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Abstract
We classify and review existing algorithms for computing
the fundamental matrix from point correspondences and
propose new effective schemes: 7-parameter Levenberg-
Marquardt (LM) search, extended FNS, and EFNS-based
bundle adjustment. Doing experimental comparison, we
show that EFNS and the 7-parameter LM search exhibit
the best performance and that additional bundle adjustment
does not increase the accuracy to any noticeable degree.

1. Introduction

Computing the fundamental matrix from point corre-
spondences is the first step of many vision applications in-
cluding camera calibration, image rectification, structure
from motion, and new view generation [7]. This problem
has attracted a special attention because of the following
two characteristics:

1. Feature points are extracted by an image processing
operation [8, 15, 18, 21]. As s result, the detected lo-
cations invariably have uncertainty to some degree.

2. Detected points are matched by comparing surround-
ing regions in respective images, using various mea-
sures of similarity and correlation [13, 17, 24]. Hence,
mismatches are unavoidable to some degree.

The first problem has been dealt with by statistical opti-
mization [9]: we model the uncertainty as “noise” obeying
a certain probability distribution and compute a fundamen-
tal matrix such that its deviation from the true value is as
small as possible in expectation. The second problem has
been coped with by robust estimation [19], which can be
viewed as hypothesis testing: we compute a tentative fun-
damental matrix as a hypothesis and check how many points
support it. Those points regarded as “abnormal” according
to the hypothesis are called outliers, otherwise inliers, and
we look for a fundamental matrix that has as many inliers
as possible.

Thus, the two problems are inseparably interwoven. In
this paper, we focus on the first problem, assuming that all

corresponding points are inliers. Such a study is indispens-
able for any robust estimation technique to work success-
fully.

However, there is an additional compounding element
in doing statistical optimization of the fundamental ma-
trix: it is constrained to have rank 2, i.e., its determinant
is 0. This rank constraint has been incorporated in various
ways. Here, we categorize them into the following three
approaches:

A posteriori correction. The fundamental matrix is opti-
mally computed without considering the rank con-
straint and is modified in an optimal manner so that
the constraint is satisfied (Fig. 1(a)).

Internal access. The fundamental matrix is minimally pa-
rameterized so that the rank constraint is identically
satisfied and is optimized in the reduced (“internal”)
parameter space (Fig. 1(b)).

External access. We do iterations in the redundant (“ex-
ternal”) parameter space in such a way that an optimal
solution that satisfies the rank constraint automatically
results (Fig. 1(c)).

The purpose of this paper is to review existing methods
in this framework and propose new improved methods. In
particular, this paper contains the following three techni-
cally new results:

1. We present a new internal access method 1.
2. We present a new external access method 2.
3. We present a new bundle adjustment algorithm3.

Then, we experimentally compare their performance, using
simulated and real images.

In Sect. 2, we summarize the mathematical background.
In Sect. 3, we study the a posteriori correction approach.
We review two correction schemes (SVD correction and
optimal correction), three unconstrained optimization tech-
niques (FNS, HEIV, projective Gauss-Newton iterations),

1A preliminary version was presented in our conference paper [22].
2A preliminary version was presented in our conference paper [12].
3This has not been presented anywhere else.
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Figure 1. (a) A posteriori correction. (b) Internal access. (c) External access.

and two initialization methods (least squares (LS) and the
Taubin method).

In Sect. 4, we focus on the internal access approach
and present a new compact scheme for doing 7-parameter
Levenberg-Marquardt (LM) search. In Sect. 5, we inves-
tigate the external access approach and point out that the
CFNS of Chojnacki et al. [4], a pioneering external access
method, does not necessarily converge to a correct solu-
tion. To complement this, we present a new method, called
EFNS, and demonstrate that it always converges to an op-
timal value; a mathematical justification is given to this. In
Sect. 6, we compare the accuracy of all the methods and
conclude that our EFNS and the 7-parameter LM search
started from optimally corrected ML exhibit the best per-
formance.

In Sect. 7, we study the bundle adjustment (Gold Stan-
dard) approach and present a new efficient computational
scheme for it. In Sect. 8, we experimentally test the ef-
fect of this approach and conclude that additional bundle
adjustment does not increase the accuracy to any noticeable
degree. Sect. 9 concludes this paper.

2. Mathematical Fundamentals

Fundamental matrix. We are given two images of the
same scene. We take the image origin (0, 0) is at the frame
center. Suppose a point (x, y) in the first image and the cor-
responding point (x′, y′) in the second. We represent them
by 3-D vectors

x =

 x/f0

y/f0

1

 , x′ =

 x′/f0

y′/f0

1

 , (1)

where f0 is a scaling constant of the order of the image
size4. Then, the following the epipolar equation is satisfied
[7]:

(x, Fx′) = 0, (2)

where and throughout this paper we denote the inner prod-
uct of vectors a and b by (a, b). The matrix F = (Fij)

4This is for stabilizing numerical computation [6]. In our experiments,
we set f0 = 600 pixels.

in Eq. (2) is of rank 2 and called the fundamental matrix;
it depends on the relative positions and orientations of the
two cameras and their intrinsic parameters (e.g., their fo-
cal lengths) but not on the scene or the choice of the corre-
sponding points.

If we define5

u = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (3)

ξ = (xx′, xy′, xf0, yx′, yy′, yf0, f0x
′, f0y

′, f2
0 )>, (4)

Equation (2) can be rewritten as

(u, ξ) = 0. (5)

The magnitude of u is indeterminate, so we normalize it to
‖u‖ = 1, which is equivalent to scaling F so that ‖F ‖ = 1.
With a slight abuse of symbolism, we hereafter denote by
det u the determinant of the matrix F defined by u.

If we write N observed noisy correspondence pairs as
9-D vectors {ξα} in the form of Eq. (4), our task is to esti-
mate from {ξα} a 9-D vector u that satisfies Eq. (5) subject
to the constraints ‖u‖ = 1 and det u = 0.

Covariance matrices. Let us write ξα = ξ̄α + ∆ξα, where
ξ̄α is the true value and ∆ξα the noise term. The covariance
matrix of ξα is defined by

V [ξα] = E[∆ξα∆ξ>
α ], (6)

where E[ · ] denotes expectation over the noise distribution.
If the noise in the x- and y-coordinates is independent and
of mean 0 and standard deviation σ, the covariance matrix
of ξα has the form V [ξα] = σ2V0[ξα] up to O(σ4), where

V0[ξα] =



x̄2
α + x̄′2

α x̄′
αȳ′

α f0x̄
′
α x̄αȳα

x̄′
αȳ′

α x̄2
α + ȳ′2

α f0ȳ
′
α 0

f0x̄
′
α f0ȳ

′
α f2

0 0
x̄αȳα 0 0 ȳ2

α + x̄′2
α

0 x̄αȳα 0 x̄′
αȳ′

α

0 0 0 f0x̄
′
α

f0x̄α 0 0 f0ȳα

0 f0x̄α 0 0
0 0 0 0

5The vector ξ is known as the “Kronecker product” of the vectors
(x, y, f0)> and (x′, y′, f0)>.
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Figure 2. The deviation is projected onto the tan-
gent space, with which we identify the noise do-
main.

0 0 f0x̄α 0 0
x̄αȳα 0 0 f0x̄α 0

0 0 0 0 0
x̄′

αȳ′
α f0x̄

′
α f0ȳα 0 0

ȳ2
α + ȳ′2

α f0ȳ
′
α 0 f0ȳα 0

f0ȳ
′
α f2

0 0 0 0
0 0 f2

0 0 0
f0ȳα 0 0 f2

0 0
0 0 0 0 0


, (7)

In actual computations, the true positions (x̄α, ȳα) and
(x̄′

α, ȳ′
α) are replaced by their data (xα, yα) and (x′

α, y′
α),

respectively6.
We define the covariance matrix V [û] of the resulting

estimate û of u by

V [û] = E[(P U û)(P U û)>], (8)

where P U is the linear operator projecting R9 onto the do-
main U of u defined by the constraints ‖u‖ = 1 and det u
= 0; we evaluate the error of û by projecting it onto the
tangent space Tu(U) to U at u (Fig. 2) [9].

Geometry of the constraint. The unit normal to the hyper-
surface defined by det u = 0 is ∇u detu. After normaliza-
tion, it has the form

u† ≡ N [



u5u9 − u8u6

u6u7 − u9u4

u4u8 − u7u5

u8u3 − u2u9

u9u1 − u3u7

u7u2 − u1u8

u2u6 − u5u3

u3u4 − u6u1

u1u5 − u4u2


], (9)

where N [ · ] denotes normalization into unit norm7. It is
easily seen that the rank constraint det u = 0 is equivalently

6Experiments have confirmed that this does not noticeable changes in
final results.

7The inside of N [ · ] represents the “cofactor” of F in the vector form.

written as
(u†, u) = 0. (10)

Since the domain U is included in the unit sphere S8 ⊂
R9, the vector u is everywhere orthogonal to U . Hence, {u,
u†} is an orthonormal basis of the orthogonal complement
of the tangent space Tu(U). It follows that the projection
operator P U in Eq. (8) has the following matrix representa-
tion (I denotes the unit matrix):

P U = I − uu> − u†u†>. (11)

KCR lower bound. If the noise in {ξα} is independent and
Gaussian with mean 0 and covariance matrix σ2V0[ξα], the
following inequality holds for an arbitrary unbiased estima-
tor û of u [9]:

V [û] Â σ2
( N∑

α=1

(P U ξ̄α)(P U ξ̄α)>

(u, V0[ξα]u)

)−

8
. (12)

Here, Â means that the left-hand side minus the right is
positive semidefinite, and ( · )−r denotes the pseudoinverse
of rank r. Chernov and Lesort [2] called the right-hand side
of Eq. (12) the KCR (Kanatani-Cramer-Rao) lower bound
and showed that Eq. (12) holds up to O(σ4) even if û is not
unbiased; it is sufficient that û → u as σ → 0.

Maximum likelihood. If the noise in {ξα} is independent
and Gaussian with mean 0 and covariance matrix σ2V0[ξα],
maximum likelihood (ML) estimation of u is to minimize
the sum of square Mahalanobis distances

J =
N∑

α=1

(ξα − ξ̄α, V0[ξα]−4 (ξα − ξ̄α)), (13)

subject to (u, ξ̄α) = 0, α = 1, ..., N . Geometrically, we are
fitting a hyperplane (u, ξ) = 0 in the ξ-space to N points
{ξα} as closely as possible; the closeness is measured not
in the Euclidean sense but in the Mahalanobis distance in-
versely weighted by the covariance matrix V0[ξα] represent-
ing the uncertainty of each datum.

Eliminating the constraints (u, ξ̄α) = 0 by using La-
grange multipliers, we obtain [9]

J =
N∑

α=1

(u, ξα)2

(u, V0[ξα]u)
. (14)

The ML estimator û minimizes this subject to the normal-
ization ‖u‖ = 1 and the rank constraint (u†,u) = 0.

3. A Posteriori Correction

3.1. Correction schemes

The a posteriori correction approach first minimizes
Eq. (14) without considering the rank constraint and
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then modifies the resulting solution ũ so as to satisfy it
(Fig. 1(a)).

SVD correction. A naive idea is to compute the singular
value decomposition (SVD) of the computed fundamental
matrix and replace the smallest singular value by 0, result-
ing in a matrix of rank 2 “closest” to the original one in
Frobenius norm [6]. We call this SVD correction.

Optimal correction. A more sophisticated method is the
optimal correction [9, 16]. According to the statistical opti-
mization theory [9], the covariance matrix V [ũ] of the rank
unconstrained solution ũ can be evaluated, so ũ is moved
in the direction of the mostly likely fluctuation implied by
V [ũ] until it satisfies the rank constraint (Fig. 1(a)). The
procedure goes as follows [9]:

1. Compute the following 9 × 9 matrix M̃ :

M̃ =
N∑

α=1

ξαξ>
α

(ũ, V0[ξα]ũ)
. (15)

2. Compute the matrix V0[ũ] as follows:

V0[ũ] = (P ũM̃P ũ)−8 , (16)

where
P ũ = I − ũũ>. (17)

3. Update the solution ũ as follows (ũ† is defined by
Eq. (9) for ũ):

ũ ← N [ũ − 1
3

(ũ, ũ†)V0[ũ]ũ†

(ũ†, V0[ũ]ũ†)
]. (18)

4. If (ũ, ũ†) ≈ 0, return ũ and stop. Else, update P ũ and
V0[ũ] in the form

P ũ ← I − ũũ>, V0[ũ] ← P ũV0[ũ]P ũ, (19)

and go back to Step 3.

Explanation. Since ũ is a unit vector, its endpoint is on
the unit sphere S8 in R9. Eq. (18) is essentially the New-
ton iteration formula for displacing ũ in the direction in the
tangent space Tũ(S8) along which J is least increased so
that (ũ†, ũ) = 0 is satisfied. However, ũ deviates from S8

by a small distance of high order as it proceeds in Tũ(S8),
so we pull it back onto S8 using the operator N [ · ]. From
that point, the same procedure is repeated until (ũ†, ũ) = 0.
However, the normalized covariance matrix V0[ũ] is defined
in the tangent space Tũ(S8), which changes as ũ moves.
Eq. (19) corrects it so that V0[ũ] has the domain Tũ(S8) at
the displaced point ũ.

3.2. Unconstrained ML

Before imposing the rank constraint, we need to solve
unconstrained minimization of Eq. (14), for which many
method exist including FNS [3], HEIV [14], and the pro-
jective Gauss-Newton iterations [11]. Their convergence
properties were studies in [11].

FNS. The FNS (Fundamental Numerical Scheme) of Cho-
jnacki et al. [3] is based on the fact that the derivative of
Eq. (14) with respect to u has the form

∇uJ = 2Xu, (20)

where X has the following form [3]:

X = M − L, (21)

M =
N∑

α=1

ξαξ>
α

(u, V0[ξα]u)
, L =

N∑
α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

.

(22)
The FNS solves

Xu = 0. (23)

by the following iterations [3, 11]:

1. Initialize u.
2. Compute the matrix X in Eq. (21).
3. Solve the eigenvalue problem

Xu′ = λu′, (24)

and compute the unit eigenvector u′ for the smallest
eigenvalue λ.

4. If u′ ≈ u up to sign, return u′ and stop. Else, let u ←
u′ and go back to Step 2.

Originally, the eigenvalue closest to 0 was chosen [3] in
Step 3. Later, Chojnacki, et al. [5] pointed out that the
choice of the smallest eigenvalue improves the convergence.
This was also confirmed by the experiments of Kanatani and
Sugaya [11].

Whichever eigenvalue is chosen for λ, we have λ = 0
after convergence. In fact, convergence means

Xu = λu (25)

for some u. Computing the inner product with u on both
sides, we have

(u, Xu) = λ, (26)

but from Eq. (30) we have the identity (u, Xu) = 0 in u.
Hence, λ = 0, and u is the desired solution.

HEIV. Equation (23) is rewritten as

Mu = Lu. (27)
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We introduce a new 8-D vector v, 8-D data vectors zα, and
their 8 × 8 normalized covariance matrices V|0[zα] by

ξα =
(

zα

f2
0

)
, u =

(
v

F33

)
,

V0[ξα] =
(

V0[zα] 0
0> 0

)
, (28)

and define 8 × 8 matrices

M̃ =
N∑

α=1

z̃αz̃>
α

(v, V0[zα]v)
, L̃ =

N∑
α=1

(v, z̃α)2V0[zα]
(v, V0[zα]v)2

,

(29)
where we put

z̃α = zα − z̄,

z̄ =
N∑

α=1

zα

(v, V0[zα]v)

/
N∑

β=1

1
(v, V0[zβ ]v)

. (30)

Then, Eq. (27) splits into the following two equations [5,
14]:

M̃v = L̃v, (v, z̄) + f2
0 F33 = 0. (31)

Hence, if an 8-D vector v that satisfies the first equation is
computed, the second equation gives F33, and we obtain

u = N
[( v

F33

)]
. (32)

The HEIV (Heteroscedastic Errors-in-Variable) of Leedan
and Meer [14] computes the vector v that satisfies the first
of Eqs. (31) by the following iterations [5, 14]:

1. Initialize v.
2. Compute the matrices M̃ and L̃ in Eqs. (29).
3. Solve the generalized eigenvalue problem

M̃v′ = λL̃v′, (33)

and compute the unit generalized eigenvector v′ for the
smallest generalized eigenvalue λ.

4. If v′ ≈ v except for sign, return v′ and stop. Else, let
v ← v′ and go back to Step 2.

In order to reach the solution of Eqs. (31), it appears natural
to choose the generalized eigenvalue λ in Eq. (33) to be the
one closest 1. However, Leedan and Meer [14] observed
that choosing the smallest one improves the convergence
performance. This was also confirmed by the experiments
of Kanatani and Sugaya [11].

Whichever generalized eigenvalue is chosen for λ, we
have λ = 1 after convergence. In fact, convergence means

M̃v = λL̃v (34)

for some v. Computing the inner product of both sides with
v, we have

(v,M̃v) = λ(v, L̃v), (35)

but from Eqs. (29) we have the identity (v,M̃v) = (v, L̃v)
in v. Hence, λ = 1, and u is the desired solution.

Projective Gauss-Newton iterations. Since the gradient
∇uJ is given by Eq. (20), we can minimize the function J
by Newton iterations. If we evaluate the Hessian ∇2

uJ , the
increment ∆u in u is determined by solving

(∇2
uJ)∆u = −∇uJ. (36)

However, ∇2
uJ is singular, since J is constant in the direc-

tion of u (see Eq. (14)). Hence, the solution is indetermi-
nate. However, if we use pseudoinverse and compute

∆u = −(∇2
uJ)−8 ∇uJ, (37)

we obtain a solution orthogonal to u.
Differentiating Eq. (20) and introducing Gauss-Newton

approximation (i.e., ignoring terms that contain (u, ξα)),
we see that the Hessian is nothing but the matrix 2M in
Eqs. (22). We enforce M to have eigenvalue 0 for u, using
the projection matrix

P u = I − uu> (38)

onto the direction orthogonal to u. The iteration procedure
goes as follows:

1. Initialize u.
2. Compute

u′ = N [u − (P uMP u)−8 (M − L)u]. (39)

3. If u′ ≈ u, return u′ and stop. Else, let u ← u′ and go
back to Step 2.

3.3. Initialization

The FNS, the HEIV, and the projective Gauss-Newton
are all iterative method, so they require initial values. The
best known non-iterative procedures are the least squares
and the Taubin method.

Least squares (LS). This is the most popular method, also
known as the algebraic distance minimization or the 8-point
algorithm [6]. Approximating the denominators in Eq. (14)
by a constant, we minimize

JLS =
N∑

α=1

(u, ξα)2 = (u,MLSu), (40)

where we define

MLS =
N∑

α=1

ξαξ>
α . (41)
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Equation (40) is minimized by the unit eigenvalue u of
MLS for the smallest eigenvalue.

Taubin’s method. Replacing the denominators in Eq. (14)
by their average, we minimize the following function8 [23]:

JTB =
∑N

α=1(u, ξα)2∑N
α=1(u, V0[ξα]u)

=
(u, MLSu)
(u, NTBu)

. (42)

The matrix NTB has the form

NTB =
N∑

α=1

V0[ξα]. (43)

Equation (42) is minimized by solving the generalized
eigenvalue problem

MLSu = λNTBu (44)

for the smallest generalized eigenvalue. However, we can-
not directly solve this, because NTB is not positive defi-
nite. So, we decompose ξα, u, and V0[ξα] in the form of
Eqs. (28) and define 8 × 8 matrices M̃LS and ÑTB by

M̃LS =
N∑

α=1

z̃αz̃>
α , ÑLS =

N∑
α=1

V0[zα], (45)

where

z̃α = zα − z̄, z̄ =
1
N

N∑
α=1

zα. (46)

Then, Eq. (44) splits into two equations

M̃LSv = λÑTBv, (v, z̄) + f2
0 F33 = 0. (47)

We compute the unit generalized eigenvector v of the first
equation for the smallest generalized eigenvalue λ. The
second equation gives F33, and u is given in the form of
Eq. (32). It has been shown that Taubin’s method produces
a very accurate close to the unconstrained ML solution [11].

4. Internal Access

The fundamental matrix F has nine elements, on which
the normalization ‖F ‖ = 1 and the rank constraint det u =
0 are imposed. Hence, it has seven degrees of freedom. The
internal access minimizes Eq. (14) by searching the reduced
7-D parameter space (Fig. 1(b)).

Many types of 7-degree parameterizations have been
obtained, e.g., by algebraic elimination of the rank con-
straint or by expressing the fundamental matrix in terms
of epipoles [20, 25], but the resulting expressions are com-
plicated, and the geometric meaning of the individual un-
knowns are not clear. This was overcome by Bartoli and

8Taubin [23] did not take the covariance matrix into account. This is a
modification of his method.

Sturm [1], who regarded the SVD of F as its parameter-
ization. Their expression is compact, and each parameter
has its geometric meaning. However, they included, in ad-
dition to F , the tentatively reconstructed 3-D positions of
the observed feature points, the relative positions of the
two cameras, and their intrinsic parameters as unknowns
and minimized the reprojection error; such an approach is
known as bundle adjustment. Since the tentative 3-D recon-
struction from two images is indeterminate, they chose the
one for which the first camera matrix is in a particular form
(“canonical form”).

Here, we point out that we can avoid this complication by
directly minimizing Eq. (14) by the Levenberg-Marquardt
(LM) method, using the parameterization of Bartoli and
Sturm [1] (a preliminary version was presented in our con-
ference paper [22]).

The fundamental matrix F has rank 2, so its SVD has
the form

F = Udiag(σ1, σ2, 0)V>, (48)

where U and V are orthogonal matrices, and σ1 and σ2

are the singular values. Since the normalization ‖F ‖2 = 1
is equivalent to σ2

1 + σ2
2 = 1 (Appendix A), we adopt the

following parameterization9:

σ1 = cos θ, σ2 = sin θ. (49)

The orthogonal matrices U and V have three degrees of
freedom each, so they and θ constitute the seven degrees
of freedom. However, the analysis becomes complicated if
U and V are directly expressed in three parameters each
(e.g., the Euler angles or the rotations around each coordi-
nate axis). Following Bartoli and Sturm [1], we adopt the
“Lie algebraic method”: we represent the “increment” in U
and V by three parameters each. Let ω1, ω2, and ω3 rep-
resent the increment in U , and ω′

1, ω′
2, and ω′

3 in V . The
derivatives of Eq. (14) with respect to them are as follows
(Appendix A):

∇ωJ = 2F>
UXu, ∇ω′J = 2F>

V Xu. (50)

Here, X is the matrix in Eq. (21), and F U , and F V are
defined by

F U =



0 F31 −F21

0 F32 −F22

0 F33 −F23

−F31 0 F11

−F32 0 F12

−F33 0 F13

F21 −F11 0
F22 −F12 0
F23 −F13 0


,

9Bartoli and Sturm [1] took the ratio γ = σ2/σ1 as a variable. Here,
we adopt the angle θ for the symmetry. As is well known, it has the value
π/4 (i.e., σ1 = σ2) if the principal point is at the origin (0, 0) and if there
are no image distortions [7, 9].
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F V =



0 F13 −F12

−F13 0 F11

F12 −F11 0
0 F23 −F22

−F23 0 F21

F22 −F21 0
0 F33 −F32

−F33 0 F31

F32 −F31 0


. (51)

The derivative of Eq. (14) with respect to θ has the form
(Appendix A)

∂J

∂θ
= 2(uθ,Xu), (52)

where we define

uθ =



U12V12 cos θ − U11V11 sin θ
U12V22 cos θ − U11V21 sin θ
U12V32 cos θ − U11V31 sin θ
U22V12 cos θ − U21V11 sin θ
U22V22 cos θ − U21V21 sin θ
U22V32 cos θ − U21V31 sin θ
U32V12 cos θ − U31V11 sin θ
U32V22 cos θ − U31V21 sin θ
U32V32 cos θ − U31V31 sin θ


. (53)

Adopting Gauss-Newton approximation, which amounts to
ignoring terms involving (u, ξα), we obtain the second
derivatives as follows (Appendix A):

∇2
ωJ = 2F>

UMF U , ∇2
ω′J = 2F>

V MF V ,

∇ωω′J = 2F>
UMF V , 2

∂J2

∂θ2
= (uθ, Muθ),

∂∇ωJ

∂θ
= 2F>

UMuθ,
∂∇ω′J

∂θ
= 2F>

V Muθ. (54)

The 7-parameter LM search goes as follows:

1. Initialize F = Udiag(cos θ, sin θ, 0)V>.
2. Compute J in Eq. (14), and let c = 0.0001.
3. Compute F U , F V , and uθ in Eqs. (51) and (53).
4. Compute X in Eq. (21), the first derivatives in

Eqs. (50) an (52), and the second derivatives in
Eqs. (54).

5. Compute the following matrix H:

H =

 ∇2
ωJ ∇ωω′J ∂∇ωJ/∂θ

(∇ωω′J)> ∇2
ω′J ∂∇ω′J/∂θ

(∂∇ωJ/∂θ)> (∂∇ω′J/∂θ)> ∂J2/∂θ2

 .

(55)
6. Solve the 7-D simultaneous linear equations

(H + cD[H])

 ω
ω′

∆θ

 = −

 ∇ωJ
∇ω′J
∂J/∂θ

 , (56)

for ω, ω′, and ∆θ, where D[ · ] denotes the diagonal
matrix obtained by taking out only the diagonal ele-
ments.

7. Update U , V , and θ by

U ′ = R(ω)U , V ′ = R(ω′)V , θ′ = θ + ∆θ, (57)

where R(ω) denotes rotation around N [ω] by angle
‖ω‖.

8. Update F as follows:

F ′ = U ′diag(cos θ′, sin θ′, 0)V ′>. (58)

9. Let J ′ be the value of Eq. (14) for F ′.
10. Unless J ′ < J or J ′ ≈ J , let c ← 10c, and go back to

Step 6.
11. If F ′ ≈ F , return F ′ and stop. Else, let F ← F ′, U

← U ′, V ← V ′, θ ← θ′, and c ← c/10, and go back to
Step 3.

5. External Access

The external access approach does iterations in the 9-D
u-space in such a way that an optimal solution satisfying the
rank constraint automatically results (Fig. 1(c)). The con-
cept dates back to such heuristics as introducing penalties
to the violation of the constraints or projecting the solution
onto the surface of the constraints in the course of iterations,
but it is Chojnacki et al. [4] that first presented a systematic
scheme, which they called CFNS.

Stationarity Condition. According to the variational prin-
ciple, the necessary and sufficient condition for the function
J to be stationary at a point u in S8 in R9 is that its gradient
∇uJ is orthogonal to the hypersurface defined by det u =
0 or by Eq. (10), and its surface normal is given by u† in
Eq. (9). However, ∇uJ = Xu is always tangent to S8, be-
cause of the identity (u,∇uJ) = (u, Xu) = 0 in u. Hence,
∇uJ should be parallel to u†. This means that if we define
the projection matrix

P u† = I − u†u†> (59)

onto the direction orthogonal to u†, the stationarity condi-
tion is written as

P u†Xu = 0. (60)

The rank constraint of Eq. (10) is written as P u†u = u.
Combined with Eq. (60), the desired solution should be
such that

Yu = 0, P u†u = u, (61)

where we define

Y = P u†XP u† . (62)

CFNS. Chojnacki et al. [4] showed that the stationarity con-
dition of Eqs. (61) is written as a single equation in the form

Qu = 0, (63)

where Q is a rather complicated symmetric matrix. They
proposed to solve this by iterations in the same form as their
FNS and called it CFNS (Constrained FNS):
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1. Initialize u.
2. Compute the matrix Q.
3. Solve the eigenvalue problem

Qu′ = λu′, (64)

and compute the unit eigenvector u′ for the eigenvalue
λ closest to 0.

4. If u′ ≈ u up to sign, return u′ and stop. Else, let u ←
u′, and go back to Step 2.

Infinitely many candidates exist for the matrix Q with
which the problem is written as Eq. (13), but not all of them
allow the above iterations to converge. Chojnacki et al. [4]
gave one (see Appendix B), but the derivation is not written
in their paper. Later, we show that CFNS does not necessar-
ily converge to a correct solution.

EFNS. We now present a new iterative scheme, which we
call EFNS (Extended FNS), for solving Eqs. (61) (a prelim-
inary version was presented in a more abstract form in our
conference paper [12]). The procedure goes as follows:

1. Initialize u.
2. Compute the matrix X in Eq. (21).
3. Computer the projection matrix P u† (u† is defined by

Eq. (9)):
P u† = I − u†u†>. (65)

4. Compute the matrix Y in Eq. (62).
5. Solve the eigenvalue problem

Yv = λv, (66)

and compute the two unit eigenvectors v1 and v2 for
the smallest eigenvalues in absolute terms.

6. Compute the following vector û:

û = (u, v1)v1 + (u, v2)v2 (67)

7. Compute
u′ = N [P u†û]. (68)

8. If u′ ≈ u, return u′ and stop. Else, let u ← N [u+u′]
and go back to Step 2.

Justification. We first show that when the above itera-
tions have converged, the eigenvectors v1 and v2 both have
eigenvalue 0. From the definition of Y in Eq. (62) and P u†

in Eq. (65), u† is always an eigenvector of Y with eigen-
value 0 and is equal to u† up to sign. This means that ei-
ther v1 or v2 has eigenvalue 0. Suppose one, say v1, has
nonzero eigenvalue λ ( 6= 0). Then, v2 = ±u†.

By construction, the vector û in Eq. (67) belongs to the
linear span of v1 and v2 (= ±u†) and the vector u′ in
Eq. (68) is a projection of û within that linear span onto the
direction orthogonal to u†. Hence, it coincides with ±v1.

Figure 3. Simulated images of planar grid sur-
faces.

The iterations converge when u = u′ (= ±v1). Thus, v1 is
an eigenvector of Y with eigenvalue λ. Hence, u also satis-
fies Eq. (66). Computing the inner product with u on both
sides, we have

(u,Yu) = λ. (69)

On the other hand, u (= ±v1) is orthogonal to u† (= ±v2),
so

P u†u = u. (70)

Hence,

(u, Yu) = (u,P u†XP u†u) = (u, Xu) = 0, (71)

since (u, Xu) = 0 is an identity in u (see Eqs. (30)).
Eqs. (69) and (71) contradict our assumption that λ 6= 0.
So, v1 is also an eigenvector of Y with eigenvalue 0. 2

It follows that both Xu = 0 and Eq. (70) hold, and thus
u is the desired solution. Of course, this conclusion relies
on the premise that the iterations converge. According to
our experience, if we let u ← u′ in Step 9, the next value
of u′ computed in Step 8 often reverts to the former value
of u, falling in infinite looping. So, we update u to the
“midpoint” (u′ + u)/2 and normalized it to a unit vector
N [u′ + u] in Step 9. By this, the iterations converged in all
of our experiments.

CFNS vs. EFNS. Figure 3 shows simulated images of two
planar grid surfaces viewed from different angles. The im-
age size is 600×600 pixels with 1200 pixel focal length. We
added random Gaussian noise of mean 0 and standard devi-
ation σ to the x- and y-coordinates of each grid point inde-
pendently and from them computed the fundamental matrix
by CFNS and EFNS.

Figure 4 shows a typical instance (σ = 1) of the con-
vergence of the determinant det F and the residual J from
different initial values. In the final step, detF is forced to
be 0 by SVD, as prescribed by Chojnacki et al. [4]. The
dotted lines show the values to be converged.

The LS solution has a very low residual J , since the rank
constraint det F = 0 is ignored. So, J needs to be increased
to achieve detF = 0, but CFNS fails to do so. As a result,
det F remains nonzero and drops to 0 by the final SVD cor-
rection, causing a sudden jump in J . If we start from SVD-
corrected LS, the residual J first increases, making det F
nonzero, but in the end both J and det F converge in an
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Figure 4. The convergence of det F and the resid-
ual J (σ = 1) for different initializations: LS (solid
line), SVD-corrected LS (dashed line), and the
true value (chained line). All solutions are SVD-
corrected in the final step.
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Figure 5. The results by EFNS corresponding to
Fig. 5.

expected way. In contrast, the true value has a very large J ,
so CFNS tries to decrease it sharply at the cost of too much
increase in det F , which never reverts to 0 until the final
SVD. Figure 5 shows corresponding results by EFNS. Both
J and det F converge to their correct values with stably
attenuating oscillations. Figures 6 and 7 show the results
corresponding to Fig. 4 and 5 for another instance (σ = 3).
We can observe similar behavior of CFNS and EFNS.

We mean by “convergence” the state of the same solution
repeating itself in the course of iterations. In mathematical
terms, the resulting solution is a fixed point of the iteration
operator, i.e., the procedure to update the current solution.
In [4], Chojnacki et al. [4] proved that the solution u satis-
fying Eqs. (61) is a fixed point of their CFNS. Apparently,
they expected to arrive at that solution by their scheme. As
demonstrated by Figs. 4, and 6, however, CFNS has many
other fixed points, and which to arrive at depends on initial-
ization. In contrast, we have proved that any fixed point of
EFNS is necessarily the desired solution. This cannot be
proved for CFNS.

6. Accuracy Comparison

Using the simulated images in Fig. 3, we compare the
accuracy of the following methods:

1) SVD-corrected LS (Hartley’s 8-point method),
2) SVD-corrected ML,
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Figure 6. The convergence of det F and the resid-
ual J (σ = 3) for different initializations: LS (solid
line), SVD-corrected LS (dashed line), and the
true value (chained line). All solutions are SVD-
corrected in the final step.
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Figure 7. The results by EFNS corresponding to
Fig. 6.

3) CFNS of Chojnacki et al.
4) Optimally corrected ML,
5) 7-parameter LM.
6) EFNS.

For brevity, we use the shorthand “ML” for uncon-
strained minimization of Eq. (14). For this, we used the
FNS of Chojnacki et al. [3] initialized by LS. We confirmed
that FNS, HEIV, and the projective Gauss-Newton iterations
all converged to the same solution (up to rounding errors),
although the speed of convergence varies (see [11] for the
convergence comparison). We initialized the 7-parameter
LM, CFNS, and EFNS by LS. All iterations are stopped
when the update of F is less than 10−6 in norm.

Figure 8 plots for σ on the horizontal axis the following
root-mean-square (RMS) error D corresponding to Eq. (8)
over 10000 independent trials:

D =

√√√√ 1
10000

10000∑
a=1

‖P U û(a)‖2. (72)

Here, û(a) is the ath value, and P U is the projection matrix
in Eq. (11); since the solution is always normalized into a
unit vector, we measure the deviation of û(a) from u by
orthogonally projecting û(a) onto the tangent space Tu(U)
to U at u (see Eq. 8 and Fig. 2). The dotted line is the
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Figure 8. The RMS error D vs. noise level σ for
Fig. 3. 1) SVD-corrected LS. 2) SVD-corrected
ML. 3) CFNS. 4) Optimally corrected ML. 5) 7-
parameter LM. 6) EFNS. The dotted line indicates
the KCR lower bound.

Figure 9. Simulated images of a spherical grid
surface.

bound implied by the KCR lower bound (the trace of the
right-hand side of Eq. (12)).

Note that the RMS error describes the “variation” from
the true value; the computed solution is sometimes very
close to the true value, other times very far from it, and D
measures the “standard deviation”.

Figure 9 shows simulated images (600 × 600 pixels) of
a spherical grid surface viewed from different angles. We
did similar experiments. Figure 10 shows the results corre-
sponding to Fig. 8.

Preliminary observations. We can see that SVD-corrected
LS (Hartley’s 8-point algorithm) performs very poorly. We
can also see that SVD-corrected ML is inferior to optimally
corrected ML, whose accuracy is close to the KCR lower
bound. The accuracy of the 7-parameter LM is nearly the
same as optimally corrected ML when the noise is small
but gradually outperforms it as the noise increases. Best
performing is EFNS, exhibiting nearly the same accuracy
as the KCR lower bound. The CFNS performs as poorly
as SVD-corrected ML, because, as we observed in the pre-
ceding section, it is likely to stop at the unconstrained ML
solution (we forced the determinant to be zero by SVD).

Doing many experiments (not all shown here), we have
observed that:

i) The EFNS stably achieves the highest accuracy over a
wide range of the noise level.

 0
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 0  1  2σ

1

2

3

4

5

6

Figure 10. The RMS error D vs. noise level σ for
Fig. 9. 1) SVD-corrected LS. 2) SVD-corrected
ML. 3) CFNS. 4) Optimally corrected ML. 5) 7-
parameter LM. 6) EFNS. The dotted line indicates
the KCR lower bound.

ii) Optimally corrected ML is fairly accurate and very ro-
bust to noise but gradually deteriorates as noise grows.

iii) The 7-parameter LM achieves very high accuracy
when started from a good initial value but is likely to
fall into local minima if poorly initialized.

The robustness of EFNS and optimally corrected ML is
due to the fact that the computation is done in the redun-
dant (“external”) u-space, where J has a simple form of
Eq. (14). In fact, we have never experienced local minima in
our experiments. The deterioration of optimally corrected
ML in the presence of large noise is because linear approx-
imation is involved in Eq. (18).

The fragility of the 7-parameter LM is attributed to the
complexity of the function J when expressed in seven pa-
rameters, resulting in many local minima in the reduced
(“internal”) parameter space, as pointed out in [20].

Thus, the optimal correction of ML and the 7-parameter
ML have complementary characteristics, which suggests
that the 7-parameter ML started from optimally corrected
ML may exhibit comparable accuracy to EFNS. We now
confirm this.

Detailed observations. Figure 11 compares for the images
in Fig. 3:

1) optimally corrected ML.
2) 7-parameter LM started from LS.
3) 7-parameter LM started from optimally corrected ML.
4) EFNS.

For visual ease, we plot in Fig. 11(a) the ratio D/DKCR

of D in Eq. (72) to the corresponding KCR lower bound.
Figure 11(b) plots the average residual Ĵ (minimum of
Eq. (14)). Since direct plots of Ĵ nearly overlap, we plot
here the difference Ĵ − (N − 7)σ2, where N is the number
of corresponding pairs. This is motivated by the fact that
to a first approximation Ĵ/σ2 is subject to a χ2 distribution
with N − 7 degrees of freedom [9], so the expectation of
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Figure 11. The RMS error and the average resid-
ual for Fig. 3. 1) Optimally corrected ML. 2) 7-
parameter LM started from LS. 3) 7-parameter LM
started from optimally corrected ML. 4) EFNS.
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Figure 12. The RMS error and the average resid-
ual for Fig. 9. 1) Optimally corrected ML. 2) 7-
parameter LM started from LS. 3) 7-parameter LM
started from optimally corrected ML. 4) EFNS.

Ĵ is approximately (N − 7)σ2. Figure 12 shows the corre-
sponding results for Fig. 9. We observe:

i) The RMS error of optimally corrected ML increases as
noise increases, yet the corresponding residual remains
low.

ii) The 7-parameter LM started from LS appears to have
high accuracy for noise levels for which the corre-
sponding residual high.

iii) The accuracy of the 7-parameter LM improves if
started from optimally corrected ML, resulting in the
accuracy is comparable to EFNS.

The seemingly contradictory fact that solutions that are
closer to the true value (measured by RMS) have higher
residuals Ĵ means that the LM search failed to reach the
true minimum of the function J , indicating existence of lo-
cal minima located closer to the true value than to the true
minimum of J . When started from optimally corrected ML,
the LM search successfully reaches the true minimum of J ,
resulting in the smaller Ĵ but larger RMS errors.

RMS vs. KCR Lower Bound. One may wonder why the
computed RMS errors are sometimes below the KCR lower
bound. There are several reasons for this.

The KCR lower bound is shown here for a convenient
reference, but it does not mean that errors of the values
computed by any algorithm should be above it; it is a lower
bound on unbiased estimators. By “estimator”, we mean
a function of the data, e.g., the minimizer of a given cost
function. An iterative algorithm such as LM does not qual-
ify as an estimator, since the final value depends not only
the data but also on the starting value; the resulting value
may not be the true minimizer of the cost function. Thus,
it may happen, as we have observed above, that a solution
closer to the true value has higher residual.

Next, the KCR lower bound is derived, without any ap-
proximation [9], from the starting identity that the expecta-
tion of the estimator (as a function of the data) should coin-
cide with its true value. This is a very strong identity, from
which we can derive the KCR lower bound in the same way
as the Cramer-Rao lower bound is derived from the unbi-
asedness constraint in the framework of traditional statisti-
cal estimation. However, the ML estimator or the minimizer
of the function J in Eq. (14) may not necessarily be unbi-
ased when the noise is large. In fact, it has been reported
that removing bias from the ML solution can result in better
accuracy (“hyperaccuracy”) for ellipse fitting in the pres-
ence of large noise [10].

Finally, the RMS error is computed from “finite” sam-
ples, not theoretical expectation. We did 10000 indepen-
dent trials for each σ, but the result still has fluctuations.
Theoretically, the plot should be a smooth function of σ,
but zigzags remain to some extent how many samples we
use.

Which is better?. We have seen the best performance by
the 7-parameter ML started from optimally corrected ML
and by EFNS. We tested which is really better by doing a
hybrid method: we do both and choose the solution that
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Figure 13. The ratio of the solution being chosen
for Fig. 3. Solid line: 7-parameter LM started from
optimally corrected ML. Dashed line: EFNS.
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Figure 14. The ratio of the solution being chosen
for Fig. 9. Solid line: 7-parameter LM started from
optimally corrected ML. Dashed line: EFNS.

has a smaller value of J . Figure 13 plots the ratio of each
solution being chosen for the images in Fig. 3; Figure 14
plots the corresponding result for Fig. 9. As we can see,
the two are completely even; there is no distinction between
them.

7. Bundle Adjustment (Gold Standard)

There is a subtle point to be clarified in the discussion of
Sect. 2. The transition from Eq. (13) to Eq. (14) is exact;
no approximation is involved. Although terms of O(σ4)
are omitted and the true values are replaced by their data in
Eq. (7), it is numerically confirmed that these do not affect
the final results in any noticeable way.

However, although the “analysis” may be exact, the “in-
terpretation” is not strict. Namely, despite the fact that
Eq. (14) is the (squared) Mahalanobis distance in the ξ-
space, its minimization can be ML only when the noise in
the ξ-space is Gaussian, because then and only then is the
likelihood proportional to e−J/constant. Strictly speaking,
if the noise in the image plane is Gaussian, the transformed
noise in the ξ-space is no longer Gaussian, so the proviso
that “If the noise in {ξα} is ...” above Eq. (13) (and for
the KCR lower bound of Eq. (12), too) does not necessar-
ily hold, and minimizing Eq. (14) is not strictly ML in the
image plane.

In order to test how much difference is incurred by
this, we minimize the Mahalanobis distance in the {x, x′}-
space, called the reprojection error. This approach was en-
dorsed by Hartley and Zisserman [7], who called it the Gold
Standard.

This is usually done as search in a high-dimensional pa-
rameter space, as done by Bartoli and Sturm [1], computing
tentative 3-D reconstruction and adjusting the reconstructed
shape, the camera positions, and the intrinsic parameters so
that the resulting projection images are as close to the input
images as possible. Such a strategy is called bundle adjust-
ment.

Here, we present a new numerical scheme for directly
minimizing the reprojection error without reference to any
tentative 3-D reconstruction (this result has not been pre-
sented anywhere else). Then, we compare its accuracy with
those methods we described so far.

Problem. We minimize the reprojection error

E =
N∑

α=1

(
‖xα − x̄α‖2 + ‖x′

α − x̄′
α‖2

)
, (73)

with respect to x̄α, x̄α, α = 1, ..., N , and F (constrained to
be ‖F ‖ = 1 and detF = 0) subject to the epipolar constraint

(x̄α, F x̄′
α) = 0, α = 1, ..., N. (74)

First approximation. Instead of estimating x̄α and x̄′
α di-

rectly, we express them as

x̄α = xα − ∆xα, x̄′
α = x′

α − ∆x′
α, (75)

and estimate the correction terms ∆xα and ∆x′
α. Substi-

tuting Eqs. (75) into Eq. (73), we have

E =
N∑

α=1

(
‖∆xα‖2 + ‖∆x′

α‖2
)
. (76)

The epipolar equation of Eq. (74) becomes

(xα − ∆xα, F (x′
α − ∆x′

α)) = 0. (77)

Ignoring the second order terms in the correction terms, we
obtain to a first approximation

(Fx′
α, ∆xα) + (F>xα, ∆x′

α) = (xα, Fx′
α). (78)

Since the correction terms ∆xα and ∆x′
α are constrained

to be in the image plane, we have the constraints

(k, ∆xα) = 0, (k, ∆x′
α) = 0, (79)

where we define k ≡ (0, 0, 1)>. Introducing Lagrange mul-
tipliers for Eqs. (75) and (79), we can easily determine ∆xα

and ∆x′
α that minimize Eq. (76) as follows (Appendix C):

∆xα =
(xα, Fx′

α)P kFx′
α

(Fx′
α, P kFx′

α) + (F>xα,P kF>xα)
,

∆x′
α =

(xα,Fx′
α)P kF>xα

(Fx′
α, P kFx′

α) + (F>xα,P kF>xα)
. (80)
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Here, we define

P k ≡ diag(1, 1, 0). (81)

Substituting Eq. (80) into Eq. (76), we obtain (Appendix C)

E =
N∑

α=1

(xα,Fx′
α)2

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
, (82)

which is known as the Sampson error [7]. Suppose we have
obtained the matrix F that minimizes this subject to ‖F ‖
= 1 and det F = 0. Writing it as F̂ and substituting it into
Eq. (80), we obtain the solution

x̂α = xα − (xα, F̂ x′
α)P kF̂ x′

α

(F̂ x′
α, P kF̂ x′

α) + (F̂
>

xα, P kF̂
>

xα)
,

x̂′
α = x′

α − (xα, F̂ x′
α)P kF̂

>
xα

(F̂ x′
α, P kF̂ x′

α) + (F̂
>

xα, P kF̂
>

xα)
.

(83)

Second approximation. Eqs. (83) give only a first approx-
imation solution. So, we estimate the true solution by writ-
ing, instead of Eqs. (75),

x̄α = x̂α − ∆x̂α, x̄′
α = x̂′

α − ∆x̂′
α, (84)

and by estimating the correction terms ∆x̂α and ∆x̂′
α,

which are small quantities of higher order than the first
order terms ∆xα and ∆x′

α in Eqs. (75). Substitution of
Eqs. (84) into Eq. (75) yields

E =
N∑

α=1

(
‖x̃α + ∆x̂α‖2 + ‖x̃′

α + ∆x̂′
α‖2

)
, (85)

where we define

x̃α = xα − x̂α, x̃′
α = x′

α − x̂′
α. (86)

The epipolar equation of Eq. (74) now becomes

(x̂α − ∆x̂α, F (x̂′
α − ∆x̂′

α)) = 0. (87)

Ignoring second order terms of ∆x̂α and ∆x̂′
α, which are

themselves of higher order, we have

(F x̂′
α, ∆x̂α) + (F>x̂α,∆x̂′

α) = (x̂α, F x̂′
α). (88)

This is a higher order approximation of Eq. (74) than the
first order approximation in Eq. (78). Introducing Lagrange
multipliers to Eq. (88) and the constraints

(k, ∆x̂α) = 0, (k, ∆x̂′
α) = 0 (89)

we can obtain ∆x̂α and ∆x̂′
α that minimize Eq. (82) in the

following form (Appendix C):

∆x̂α =
eαP kF x̂′

α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
− x̃α,

∆x̂′
α =

eαP kF>x̂α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
− x̃′

α.

(90)

Here, we define

eα = (x̂α,F x̂′
α) + (F x̂′

α, x̃α) + (F>x̂α, x̃′
α). (91)

On substation of Eq. (90), Eq. (85) now has the following
form (Appendix C):

E =
N∑

α=1

e2
α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
. (92)

Suppose we have obtained the matrix F that minimizes this

subject to ‖F ‖ = 1 and det F = 0. Writing it as ˆ̂
F and

substituting it into Eq. (90), we obtain the solution

ˆ̂xα = xα −
ˆ̂eαP k

ˆ̂
F x̂′

α

( ˆ̂
F x̂′

α, P k
ˆ̂
F x̂′

α) + ( ˆ̂
F

>
x̂α, P k

ˆ̂
F

>
x̂α)

,

ˆ̂x
′
α = x′

α −
ˆ̂eαP k

ˆ̂
F

>
x̂α

( ˆ̂
F x̂′

α, P k
ˆ̂
F x̂′

α) + ( ˆ̂
F

>
x̂α, P k

ˆ̂
F

>
x̂α)

,

(93)

where ˆ̂eα is the value of Eq. (91) obtained by replacing F

in it by ˆ̂
F . The resulting solution { ˆ̂xα, ˆ̂x

′
α} is a better ap-

proximation than the solution {x̂α, x̂′
α} in Eqs. (83). We

rewriting { ˆ̂xα, ˆ̂x
′
α} as {x̂α, x̂′

α} and estimate yet better
solution in the form of Eqs. (84). We repeat this until the
iterations converge.

Fundamental matrix computation. The remaining prob-
lem is to compute the matrix F that minimizes Eqs. (82)
and (92) subject to ‖F ‖ = 1 and det F = 0. If we use the
representation in Eqs. (3) and (4), we can write

(xα, Fx′
α) =

(u, ξα)
f2
0

, (94)

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα) =
(u, V0[ξα]u)

f2
0

,

(95)
where V0[ξα] is the matrix in Eq. (7). From Eqs. (94) and
(95), Eq. (82) is rewritten in the form

E =
1
f2
0

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
, (96)

which is Eq. (14) itself except the scale. Hence, the matrix
F that minimizes this subject to ‖F ‖ = 1 and detF = 0 can
be determined by the methods described in Sect. 3–5.
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If we define

ξ̂α =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

f0(x̂α + x̃α)
ŷαx̂′

α + x̂′
αỹα + ŷαx̃′

α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

f0(ŷα + ỹα)
f0(x̂′

α + x̃′
α)

f0(ŷ′
α + ỹ′

α)
f2
0


, (97)

the expression eα in Eq. (91) is written as

eα =
(u, ξ̂α)

f2
0

. (98)

Hence, Eq. (92) is rewritten as

E =
1
f2
0

N∑
α=1

(u, ξ̂α)2

(u, V0[ξ̂α]u)
, (99)

where V0[ξ̂α] is the matrix in Eq. (7) obtained by replacing
xα, yα, x′

α, and y′
α by x̂α, ŷ′

α, x̂′
α, and ŷ′

α, respectively.
Since Eq. (99) again has the same for as Eq. (14) except
the scale, we can obtain the matrix F that minimizes this
subject to ‖F ‖ = 1 and detF = 0 can be determined by the
methods in Sect. 3–5.

Procedure. Our bundle adjustment computation is summa-
rized as follows.

1. Let u0 = 0.
2. For α = 1, ..., N , let

x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α,

x̃α = ỹα = x̃′
α = ỹ′

α = 0. (100)

3. Compute the vector ξ̂α, α = 1, ..., N , in Eq. (97).
4. Compute the matrix V0[ξ̂α], α = 1, ..., N , by replacing

xα, yα, x′
α, and y′

α by x̂α, ŷ′
α, x̂′

α, and ŷ′
α, respectively

in Eq. (7).
5. Compute the vector u that minimizes the following

function E subject to ‖u‖ = 1 and (u†, u) = 0:

E =
N∑

α=1

(u, ξ̂α)2

(u, V0[ξ̂α]u)
. (101)

6. If u ≈ u0 up to sign, return u and stop. Else, update
x̃α, ỹα, x̃′

α, and ỹ′
α as follows:

x̃α←
(u, ξ̂α)P kF x̂′

α

(u, V0[ξ̂α]u)
, x̃′

α←
(u, ξ̂α)P kF>x̂α

(u, V0[ξ̂α]u)
.

(102)
7. Go back to Step 3 after the following update:

u0 ← u, x̂α ← xα − x̃α, ŷα ← yα − ỹα,

x̂′
α ← x′

α − x̃′
α, ŷ′

α ← y′
α − ỹ′

α. (103)
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Figure 15. The RMS errors for Fig. 3. Dashed line:
Sampson solution. Solid line: Gold Standard so-
lution. Dotted line: KCR lower bound.

8. Effect of Bundle Adjustment

The above computation reduces to the Mahalanobis dis-
tance minimization in the ξ-space if we stop at Step 5. So,
the issue is how the accuracy improves by the subsequent
iterations. Borrowing the terminology of Hartley and Zis-
serman [7], let us call the solution obtained at Step 5 the
Sampson solution and the solution obtained after the itera-
tions the Gold Standard solution.

Simulations. Using the simulated images in Fig. 3, we
computed the RMS error D in Eq. (72) for 10000 trials.
Figure 15 corresponds to Fig. 8 except that the horizontal
axis is now extended to an extremely large noise level.

For minimizing Eq. (101), we used EFNS initialized by
the Taubin method. If the iterations did not converge after
100 iterations, we switched to the projective Gauss-Newton
iterations followed by optimal correction followed by the 7-
parameter LM search. We did preliminary experiments for
testing the convergence properties of FNS, HEIV, projective
Gauss-Newton iterations, and EFNS and found that projec-
tive Gauss-Newton iterations and EFNS can tolerate larger
noise than others.

As we can see from Fig. 15, the RMS errors of the Samp-
son and the Gold Standard solutions coincide in the plot;
the two solutions did differ, but the difference is a few order
smaller than the magnitude of the KCR lower bound.

Figure 16 compares the reprojection error for the two so-
lutions. The dashed line is the value of E in Eq. (101) when
the computation is stopped there, which equals the mini-
mum of the function J in Eq. (14); we call it the Sampson
error. For each Sampson solution F (or u), we computed
the reprojection error by minimizing E in Eq. (73) with re-
spect to x̄α and x̄′

α, α = 1, ..., N , subject to Eq. (74) with
the computed F fixed. The computation goes the same as
described in the preceding section except that F is fixed.

From Fig. 16, we observe that the Sampson error is very
close to the first order estimate (N − 7)σ2/f2

0 , reflecting
the fact that the Sampson error is a first approximation to
the reprojection error.

We also observe that the reprojection error of the Gold
Standard solution is certainly smaller than the Sampson er-
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Figure 16. The reprojection error for Fig. 3.
Chained line: Sampson residual. Dashed line:
Sampson solution. Solid line: Gold Standard so-
lution. Dotted line: (N − 7)σ2/f2

0 .
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Figure 17. The RMS errors for Fig. 9. Dashed line:
Sampson solution. Solid line: Gold Standard so-
lution. Dotted line: KCR lower bound.
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Figure 18. The reprojection error for Fig. 9.
Chained line: Sampson error. Dashed line: Samp-
son solution. Solid line: Gold Standard solution.
Dotted line: (N − 7)σ2/f2

0 .

ror if the noise level is above a certain level (about 6 pixels
in this case), yet the reprojection error is virtually identical
for the Sampson and the Gold Standard solutions.

Figures 17 and 18 show the results corresponding to
Figs. 15 and 16 for Fig. 9. Again, we observe similar be-
havior.

Observations. From our experiments, we conclude that 1)
the reprojection is smaller than the Sampson error if the
noise is very large, but that 2) the solution that minimizes
the Sampson error also minimizes the reprojection error,

Figure 19. Real images and 100 corresponding
points.

Table 1. Residuals and execution times (sec).

method residual time
SVD-corrected LS 45.550 . 00052
SVD-corrected ML 45.556 . 00652
CFNS 45.556 . 01300
opt. corrected ML 45.378 . 00764
7-LM from LS 45.378 . 01136
7-LM from opt. corrected ML 45.378 . 01748
EFNS 45.379 . 01916
bundle adjustment 45.379 . 02580

and vice versa.
Let us call the computed fundamental matrix meaningful

if its relative error is less than 50%. Certainly, we cannot ex-
pect meaningful applications of camera calibration or 3-D
reconstruction if the computed fundamental matrix has 50%
or larger error. We can see that Figs. 15 and 17 nearly cov-
ers the noise level range for which meaningful estimation is
possible (recall that the solution is normalized to unit norm,
so the RMS error roughly corresponds to the relative error).

If the noise is very large, the objective function becomes
very flat around its minimum, so large deviations are in-
evitable whatever computational method is used; the KCR
lower bound exactly describes this situation. From such
a wide distribution, we may sometimes observe a solution
very close to the true value and other times a very wrong
one. So, the accuracy evaluation must be done with a large
number of trials. In fact, we observed that the RMS error
plots of the Sampson and the Gold Standard solutions were
visibly different with 1000 trials for each σ. However, they
coincided after 10000 trials. In the past, a hasty conclusion
was often drawn after a few experiments. Doing many ex-
periments, we failed to observe that the Gold Standard solu-
tion is any better than the Sampson solution, quite contrary
to the assertion by Hartley and Zisserman [7].

Real image example. We manually selected 100 pairs of
corresponding points in the two images in Fig. 19 and com-
puted the fundamental matrix from them. The final resid-
ual J and the execution time (sec) are listed in Table 1.
We used Core2Duo E6700 2.66GHz for the CPU with 4GB
main memory and Linux for the OS.

We can see that for this example optimally corrected

15



ML, 7-parameter LM (abbr. 7-LM) started from either LS
or optimally corrected ML, EFNS, and bundle adjustment
all converged to the same solution, indicating that all are
optimal. For this solution, the reprojection error E numer-
ically coincides with the residual J . We can also see that
SVD-corrected LS (Hartley’s 8-point method) and SVD-
corrected ML have higher residual than the optimal solution
and that CFNS has as high a residual as SVD-corrected ML.

9. Conclusions

We categorized algorithms for computing the fundamen-
tal matrix from point correspondences into “a posteriori cor-
rection”, “internal access”, and “external access” and re-
viewed existing methods in this framework. Then, we pro-
posed new effective schemes10:

1. a new internal access method: 7-parameter LM search.

2. a new external access method: EFNS.

3. a new bundle adjustment algorithm using EFNS.

We conducted experimental comparison and observed
that the popular SVD-corrected LS (Hartley’s 8-point al-
gorithm) has poor performance. We also observed that the
CFNS of Chojnacki et al. [4], a pioneering external access
method, does not necessarily converge to a correct solution,
while our EFNS always yields an optimal value; we gave a
mathematical justification to this.

After many experiments (not all shown here), we con-
cluded that EFNS and the 7-parameter LM search started
from optimally corrected ML exhibited the best perfor-
mance. We also observed that additional bundle adjustment
(Gold Standard) does not increase the accuracy to any no-
ticeable degree.
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Appendix

A. Derivation of the 6-parameter LM

First, note that if F has the form of Eq. (48), we have

‖F ‖2 =
3∑

i,j=1

F 2
ij = tr[FF>]

= tr[Udiag(σ1, σ2, 0)V>Vdiag(σ1, σ2, 0)U>]
= tr[diag(σ2

1 , σ2
2 , 0)]

= σ2
1 + σ2

2 , (104)

where we have used the identity tr[AB] = tr[BA] for the
matrix trace. Thus, the parameterization of Eqs. (49) en-
sures the normalization ‖F ‖ = 1.

Suppose the orthogonal matrices U and V undergo a
small change into U + ∆U and V + ∆V , respectively. Ac-
cording to the Lie group theory, there exist small vectors ω
and ω′ such that the increments ∆U and ∆V are written as

∆U = ω × U , ∆V = ω′ × V (105)

to a first approximation, where the operator × means
column-wise vector product. Hence, the increment ∆F in
F is to a first approximation

∆F = ω × Udiag(cos θ, sin θ, 0)V>

+Udiag(− sin θ∆θ, cos θ∆θ, 0)V>

+Udiag(cos θ, sin θ, 0)(ω′ × V)>. (106)

Taking out the elements, we can rearrange this in the vector
form

∆u = F Uω + uθ∆θ + F V ω′, (107)

where F U and F V are the matrices in Eqs. (51) and uθ is
defined by Eq. (53). The resulting increment ∆J in J is
written to a first approximation

∆J = (∇uJ,∆u) = (2Xu, F Uω + uθ∆θ + F V ω′)

= 2(F>Xu,ω) + 2(uθ, Xu)∆θ + 2(F V XuJ,ω′),
(108)

which shows that the first derivatives of J are given by
Eqs. (50) and (52). If we further change u into u + ∆u

in the above expression, we have to a first approximation
(i.e., up to the second order in ∆u),

∆2J = (∆u,∇2
uJ∆u)

= (F Uω+uθ∆θ+F V ω′, 2M(F Uω+uθ∆θ+F V ω′))

= 2(ω, F>
UMF Uω) + 2(ω′, F>

V MF V ω′)

+2(uθ, Muθ)∆θ2 + 4(ω, F>
UMω′)

+4(ω, F>
UMuθ)∆θ + 4(ω′, F>

V Muθ)∆θ, (109)

where we have used the Gauss-Newton approximation ∇2
uJ

≈ 2M . From this, we obtain the second derivatives in
Eqs. (54).

B. Details of CFNS

According to Chojnacki et al. [4], the matrix Q used in
Eq. (63) is given, without any background reasoning, as fol-
lows (their original symbols are somewhat altered to con-
form to the use in this paper).

The gradient ∇uJ = (∂J/∂ui) and the Hessian ∇2
uJ =

(∂2J/∂ui∂uj) of the function J in Eq. (14) are

∇uJ = 2(M − L)u, ∇2
uJ = 2(M − L) − 8(S − T ),

(110)
where M and L are the matrices in Eqs. (22), and we define

S =
N∑

α=1

(u, ξα)S[ξα(V0[ξα]u)>]
(u, V0[ξα]u)2

,

T =
N∑

α=1

(u, ξα)2(V0[ξα]u)(V0[ξα]u>)>

(u, V0[ξα]u)3
. (111)

Here, S[ · ] is the symmetrization operator (S[A] = (A +
A>)/2). Let

A = P u†(∇2
uJ)(2uu> − I),

B =
2

‖ detu‖

( 9∑
i=1

S[((∇2
u det u)ei)u†>](∇uJ)e>

i

−(u†,∇uJ)u†u†>∇2
u det u

)
,

C = 3
( detu

‖∇u detu‖2
∇2

u det u

+u†u†>
(
I − 2 detu

‖∇u detu‖2
∇2

u det u
))

, (112)

where u† is the vector in Eq. (9), P u† is the projection ma-
trix in Eq. (59), and ei is the ith coordinate basis vector
(with 0 components except 1 in the ith position). The ma-
trix Q is given by

Q = (A + B + C)(A + B + C)>. (113)
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C. Details of bundle adjustment

Introducing Lagrange multipliers λα, µα, and µ′
α for the

constraints of Eqs. (78), and (79) to Eq. (76), we let

L =
N∑

α=1

(
‖∆xα‖2 + ‖∆x′

α‖2
)

−
N∑

α=1

λα

(
(Fx′

α, ∆xα) + (F>xα,∆x′
α)

)
−

N∑
α=1

µα(k, ∆xα) −
N∑

α=1

µ′
α(k, ∆x′

α). (114)

Putting the derivatives of L with respect to ∆xα and ∆x′
α

to 0, we have

2∆xα − λαFx′
α − µαk = 0,

2∆x′
α − λαF>xα − µ′

αk = 0. (115)

Multiplying the projection matrix P k in Eq. (81) on both
sides from left and noting that P k∆xα = ∆xα, P k∆x′

α =
∆x′

α, and P kk = 0, we have

2∆xα − λαP kFx′
α = 0, 2∆x′

α − λαP kF>xα = 0.
(116)

Hence, we obtain

∆xα =
λα

2
P kFx′

α, ∆x′
α =

λα

2
P kF>xα. (117)

Subsitituting these into Eq. (78), we have

(Fx′
α,

λα

2
P kFx′

α)+(F>xα,
λα

2
P kF>xα)=(xα,Fx′

α),
(118)

and hence

λα

2
=

(xα, Fx′
α)

(Fx′
α,P kFx′

α) + (F>xα, P kF>xα)
. (119)

Substituting this into Eq. (117), we obtain Eqs. (80). If we
substitute Eqs. (80) into Eq. (76), we have

E =
N∑

α=1

(∥∥∥∥ (xα, Fx′
α)P kFx′

α

(x′
α,F>P kFx′

α) + (xα, FP kF>xα)

∥∥∥∥2

+

∥∥∥∥∥ (xα, Fx′
α)P kF>xα

(x′
α, F>P kFx′

α) + (xα,FP kF>xα)

∥∥∥∥∥
2)

=
N∑

α=1

(xα, Fx′
α)2(‖P kFx′

α‖2 + ‖P kF>xα‖2)(
(Fx′

α,P kFx′
α) + (F>xα, P kF>xα)

)2

=
N∑

α=1

(xα,Fx′
α)2

(Fx′
α,P kFx′

α)+(F>xα,P kF>xα)
, (120)

where we have noted due to the identity P 2
k = P k that

‖P kFx′
α‖2 = (P kFx′

α, P kFx′
α) = (Fx′

α,P 2
kFx′

α) =
(Fx′

α, P kFx′
α). Similarly, we have ‖P kF>xα‖2 =

(F>xα,P kF>xα).
Introducing Lagrange multipliers λα, µα, and µ′

α for the
constraints of Eqs. (87), and (89) to Eq. (76), we let

L =
N∑

α=1

(
‖x̃α + ∆x̂α‖2 + ‖x̃′

α + ∆x̂′
α‖2

)
−

N∑
α=1

λα

(
(F x̂′

α,∆x̂α) + (F>x̂α,∆x̂′
α)

)
−

N∑
α=1

µα(k, ∆x̂α) −
N∑

α=1

µ′
α(k, ∆x̂′

α). (121)

Putting the derivatives of L with respect to ∆x̂α and ∆x̂′
α

to 0, we have

2(x̃α + ∆x̂α) − λαF x̂′
α − µαk = 0,

2(x̃′
α + ∆x̂′

α) − λαF>x̂α − µ′
αk = 0. (122)

Multiplying P k on both sides from left, we have

2x̃α + 2∆x̂α − λαP kF x̂′
α = 0,

2x̃α + 2∆x̂′
α − λαP kF>x̂α = 0. (123)

Substituting these into Eq. (88), we have

∆x̂α =
λα

2
P kF x̂′

α − x̃α, ∆x̂′
α =

λα

2
P kF>x̂α − x̃′

α.

(124)
Subsitituting these into Eq. (88), we obtain

(F x̂′
α,

λα

2
P kF x̂′

α − x̃α)

+(F>x̂α,
λα

2
P kF>x̂α − x̃′

α) = (x̂α, F x̂′
α), (125)

and hence

λα

2
=

(x̂α,F x̂′
α) + (F x̂′

α, x̃α) + (F>x̂α, x̃′
α)

(F x̂′
α,P kF x̂′

α) + (F>x̂α, P kF>x̂α)
. (126)

Subsitituting this into Eq. (124), we obtain Eq. (92). If we
substitute Eq. (92) into Eq. (85), we have

E =
N∑

α=1

(∥∥∥∥ eαP kF x̂′
α

(F x̂′
α, P kF x̂′

α) + (F>x̂α,P kF>x̂α)

∥∥∥∥2

+

∥∥∥∥∥ eαP kF>x̂α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)

∥∥∥∥∥
2)

=
N∑

α=1

e2
α(‖P kF x̂′

α‖2 + ‖P kF>x̂α‖2)(
(F x̂′

α, P kF x̂′
α) + (F>x̂α, P kF>x̂α)

)2

=
N∑

α=1

e2
α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
. (127)
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