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Reliability of 3-D Reconstruction by Stereo Vision

Yasushi KANAZAWA' and Kenichi KANATANI', Members

SUMMARY  Theoretically, corresponding pairs of feature
points between two stereo images can determine their 3-D lo-
cations uniquely by triangulation. In the presence of noise, how-
ever, corresponding feature points may not satisfy the epipolar
equation exactly, so we must first correct the corresponding pairs
so as to satisfy the epipolar equation. In this paper, we present an
optimal correction method based on a statistical model of image
noise. Our method allows us to-evaluate the magnitude of image
noise a posteriori and compute the covariance matrix of each of
the reconstructed 3-D points. We demonstrate the effectiveness
of our method by doing numerical simulation and real-image
experiments.

key words: stereo vision, reliability of 3-D reconstruction, model
of image noise, epipolar equation, statistical optimization, noise
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1. Introduction

Stereo vision is one of the most fundamental means of
3-D sensing from images and is widely used as a visual
sensor for autonomous navigation of robots[1], [8]. In
the past, the study of stereo vision has mainly focused
on the correspondence detection between the two images.
In fact, detecting correspondences is a very difficult task
to automate efficiently, and many practical techniques
have been proposed for it[1]. However various other is-
sues arise when we reconstruct 3-D from detected corre-
spondences. First of all, the 3-D reconstruction should
be accurate. Hence, we must maximize the accuracy by
using an optimization technique based on the statistical
characteristic of image noise. At the same time, the re-
liability of the reconstructed 3-D must be evaluated [6],
[7]. If the errors involved in-the reconstructed 3-D can-
not be estimated, robots cannot take appropriate actions
to archive given tasks effectively. This paper presents a
new method for reconstructing 3-D by stereo vision in
a statistically optimal way and evaluating the reliability
of the reconstruction in quantitative terms.
Theoretically, we can easily determine 3-D from
corresponding pairs of feature points between the two
stereo images by triangulation. In the presence of noise,
however, the lines of sight determined by correspond-
ing feature points do not necessarily intersect in the 3-
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D scene. A simple method often used is computing
the nearest point from the corresponding lines of sight
by least squares. By this method, however, it is very
difficult to estimate the reliability of the reconstructed
position theoretically. In this paper, we first correct
each corresponding pair of feature points so that their
lines of sight intersect in the scene. We present an op-
timal scheme for this correction based on a statistical
model of image noise. Our method allows us to evaluate
the magnitude of image noise a posteriori and compute
the covariance matrix of each of the reconstructed 3-D
points. Finally, we demonstrate the effectiveness of our
method by doing numerical simulation and real-image
experiments.

2. Epipolar Geometry of Stereo Vision

We take the first camera as a reference coordinate sys-
tem and place the second camera in a position obtained
by translating the first camera by vector h and rotating
it around the center of the lens by matrix R. We call
{h, R} the motion (or stereo) parameters. The two cam-
eras may have different focal lengths f and f'.

Let (z,y) be the image coordinates of a feature
point projected onto the image plane of the first cam-
era, and (z', y') those for the second camera. We use the
following three-dimensional vectors to represent them:

z/f '/ f!
e=\{ y/f |, &= y/f |. (D
1 1

As shown in Fig. 1, vectors , Rx’, and h are
coplanar, so they satisfy the following epipolar equa-

dion[1], [2], [8]:
lz,h, Rz'| = 0. 2)

P

x ol \\ Rx,
A Y
p Z
Y o

Fig. 1 The camera model and the coordinates systems.
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Fig. 2 Epipolar constraint.

In this paper, |a, b, ¢| denotes the scalar triple product
of vectors a, b, and c. The essential matrix [1], [2], [8]
is defined by

G=hxR, 3)

where the right-hand side is the matrix defined by the
vector product of vector h and each column of R. The
epipolar equation (2) can be written as

(x,Gz') = 0. (4)

Throughout this paper, (a, b) denotes the inner product
of vectors a and b.

For a fixed value of z’, Eq. (4) is an equation of a
line on the image plane of the first camera. This line
is a projection of the line of sight that starts from the
origin O’ and passes through z’; it is called the epipo-
lar of x’. Similarly, Eq. (4) is an equation of a line on
the image plane of the second camera for a fixed value
of x; it is called the epipolar of x. Put differently, the
epipolars are the intersections of the image planes with
the plane defined by the two camera origins O and O’
and the feature point P that we are observing (Fig. 2).
Hence, the projection of a feature point on one image
plane must be on the epipolar of the corresponding fea-
ture point on the other image plane. This relationship
is called the epipolar constraint|[1], [2], [8].

3. Statistical Model of Image Noise

The epipolar equation implies that for a given point in
one image, we need to search only along the epipolar
in the other image for the corresponding point. In the
presence of noise, however, the epipolar constraint is
not exactly satisfied, so we must also search the neigh-
borhood of the epipolar. Correspondence pairs found
in this way do not necessarily satisfy the epipolar con-
straint. In this paper, we assume such a circumstance.

Let & and @' be corresponding points in the ab-
sence of image noise. In the presence of noise, we ob-
serve

c==%+ Az, ' =3 + Ax'. (5)

We regard the noise terms Az and Az’ as random vari-
ables of means 0 and covariance matrices

IEICE TRANS. INF. & SYST., VOL. E78-D, NO. 10 OCTOBER 1995

Fig. 3  Correction of feature points.

Viz] = E[AzAz"], Vx| = E[Az'Az’"],  (6)

where the symbol E[-] denotes expectation, and the su-
perscript T denotes transpose.

The absolute magnitude of the image noise is very
difficult to estimate a priori, but its geometric charac-
teristics, such as uniformity and isotropy, can be easily
predicted. Hence, we assume that the covariance matri-
ces are known only up to scale and write

Viz] = eVo[z], Via') =" Vola']. (M

We call the constant e the noise level, which indicates the
average magnitude of the image noise and is assumed
unknown. The matrices Vp[z] and Vy[z'] are called the
normalized covariance matrices and assumed known.

4. Optimal Correction of Feature Points

Since detected corresponding points & and x’ do not
necessarily satisfy the epipolar equation (4), we correct
@ and 2’ in the form

~ 1

=z Az, 2 =z - Az, 8)

so as to satisfy Eq. (4)(Fig.3):

(z— Aw,G(z' — Az')) = 0. )
Taking a linear approximation, we obtain

(Gx',Az) + (G z,Az') = (z,Gx’). (10)

This equation describes a hyperplane in the six-
dimensional space of Az and Az’; we are to find the
most likely values of Az and Az’ on this hyperplane.
If the distribution of the image noise is Gaussian, the
most likely values of Az and Az’ are given by the point
on this hyperplane nearest from origin O measured in
the Mahalanobis distance. We can write this condition
as the following optimization:

J=(Az, Vylz|” Az)+(Az', Volz']” Az’) — min.
(1D

Here, Vo[x|~ and Vy[a'|~ are the (Moore-Penrose) gen-
eralized inverses of Vp[z] and Vy[z'], respectively. In
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statistical terms, this minimization is equivalent to max-
imum likelihood estimation[4].

The solution of the minimization (11) under the
constraint (10) is given as follows (we omit the deriva-
tion [4]):

(z, G2 ) Vo z]Gz'
(x/,G Volz]Ga') + (z, GVo[2'|G T x)’
(x, Gz )V, 2’ |G x
(2, GTVolx|Ga') + (z, GVo[a'|G T a)
(12)

Ax =

Az =

Since Eq.(10) is obtained by a linear approxima-
tion, the corrected values & and & may not strictly sat-
isfy the epipolar equation (4). Hence, we repeat this
correction by letting @ + & and a’ «— &' until Eq. (4)
is sufficiently satisfied.

The corrected values & and &' are random vari-
ables, because they are computed from data. So let us
write & = Z + A% and &' = @’ + A2’. The normalized
a posteriori covariance matrices Vp[#] = E[AZA#® ]/
and Vp[&'] = E[A&'Ad&’"]/e? are obtained in the fol-
lowing form (we omit the derivation[4]):

Vo] = Vo]
(Vo[z)Ga') (Vo[z]G2")T
&, G Vo[z|Ga) + (&, GVo[2'|G ' &)’
Vol&'] = Vo[2']

_ (Vol21GT#) (Vola|G )T
&', G Vo[z|GE) + (&, GVola' |G &)
(13)
We also obtain the normalized a posteriori correlation
matrix Vo2, #'] = E[A&A&'"]/e? in the following form
(we omit the derivation[4]):
(Vol]Ga') (Vo[#']G T #) T

(&, GTVo[2]G#')+(&, GVh[2]G2)
(14)
Equation (14) implies that although the errors Az and

Ag’ are statistically independent, their corrected values
& and @ are correlated.

Vol, '] =

5. Reliability of 3-D Reconstruction

If the corrected values & and &' satisfy the epipolar
equation (4), the position r of the reconstructed point
is computed in the form

r= 74, (15)

where Z is the depth from the XY plane of the first

camera coordinate system. From the geometry shown

in Fig. 1, the depth Z is obtained in the following form:

(h x R&', & x R%")
& x R&'||

7 = (16)
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From Egq.(15), the covariance matrix of the recon-
structed 3-D position 7 is given in the following form:
Vir] = Z3ViE) + Z(Vie, Z)&" +a&Vi]a, Z]")

+V[Z)&a " (17)
In this equation, V[%], V[#'], and V&, &'] are, respec-
tively, the a posteriori covariance matrices and the a
posteriori correlation matrix given in the form

Viz] = EVola), Via'] = V[l
Vi, &'] = Vo2, 2']. (18)
The correlation vector V&, Z] and the variance V[Z] in

Eq.(17) are given in the following form (the derivation
is straightforward but lengthy[4]):

1
& x Ra/|]?
—277'(&/ Ve, @' |R"a)
+2"(@,RVI|RT&)), (19)

vz = ((z°@ viza)

ZV]#) - 2'V[E,&)a
(@', &)

(20)

Here, vectors @ and &’ are defined by

a=Nlhx#, & =axR&, @1

and the symbol N|-] denotes normalization into a unit
vector. The depth Z’ with respect to the second camera
is obtained from the geometry shown in Fig.1 in the
following form:

(& x h,& x R&")

Z =
& x R& |2

(22)

An unbiased estimator of the squared noise level €2 is
given by
5 (z, Gx')?

& = . 23
V1G] + Vo @ G2 29

This equation is a consequence of the fact that 1/¢2
times the residual of the optimization (11) is a x? vari-
able of one degree of freedom (we omit the details [4]).

The geometric interpretation of the above process is
schematically illustrated in Fig.4. The covariance ma-
trices Vx| and V[a'] define the Mahalanobis metric in
each image. An image is a two-dimensional space. A
correspondence pair of points determines a point in the
direct product space of the two images, and a natural
metric is introduced into this four-dimensional space in
the form of the direct product of the Mahalanobis met-
rics in the two images. The set of points that satisfy
the epipolar equation (4) defines a three-dimensional
manifold (hypersurface) in this four-dimensional space.
Since the direct product of corresponding points de-
tected in the presence of image noise is not necessarily
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Fig. 4 The principle of 3-D reconstruction by stereo vision.

in this manifold, the direct product point is projected
onto the nearest point in the manifold measured in the
above defined metric. At the same time, the covariance
matrix is projected onto the tangent space to this man-
ifold. The estimator of the squared noise level given by
Eq. (23) is simply the squared distance of this projec-
tion. The reconstructed position r and its covariance
matrix V[r] are obtained by the mapping defined by
Eqgs. (15) and (16): the three-dimensional manifold and
its tangent space are mapped into the three-dimensional
space defined by the first camera coordinate system.

6. Visualization of Reliability

Let A1, Ao, and A3 be the eigenvalues of the covari-
ance matrix V[r], and {u;,us,uz} the corresponding
orthonormal system of eigenvectors. We can define an
ellipsoid with axes w1, ug, and w3 and the correspond-
ing radii v/A1, v/ A2, and v/A3. This ellipsoid indicates
the reliability of the reconstructed 3-D point . We call
the inside of this ellipsoid the standard region.
Define

+
rt=r+ )\maxumax;

r=7r— /\maxumax; (24)

where A\pmax 18 the largest eigenvalue of V[r] and umax is
the corresponding unit eigenvector. The vector ©max in-
dicates the orientation of the most likely deviation, and
v/ Amax 18 the standard deviation in that orientation. By
displaying the vectors »* and r~, we can visualize the
reliability of the reconstructed point . We call these
two vectors the primary deviation pair.

7. Numerical Simulation

We illustrate the effectiveness of our method by doing
numerical simulation. We define a grid pattern on a
cylindrical surface placed in space and regard the grid
points as feature points (Fig.5(a)). The two cameras
are assumed to have the same focal length f = 600 (pix-
els). After projecting the feature points onto the image
planes, we add Gaussian random noise with standard
deviation 2 (pixels) to each coordinate independently.
Hence, the noise level € is equal to 1/300. The normal-
ized covariance matrices are
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Fig. 5  (a) Grid pattern of a cylindrical surface. (b) Simulated
stereo image with noise (left). (c) Simulated stereo image with
noise (right).

A

(a) (b)

Fig. 6 (a) Reconstructed positions by our method (a side
view). (b) Reconstructed positions by least squares (a side view).

Fig. 7 Standard regions of the grid points.

Volz] = Volz'] = 1 . (25)
0

However, the value of € is regarded as unknown in
the simulation. Figures 5(b) and 5(c) show simulated
stereo images. The shape reconstructed by our method
is shown in Fig.6(a). For the sake of comparison, we
show in Fig. 6 (b) the reconstruction by the usual least-
squares method (as mentioned in Sect.1). Although
the two results are almost identical, our method has the
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Fig. 8 (a) Left image. (b) Right image. (c) Grid pattern extracted from the left image.

Fig. 9 Reconstructed position and its reliability (a side view).

advantage that the reliability of the reconstructed 3-D
points is quantitatively evaluated. Figure 7 shows the
standard regions of the reconstructed grid points. The
true shape is drawn in dashed lines. We can see that
most of the true positions are inside of the ellipsoids.

8. Real Image Experiment

Figures 8(a) and 8(b) show real stereo images. We
regard the corners of the windows as feature points
(Fig.8(c)). Figure 9 shows the reconstructed 3-D
points. The 3-D shapes that envelope the primary devi-
ation pairs of the reconstructed grid points are drawn in
dashed lines. In this experiment, the distance between
the two cameras is very short as compared with the dis-
tance to this building (approximately 1/16). Also, the
noise level ¢ is estimated from the degree to which the
epipolar equation (4) is not satisfied, so the error in the
motion parameters {h, R} is treated as “image noise”.
As a result, the reliability of this reconstruction is com-
puted to be low. We can also see that the reliability of
the right side of the surface is lower than the left side
because the right side is farther away from the cameras
than the left side.

9. Conclusion

We have presented an optimal 3-D reconstruction
scheme for stereo vision by modeling statistical prop-
erties of image noise. It has turned out that the usual
least-squares method is almost optimal, so our method

does not improve the accuracy as far as the reconstructed
3-D shape is concerned. However, our method has the
advantage that not only an optimal 3-D reconstruction
but also its reliability can be computed in quantitative
terms. This has a great significance in robot operations
in real environments. We have also presented a scheme
for visualizing the reliability by means the “primary de-
viation pairs”.

In this paper, we did not assume any knowledge
about the shape of the object. If the object is known
to have a particular shape, say a planar surface, this
knowledge can be used to increase the accuracy of 3-D
reconstruction [7].
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