the ath pair. The N-vector of the line I, passing through
Pand G, is

- _ m X mg,
n,=*N[mXmg,] == T (m, mg

(3D

The covariance matrix V[n,] of the N-vector of the ath
trajectory is given by Eq. (30), and the second term on
the right-side hand is negligible as compared with the
first term when computing the focus of expansion [10].
According to Proposition 3, the discrepancy of line /, from
line I, is measured by

(A,, Vin,]™0,) = (w;)(ﬁ u,)> (32)

Note that line I, passes through point G,, so (i,,
mg,) = 0. As for testing vanishing points, we have the
approximation

@,, ) = (A, n, X mg,)? = (i, X n,, Mg,)’ 33)

=~ [, X n,Jf =1 - (@,, n,)".

Substituting Eq. (31) into this and applying the addition

theorem for the x? distribution, we obtain from Eq. (32)
and Proposition 3 the following criterion:

PROPOSITION 8. Let n,, mg,, and w, be the N-vector
of the trajectory passing through the ath pair, the
N-vector of its center point, and the distance between the
two feature points, respectively, a = 1, ..., N. A point



FIG. 7.
large rotation.

of the N-vector m cannot be regarded as their focus of
expansion with confidence (100 — a)% if

N
2 Wi
a=1

ExampLE. Figure 7 shows superimpositions of two
512 x 512-pixel real images, in which a stapler undergoes

R

|m, n [? o

M s > gy i
| — (l“, m(;ﬂ)l Xa2N

mg,

 *

(34)
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Superimposed images ol a translating stapler. (a) A pure translation. (b) A translation and a small rotation. (c) A translation and a

(a) a pure translation, (b) a translation and a small rotation,
and (c) a translation and a large rotation. The focal length
is estimated to be f = 600 (pixels). Seven feature points
are chosen, and their trajectories are defined by connect-
ing the corresponding positions. We hypothesize that all
the trajectories are concurrent. The validity of this hy-
pothesis depends on the image accuracy & (in pixels) with
which the feature points are detected and the significance
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level of the test. If ¢ =< 2.5, the hypothesis is accepted
for (a) but rejected for (b) and (c) with 95% confidence.
If 2.5 < &£ = 7, the hypothesis is accepted for (a) and (b)
but rejected for (c) with 95% confidence. If ¢ > 7, the
hypothesis is accepted for (a), (b), and (c) with 95% confi-
dence.

9. TESTING VANISHING LINES

Let {P,}, ., N, be the vanishing points of N
sets of parallel space lines. If the N space lines are all
horizontal, the vanishing points {P,} are on the ‘‘hori-
zon,” i.e., the vanishing line of the horizontal ground in
the scene. Conversely, we can apply the heuristic that
space lines are parallel to a planar surface in the scene if
their vanishing points are collinear on the image plane.
In the presence of noise, however, supposedly collinear
vanishing points may not be strictly collinear (Fig. 8a).
Moreover, since vanishing points are obtained by compu-
tation, they carn appear in any locations on the image
plane—even at infinity. How can we test for collinearity
of the vanishing points?

The idea of Kanatani [9] can be restated on the present
statistical basis as follows. As in the cases of edge group-
ing, vanishing points, and focuses of expansion, we first
hypothesize that given vanishing points {P,} are collinear,
and optimally fit a line ! by the optimal method described
in Section 4. The covariance matrix of each vanishing
point is given analytically [10]. Let i be its N-vector. For
each P,, we compute the point P, that is closest to P,
on the fitted line 7 (Fig. 8b). If m, is the N-vector of P,,
it can be shown [9] that the N-vector m, of P, is given by

[, m,, k|_
(m,, k)

m, tN[k—(ﬁ, k)i — xk] (35)

where k = (0, 0, 1)7. Points P, are regarded as the ‘‘cor-
rect” positions of the vanishing points.

Suppose vanishing points {P,} are detected as intersec-
tions of concurrent image lines fitted to edge segments.
Consider the lines passing through the correct vanishing
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FIG. 8. (a) How can we judge the collinearity of vanishing points?

(b) Testing the collinearity hypothesis.

NOTE

point P, and the center points of the individual edge seg-
ments that define the vanishing point P, (Fig. 8b).
Applying the testing criterion for vanishing points, we
can test our hypothesis by checking the discrepancies of
individual edge segments from the supposedly correct
lines. From Proposition 8, we obtain the following crite-
rion. Let k = (0, 0, 1)T.

PROPOSITION 9. Let {m,}, « = 1, ..., N, be the
N-vectors of the vanishing points to be tested. Let
n{?, mg}, and w§® be the N-vector of the Bth edge seg-
ment that deﬁnes the ath vanishing point, the N-vector
of its center point, and its length, respectively, B = 1, ...,
N@, The vanishing points cannot be regarded as collinear
with confidence (100 — a)% if

N N@ () p(a) |2
” |, n§, m&)|
2} > )3( L ) > 0 09

N
where n = Z,., N® and

%ﬁ X k]. G7)

m, = =

3 N[k—(ﬁ,k)ﬁ—

10. CONCLUDING REMARKS

A statistical foundation has been given for the process
of hypothesizing and testing geometric properties of image
data derived by Kanatani [9]. We represented points and
lines in the image by ‘‘N-vectors’’ by adopting the formal-
ism of ‘‘computational projective geometry’’ of Kanatani
[8], and evaluated the reliability of computation by *‘co-
variance matrices’’ of N-vectors by applying the statisti-
cal analysis of Kanatani [10]. Under a Gaussian approxi-
mation of the distribution, the test takes the form of a x2
test. Test criteria were explicitly stated for model match-
ing, testing edge groupings, vanishing points, focuses of
expansion, and vanishing lines. For these problems, it
has been customary to introduce ad hoc parameters to
be thresholded, but the criteria given here do not involve
any ad hoc parameters; they are built on a rigorous statisti-
cal basis.

ACKNOWLEDGMENTS

The idea of building a rigorous foundation of geometric hypothesis
testing based on a statistical error model was inspired by the criticism
of Dr. Bernard Buxton of GEC (U.K.) on the author’s previous work
(9]. This led the author to establish the comprehensive statistical theory
of geometric computation [10]. The choice of testing criteria underwent
heated discussions with the author at the University of Oxford (U.K.),
the University of Maryland (U.S.A.), and many conferences and meet-
ings. The author thanks all of those who participated in these discus-
sions.



NOTE
REFERENCES 9
. K. M. Andress and A. C. Kak, Evidence accumulation and flow of
- control in a hierarchical spatial reasoning system, Al Mag. 9 (1988), 10.
75-94. ,

. B. Brillault-O’Mahony, New method for vanishing point detection, 11-
CVGIP: Image Understanding 54 (1991), 289-300.

. R. A. Brooks, Model-Based Computer Vision, UMI Res. Press, 12.
Ann Arbor, MI, 1984.

. R. T. Collins and R. S. Weiss, Vanishing point calculation as a 13,
statistical data, in Proceedings, 3rd Int. Conf. Comput. Vision,
Osaka, 1990, pp. 400-403. 14,

. L. Dy, G. D. Sullivan, and K. D. Baker, 3D grouping by viewpoint
consistency ascent, Image Vision Comput. 10 (1992), 301-307.

. K. Kanatani, Reconstruction of consistent shape from inconsistent 15.
data: Optimization of 24D sketches, Int. J. Comput. Vision 3 (1989),
261-292.

. K. Kanatani, Group-Theoretical Methods in Image Understanding, 16

Springer, Berlin, 1990.

. K. Kanatani, Computational projective geometry, CVGIP: Image
Understanding 54 (1991), 333-348.

.

391

K. Kanatani, Hypothesizing and testing geometric properties of
image data, CVGIP: Image Understanding 54 (1991), 349-357.

K. Kanatani, Statistical analysis of geometric computation, CVGIP:
Image Understanding 59 (1994), 286-306.

K. Kanatani, Geometric Computation for Machine Vision, Oxford
Univ. Press, Oxford, 1993.

D. G. Lowe, Perceptual Organization and Visual Recognition,
Kluwer Academic, Boston, 1985.

D. G. Lowe, Fitting parameterized three-dimensional models to
images, IEEE Trans. Pattern Anal. Mach. Intell. 13 (1991), 441-450.

P. G. Mulgaonkar, L. G. Shapiro, and R. M. Haralick, Shape from
perspective: A rule-based approach, Comput. Vision Graphics Im-
age Process. 36 (1986), 298-320.

R. Weiss and M. Boldt, Geometric grouping applied to straight
lines, Proceedings IEEE Conf. Computer Vision Pattern Recogni-
tion, Miami Beach, 1986, pp. 656-661.

R. Weiss, H. Nakatani, and E. M. Riseman, An error analysis
for surface orientation from vanishing points, IEEE Trans. Pattern
Anal. Mach. Intell. 12 (1990), 1179-1185.



