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Abstract

A rigorous accuracy analysis is given to various techniques
for estimating parameters of geometric models from noisy
data. It is first pointed out that parameter estimation for
computer vision applications is very different in nature from
traditional statistical analysis and that a different mathe-
matical framework is necessary in such a domain. After
general theories on estimation and accuracy are given, typ-
ical existing techniques are selected, and their accuracy is
evaluated up to higher order terms. This leads to a “hyper-
accurate” method that outperforms existing methods.

1. Introduction

Modeling the geometric structure of images in a para-
metric form and estimating the parameters from observa-
tions are the first steps of many computer vision applica-
tions such as 3-D reconstruction and virtual reality gener-
ation. In the past, numerous optimization techniques have
been proposed for such parameter estimation, but their ac-
curacy is customarily tested using real and simulated im-
ages a posteriori. The purpose of this paper is to give a
rigorous accuracy analysis of various estimation techniques
a priori.

This sounds simple, because parameter estimation in the
presence of noise is the main theme of statistics, so all
one needs to do seems simply use the established results
of statistics. We first point out that this is not so because
parameter estimation for typical computer vision applica-
tions is very different in nature form traditional statistical
analysis. We first discuss this in detail.

Next, we present a mathematical framework that specif-
ically suits geometric computations frequently encountered
in computer vision applications. This is in a sense “dual” to
the standard paradigm found in the statistical literature.

After giving general theories on estimation and accuracy,
we concentrate on problems for which the model equation
can be transformed into a linear form via changes of vari-
ables. This type of problem covers most of the major com-
puter vision applications. We select well known estima-
tion techniques and analyze their accuracy up to higher or-
der terms. This reveals why some methods known to be
superior/inferior are really superior/inferior in quantitative
terms. As a byproduct, our analysis leads to a “hyperaccu-

rate”” method that outperforms existing methods.

2. Geometric Fitting

2.1. Definition

We call the class of problems to be discussed in this
paper geometric fitting: we fit a parameterized geometric
model (a curve, a surface, or a relationship in high dimen-
sions) expressed as an implicit equation in the form

F(xz;u) =0, €))

to N data ., o = 1, ..., N, typically points in an image
or point correspondences over multiple images [12]. The
function F'(x;wu) is parameterized by vector w. It may be
a vector function if the model is defined by multiple equa-
tions. Each x,, is assumed to be perturbed by independent
noise from its true value &, which strictly satisfies Eq. (1).
From the parameter u of the fitted equation, one can dis-
cern the underlying geometric structure. A large class of
computer vision problems fall into this category [12].

Though one can speak of noise and parameter estima-
tion, the fact that this problem does not straightforwardly fit
the traditional framework of statistics has not been widely
recognized. The following are typical distinctions of ge-
ometric fitting as compared with the traditional parameter
estimation problem:

e Unlike traditional statistics, there is no explicit model
which explains observables in terms of deterministic
mechanisms and random noise. All descriptions are
implicit.

e No inputs or outputs exist. No such concepts exist as
causes and effects, or ordinates and abscissas.

e The underlying data space is usually homogeneous and
isotropic with no inherent coordinate system. Hence,
the estimation process should be invariant to changes
of the coordinate system with respect to which the data
are described.

e Usually, the data are geometrically constrained. Typ-
ically, they are points on curves, surfaces, and hyper-
surfaces (e.g., unit vectors or matrices of determinant
0). Often, the parameters to be estimated are also sim-
ilarly constrained. Hence, the Gaussian distribution,



the most fundamental noise modeling, does not exist
in its strict sense in such constrained spaces.

We first discuss in detail why the traditional approach
does not suit our intended applications.

2.2. Reduction to Statistical Estimation

It appears that the problem can be easily rewritten in
the traditional form. The “observable” is the set of data
x,, which can be rearranged into a high dimensional

T

vector X = (@{ @5 - xy ) . Let e, be the

noise term in the datum x,, and define the vector E =
T —

( el &g EN ) . Let X be the true value of X.

The statistical model in the usual sense is
X=X+E. ()

The unknown X needs to be estimated. Let p(E) be the
probability density of the noise vector E. Our task is to
estimate X from X, which we regard as sampled from
p(X — X). But the parameter u, which we really want
to estimate, is not contained in this model. How can we
estimate it?

The truth is that the parameter w constrains the mu-
tual relationships among the components of X. In fact,
we would immediately obtain an optimal estimate X = X
without considering such an implicit constraint.

In order to make the implicit constraint explicit, one
needs to introducing internal coordinates t to solve Eq. (1)
for w in the form

x =z(t;u). 3)
For example, if we want to fit a circle (z — a)? + (y — b)?
= 72, we rewrite this as z = a + r cos 6, y=0b-+ rsinf by
introducing the directional angle §. However, this type of
explicit representation is usually very difficult to obtain.

Suppose such an explicit representation is obtained. Sub-
stituting &1 = w(tl, u), To = (I)(tz, u), vty TN = w(tN, u),
Eq. (2) now has the form

X = X(t,....tn;u) + E. 4)

Our task is to estimate the parameters t1,..., ty and u from
X.

2.3. Neyman-Scott Problem

Although the problem looks like a standard form, there
is a big difference: we observe only one observable X for a
“particular” set of parameters %1,..., t v and w. Namely, X
is a single sample from p(X — X (t1, ..., tx;u)).

The tenet of statistical estimation is to observe repeated
samples from a distribution, or ensemble, and infer its un-
known parameters. The estimation becomes more accurate

as more samples are drawn, thanks to the law of large num-
bers. Here, however, only one sample X is available.

What happens if we increase the data? If we observe
another datum x 1, the observable X becomes a higher
dimensional vector, and Eq. (4) becomes a higher dimen-
sional vector equation. Moreover, we have an additional
unknown ¢ 1. This means that the resulting observable
X is not “another” sample of the same distribution; it is
one sample from a new distribution with a new set of pa-
rameters t1,..., t 41 and u. However large the number of
data is, the number of observable is always 1.

This (seeming) anomaly was first pointed out by Ney-
man and Scott [21], and since then this problem has often
been referred to as the Neyman-Scott problem. Even for a
single observation, maximum likelihood estimation (ML)
is possible. However, Neyman and Scott [21] pointed out
that the estimated parameters do not necessarily converge
to their true values as N — oo, indicating the (seeming)
lack of “consistency”, which is a characteristic of ML.

This is natural of course, because increasing the num-
ber of data does not mean increasing the number of samples
from a distribution having particular parameters. Though
u may be unchanged as IV increases, we have as many pa-
rameters t1,..., t as the increased number of data. Due to
this (seeming) anomaly, they are called nuisance parame-
ters, while u the structural parameter or the parameter of
interest.

2.4. Semiparametric Models

In spite of many attempts in the past, this anomaly has
never been resolved, because it does not make sense to re-
gard what is not standard statistical estimation as standard
statistical estimation. It has been realized that the only way
to fit the problem in the standard framework is to regard
ti,..., ty not as parameters but as data sampled from a fixed
probability density ¢(¢;v) with some unknown parameters
v called hyperparameters.

The problem is now interpreted as follows. Given v and
v, the values t1,..., t are randomly sampled from ¢(¢; v).

Then, Eq. (3) defines the true values x1, ..., £, to which
random noise sampled from p(E) is added. The task is to
estimate both w and v by observing @1, ..., €. This ap-

proach is known as the semiparametric model [2, 4].

The standard procedure for such a problem goes like this.
We first estimate or assume the density ¢(¢; v) (the most
difficult part), then marginalize the model over ¢(t; v), i.e.,
integrate out all ¢y, ..., £ to obtain a likelihood function
of u alone (not analytically easy), and finally search for the
value u that maximizes it. In this case, the consistency as
N — oo is guaranteed under mild conditions.

This approach has been adopted in several computer vi-
sion problems where a large number of data are available.
Ohta [22] showed that the semiparametric model yields a
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Figure 1. (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as n —
oo for the number n of observations, because admissible accuracy can be reached with a smaller number of
observations. (b) For geometric fitting, it is desired that the accuracy increases rapidly as = — 0 for the noise
level ¢, because larger data uncertainty can be tolerated for admissible accuracy.

better result for 3-D interpretation of a dense optical flow
field, and Okatani and Deguchi [23] demonstrated that for
estimating 3-D shape and motion from a point cloud seen
in multiple images, the semiparametric model can result in
higher accuracy. In both cases, however, the procedure is
very complicated, and the superior performance is obtained
only when the number of data is extremely large.

2.5. Dual Approach of Kanatani

A natural question arises: why do we need to rewrite
Eq. (1) in an explicit form by introducing internal coordi-
nates t? If Eq. (1) has a simple form, e.g., a polynomial,
why do we need to convert it to a complicated (generally
non-algebraic) form, if the conversion is possible at all. In-
deed, it is known that a polynomial (or algebraic) equation
does not have an algebraic explicit representation unless its
“genus” is 0 (Clebsch theorem). Why can’t we do estima-
tion using Eq. (1) as is?

This might be answered as follows. Statisticians try to
fit the problem in the standard framework because they are
motivated to analyze asymptotic behavior of estimation as
the number n of observations increases. In particular, the
“consistency”, i.e., the property that the computed estimates
converge to their true value as n — oo, and the speed of con-
vergence measured in O((1/+/n)*) are their major concern.

This is because an estimation method whose accuracy
increases rapidly as n — oo can attain admissible accu-
racy with a fewer number of observations (Fig. 1(a)). Such
a method is desirable because most statistical applications
are done in the presence of large noise (e.g., agriculture,
medicine, economics, psychology, and census surveys), and
hence one needs a large number of repeated observations to
compensate for the noise, which entails a considerable cost
in real situations.

To this, Kanatani [12, 14] countered, saying that the pur-
pose of many computer vision applications is to estimate
the underlying geometric structure as accurately as possible
in the presence of small noise. In fact, the uncertainty intro-
duced by image processing operations is usually around a

Table 1. Duality between traditional statistical es-
timation and geometric fitting [14].

statistical estimation

data generating mechanism
x ~ p(x;0)

CR lower bound
Ver[0] = O(1/n)

ML is optimal in the limit
n — oo

Akaike’s AIC
AIC=---+0(1/n)

Rissanen’s MDL
MDL=---+0O(1)

geometric fitting

geometric constraints
F(xz;u)=0

KCR lower bound
VKCR['&] = 0(62)

ML is optimal in the limit
e—0

geometric AIC
G-AIC=---+ O(e*)

geometric MDL
G-MDL =--- + O(£?)

few pixels or subpixels. He asserted that in such domains, it
is more reasonable to evaluate the performance in the limit
€ — 0, because a method whose accuracy increases rapidly
as € — 0 can tolerate larger uncertainty for admissible ac-
curacy (Fig. 1(b)).

If our our interest is in the limit ¢ — 0, we need not
force Eq. (1) to conform to the traditional framework; we
can build a mathematical theory of estimation directly from
Eq. (1). Indeed, this is what has implicitly been done by
many computer vision researchers for years without worry-
ing much about orthodox theories in the statistical literature.

2.6. Duality of interpretation

Kanatani [12, 14] pushed this idea further in ex-
plicit terms and showed that resulting mathematical con-
sequences have corresponding traditional results in a dual
form, e.g., the KCR lower bound [5, 13] corresponds to the
traditional Cramer-Rao (CR) lower bound, and the geomet-
ric AIC and the geometric MDL correspond, respectively,
to Akaike’s AIC [1] and Rissennen’s MDL [25] (Table 1).

The correspondence is dual in the sense that small noise



expansions have the form - - - + O(e*) for geometric fitting,
to which correspond traditional asymptotic expansions in
the form - - - +O(1/v/n¥). Kanatani [12, 14] explained this,
invoking the following thought experiment.

For geometric fitting, the image data may not be exact
due to the uncertainty of image processing operations, but
they always have the same value however many times we
observe them, so the number n of observations is always 1,
as pointed out earlier. Suppose, hypothetically, they change
their values each time we observe them as if in quantum
mechanics. Then, we would obtain n different values for n
observations. If we take their sample mean, its standard de-
viation is 1/4/n times that of individual observations. This
means that repeating hypothetical observations n times ef-
fectively reduces the noise level € to €/+/n. Thus, the be-
havior of estimation for ¢ — 0 is mathematically equivalent
to the asymptotic behavior for n — oo of the number n of
hypothetical observations (not the number N of “data”).

In the following, we adopt this approach and analyze the
accuracy of existing estimation techniques in the limit ¢ —
0.

3. Parameter Estimation and Accuracy

3.1. Noise Description and Estimators

Our goal is to obtain a good estimate of the parameter u
from observed data x.,. To do mathematical analysis, how-
ever, there is a serious obstacle arising from the fact that
the data x, and the parameter w are usually constrained;
they may be unit vectors or matrices of determinant 0, for
instance. How can we define noise in the data and errors
of the parameters? Evidently, direct vector calculus is not
suitable. For example, if a unit vector is perturbed isotrop-
ically, the perturbed values are distributed around it over a
unit sphere, but their average is not 0; it is “inside” the unit
sphere.

A more serious problem is that noise distributions cannot
be Gaussian, because Gaussian distributions with infinitely
long tails can exist only in a Euclidean space. Since Gaus-
sian distributions are the most fundamental of all distribu-
tions, how can we do mathematical analysis without it?

Several mathematical formulations have been proposed
for probability distributions in a non-Euclidean space based
on theories of Lie groups and invariant measures (e.g.,
Begelfor and Werman [3] and Pennec [24]), but the results
are rather complicated. In our case, however, such com-
plications are unnecessary, because we are focusing only
on small noise effects in the dual framework. We can sim-
ply assume that noise concentrates within a small region
around the true value. Hence, we can regard noise as effec-
tively distributing over the tangent space to the domain at
that point. Within this tangent space, the noise distribution
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Figure 2. The displacement of a constrained vari-
able is projected onto the tangent space, with
which we identify the noise domain.

can be regarded as Gaussian; the discrepancy at the tail part
is of higher order terms.
Accordingly, we define the covariance matrix of x,, by

Viza] = E[(P,—ca (%o — @a)) (73,; (%o — @a))T], (5)

where E| -] denotes expectation over the noise distribution,
and Px_ denotes projection onto the tangent space to the
domain & of the data at x,, (Fig. 2).

The geometric fitting problem in the form of Eq. (1) is
solved if a procedure is given for computing an estimate @
of u in terms of observed data x,,, which defines a function

o =1u(xy,...,TN), (6)
called an estimator of w. A natural requirement on this
is that the true value should be obtained in the absence of
noise:

lim @ = u. (7N
e—0
Here, € is the noise level, and u the true parameter value.
Chernov and Lesort [5] called this condition consistency in
the dual framework. In this paper, we consider only con-
sistent estimators in this sense; confirming consistency is
usually trivial.

If 1, ..., v are random variables, so is @ as a function
of them, so we can measure its accuracy by its covariance
matrix. Here again, the parameter © may be constrained
and its domain &/ may not be Euclidean. So, we identify the
error of u as belonging to the tangent space to U/ at the true
value u. To be specific, we define the covariance matrix
V[4a] of @ by

where P, denotes projection onto the tangent space of the
domain ¢/ at u.

3.2. KCR Lower Bound

Kanatani [12, 15] proved that if each datum =z, is
an independent Gaussian random variable in the above-
mentioned sense with mean X, and covariance matrix



Vx|, the following inequality holds for an arbitrary un-
biased estimator u of u (see Appendix A for the proof):

X (PuVuFa)(PuVuFa) "
V[u]»(Z - V[%WXFQ)> NG

Here, > means that the left-hand side minus the right is pos-
itive semidefinite, and the superscript — denotes pseudoin-
verse. The symbols V, F,, and VF,, denote the gradient
of the function F(x;u) in Eq. (1) with respect to x and u,
respectively, evaluated at © = Z,. Throughout this paper,
we denote the inner product of vectors a and b by (a, b).

Chernov and Lesort [5] called the right-hand side of
Eq. (9) the KCR (Kanatani-Cramer-Rao) lower bound and
showed that it holds except for O(e*) even if @ is not un-
biased; it is sufficient that & is “consistent” in the sense of
Eq. (7).

If we worked in the traditional domain of statistics, we
would obtain the corresponding CR (Cramer-Rao) lower
bound. The statistical model is given by Eq. (4) with likeli-
hood function p(X — X (¢1, ..., ty;u)). We first compute
second order derivatives of logp(X — X (t1,...,tyx;u))
with respect to t1, ..., tx and w (or multiply the first order
derivatives) and define an (mN + p) x (mN + p) matrix,
where m and p are the dimensions of the vectors ¢, and the
vector u, respectively. We then take expectation of this ma-
trix with respect to p(X — X (t1, ..., tx; u)). The resulting
matrix is called the Fisher information matrix. If we invert
it and discard the nuisance parameters %1, ..., £y by taking
out only the p x p diagonal block corresponding to u, we
would obtain the CR lower bound on w.

In most cases, this derivation process is almost in-
tractable due to the difficulty of analytically inverting a ma-
trix of a very large size. In contrast, the KCR lower bound
in the form of Eq. (9) directly gives a bound without in-
volving any “nuisance parameters”. This is one of the most
significant advantages of working in the dual framework of
Kanatani [12, 15].

3.3. Minimization Schemes

It is a common strategy to define an estimator through
minimization or maximization of some cost function, al-
though this is not always necessary, as we will see later.
Traditionally, the term “optimal” has been widely used to
mean that something is minimized or maximized, and min-
imization or maximization has been simply called “opti-
mization”. Here, however, we reserve the term “optimal”
for the strict sense that nothing better can exists.

A widely used method is what is called least-squares es-
timation (LS) (and by many other names such as algebraic

distance minimization), minimizing

N
J =) F(@a;u), (10)
a=1

thereby implicitly defining an estimator @(x1,...,xy). It
has been widely recognized that this estimator has low ac-
curacy with large statistical bias. Another popular scheme is
what is called geometric distance minimization (or by many
other names), minimizing

m()é?
11
/= Z HVFIP (an

Many other minimization schemes have been proposed
in the past. All of them are designed so that |F'(x,;u)| is
as small as possible and at the same time the solution u has
desirable properties. Kanatani [12] was the first to view the
problem as statistical estimation for estimating the true data
values x,, that strictly satisfy the constraint

F(Zo;u)=0, a=1,..,N, (12)

using the knowledge of the data covariance matrices V[x,].
If we assume that the noise in each x is independent

Gaussian (in the tangent space) with mean 0 and covariance

matrix V[z,], the likelihood of observing &1, ..., &y is

N
C[[ e @ TV @l @202 (13

a=1

where C is a normalization constant. The true values Z1,

., &y are constrained by Eq. (1). Maximizing Eq. (13) is
equivalent to minimizing the negative of its logarithm (up
to additive and multiplicative constants), called the (square)
Mahalanobis distance,

J = Z o= T, Vo] (o — Z4)),  (14)

subject to Eq. (12). Kanatani [12] called this scheme maxi-
mum likelihood estimation (ML) for geometric fitting.

The constraint of Eq. (12) can be eliminated by introduc-
ing Lagrange multipliers and ignoring higher order terms in
the noise level, which can be justified in our dual frame-
work. The resulting form is (see Appendix B for the deriva-
tion)

F(zq;u)?
= Z (Voo Vol VaFa) (1

It can be shown that the covariance matrix V|| of the
resulting estimator 4 achieves the KCR lower bound except
for O(e*) [5, 12, 15] (see Appendix C for the proof). It
is widely believed that this is the best method of all, aside
from the semiparametric approach in the asymptotic limit
N — oo.



3.4. Linearized Constraint Optimization

In the rest of this paper, we concentrate on a special sub-
class of geometric fitting problems in which Eq. (1) reduces
to the linear form

(&(x),u) =0, (16)

by changing variables & = &(x). If the data x, are m-
dimensional vectors and the unknown parameter w is a p-
dimensional vector, £( ) is a (generally nonlinear) embed-
ding from R™ to RP. In order to remove scale indetermi-
nacy, we normalize u to ||u|| = 1.

The KCR lower bound for the linearized constraint has
the form

—

N

Vkerla] = (Z @, o

i) 0

=g

where we write £, = £(Z,,). The covariance matrix V€]
of &, = &(x,,) is given, except for higher order terms in the
noise level, in the form

_T —_
V[Ea} = vxga V[ma]vxgav (18)
where V&, is the m x p Jacobian matrix

061 /0x1 9/ 021
Vx€ = : : .19

evaluated at = &,. Note that in Eq. (17) we do not need
the projection operator for the normalization constraint |||
=1, because Ea itself is orthogonal to u due to Eq. (16); for
the moment, we assume that no other internal constraints
exist.

This subclass of geometric fitting problems covers a
wide range of computer vision applications. The following
are typical examples:

Example 1 Suppose we want to fit a quadratic curve (cir-
cle, ellipse, parabola, hyperbola, or their degeneracy) to N
points (4, Y, ) in the plane. The constraint has the form

Az® 4 2Bxy + Cy?> +2(Dx + Ey) + F=0.  (20)
If we define

&(z,y) = (2° 22y y? 20 2y 1)7, 1)
u=(ABCDEFT, (22)

Eq. (20) is linearized in the form of Eq. (16). If indepen-
dent Gaussian noise of mean 0 and standard deviation o is

added to each coordinates of (24, ¥ ), the covariance ma-
trix V'[€,] of the transformed &, has the form

ZoUa 0 Zo 00

Zaa Ty + Ua Tada Yo Ta 0

_ 2 0 jaga gi 0 ga 0
0 Za Ja 0 10
0 0 0 0 0O

except for O(c*), where (Z4,%s) is the true position of
(Tas Yo )- O

Example 2 Suppose we have N corresponding points in
two images of the same scene viewed from different po-
sitions. If point (z,y) in the first image corresponds to
(2’,y') in the second, they should satisfy the following
epipolar equation [10]:

X X
vy |.F| ¥ |)=0. (24)
1 1

Here, F' is a matrix of rank 2, called the fundamental ma-
trix, that depends only on the intrinsic parameters of the two
cameras that took the two images and their relative 3-D po-
sitions (i.e., independent of the scene and the location of the
identified points) [10]. If we define

£,y 2y ) =2 oy zya’ yy' yo' Yy )T, (25)
u=(F1y Fiz Fi3 Fy Foy Foy F31 Fyo Fi3)", (26)

Eq. (24) is linearized in the form of Eq. (16). If indepen-
dent Gaussian noise of mean 0 and standard deviation o
is added to each coordinates of the corresponding points
(Za,Ya) and (2, y.,), the covariance matrix V[, ] of the
transformed &, has the form

V[E,] = o?x
2+ 32 7y, T Tala 0 0 Z, 00
T T2+U2 0 0 Tola 0 0 240
T g, 1 0 0 0000
ToYa 0 0 a+27 T4Ja ToFa 00
0 Tala 0 7000 Yo+¥aTo 0 Ta 0|,
0 0 0 ffx 37{1 1 0 00
To 0 0 Yo 0 01 00
0 To 0 0 Yo 0O 0 10
0 0 0 0 0 0 0 00O
(27)

except for O(o?), where (Z, 9 ) and (Z/,, 9/, ), are the true
positions of (z.,¥y) and (z/,,y.,), respectively. The fun-
damental matrix has, aside from scale normalization, the
constraint that its determinant is 0. If we take this con-
straint into consideration, the KCR lower bound of Eq (17)
involves the corresponding projection operation [17]. O



As we can see from Egs. (23) and (27), the covariance
matrix V[€,] is often factored into the form

V[E.] = e*Vol€o), (28)

where ¢ is a constant that characterizes the noise and V[, ]
is a matrix that depends only on the true data values. Here-
after, we assume this form and call ¢ the noise level and
Vo[€,] the normalized covariance matrix. In the actual
computation, the true data values are approximated by their
observed values.

4. Accuracy of Parameter Estimation

4.1. Least-Squares Method

For the linearized constraint of Eq. (16), minimization of
Eq. (10) reduces to minimization of

N N
J=> (€pu)’=> (u,£.E u) = (u, Mou), (29)
a=1 a=1
where
N
Mo=) &L (30)
=1

This is a symmetric matrix (generally positive definite),
so the quadratic form (u, Mu) is minimized by the unit
eigenvector for the smallest eigenvalue of M .

To do error analysis, we write

Myt = M\, €Y

into which we substitute £, =€, +A€&,, and it = u+ A u+
Asu + -+, where A; and A, denote perturbations corre-
sponding to the first and the second orders in A&, respec-
tively. We have

(Mo +A1M0+A2M0)(U+A1’U/+A2’u,+)
= (A A+ 2+ ) (u+Aju+Asu+ 1), (32)

where M is the value of M obtained by replacing £, in
Eq. (31) by their true values £, and

N

AiMo = Y (EAE] +AEE,),  (33)
a=1
N

MMy = > AELAEL (34)
a=1

We also expand the eigenvalue A in Eq. (31) into Aj\ +
Ag X+ ---. Since A = 0 in the absence of noise, its Oth order
term does not exist.

Equating first and second order terms on both sides of
Eq. (32), we obtain

M()Alu + AlMo’U, = A1>\’U,7 (35)

M0A2u+A1MOA1u + AQM()’LL = AQA'U/ (36)
Computing the inner product with « on both sides of
Eq. (35) and noting that (u, Mou) and (u, AMgu) iden-
tically vanish, we see that A;\ = 0. Multiplying M, on
both sides of Eq. (35) and noting that MaMO =P, (=
I —uw', the projection matrix onto the hyperplane orthog-
onal to u) and A;w is orthogonal to w to a first approxima-
tion (because ||u|| = 1), we conclude that

Alu = —MaAlMo’u,. (37)

Evidently, we have E[Aju] = 0. The covariance matrix

it defines is

Via] = E[Auldiu']

— My E[(A Mou) (A Mou) | M,
N N

= My B} (86, W)€, Y (A&, w)€s| My
=1 B=1

N
- Z u, EIAE,AEL )€ €5 My

N
52M0 (Z u, W)

where we use the identity E[A&aAﬁg] =e20,5V0€, ] im-
plied by our assumption about the noise (6, is the Kro-
necker delta, taking 1 for o = § and O otherwise).

Multiplying M, on both sides of Eq. (36) and solving
for My MoAsu (= P,Asu), we obtain

AQUJ_
= —M(;AlMoAl’U, - MO_AQMo’LL
= MO_AlMQMaAlMOu—MaAgMo’U,, (39)

wéE; )My, (8)

where Asut (= PyAsu) is the component of Ayu or-
thogonal to w. The parallel component Asull can also be
computed, but it is not important, since it arises solely for
enforcing the normalization constraint ||@||?> = 1 (Fig. 3).
Hence, we can measure the accuracy only by examining the
orthogonal component, as discussed in Section 3.1.

If we note that

E[AlMoMaAlMou]

E]

Mz

(E.ALL +ALLE,)

N
Z (A&, u)

1

(u E[AgﬁAgT]Maéﬁ)éa

I
QMZ "

(o

N
+ Z (£ar M €5) EIAE AL S |u

a,B=1



Figure 3. The orthogonal error component Aut
and the parallel error component Au! of an esti-
mate @ of u. The accuracy can be measured by
the orthogonal component Au™.

N
Z u, ‘/0 €a MO 50/)6(1
a=1

N
Z &or M €,)Vol€,Ju, (40)
N N
E[AsMou] = > E[AE,AE Ju=e>) Vg, lu
a=1 a=1
= €2N()u, (41)

where we define

N
=Y Voléd), (42)
a=1
the expectation of A,u™ is given by
E[AQUL}
— N — —_ —_
=My Y (u, Vol€] M, €,)E,
a=1
— N — — — —
+e My > (€ar My €)Vol6aJu—"My Nou. (43)
a=1

4.2. Taubin Method

The method due to Taubin! [26] is to minimize, instead
of Eq. (29),

J = Zflvzl( ouu)2 — (U,Mo’u,). (44)

SN (u, VolgJu)  (u, Nou)

!Taubin [26] studied curve fitting, which he analyzed purely from a
geometric point of view without using statistical terms such as means and
covariance matrices. What is shown here is a modification of his method
in the present framework.

This is a Rayleigh ratio, so it is minimized by the eigenvec-
tor of the generalized eigenvalue problem

Mot = ANy, (45)

for the smallest eigenvalue. The matrix [Ny may be sin-
gular, but we can solve Eq. (45) by reducing the number
of parameters as prescribed by Chojnacki, et al. [8, 9] (see
Appendix D for the procedure).

As in the case of LS, we expand Eq. (45) in the form

(MO +A1M0 +A2M0)(U+A1U+A2u+ )
= (A A+ Ao A+ - )No(u+ Aju+ Agu + -+ ), (46)

and equate first and second order terms on both sides. We
obtain
MoAl’u,—i-AlMo’u, = Al)\No’U,, (47)
M()Ag’u, + AlMoAlu + AQMQ’U, = Ag)\No’U,. (48)
Computing the inner product with « on both sides of
Eq. (47), we again find that Ay \ = 0. So, the first order er-
ror Ajw is also given by Eq. (37) and hence the covariance
matrix V'] by Eq. (38). In other words, LS and the Taubin
method have the same accuracy to a first approximation.
However, the Taubin method is known to be substantially
better than LS. So, the difference should be second-order ef-
fects. Multiplying M, on both sides of Eq. (48) and solv-
ing for Agut (= M, M, Ayu), we obtain

Azul: —MO_AlMoAlu—MgAQMQ’U,—AQAMoNU
= MaAlMoMO_AlMQ’U, — M(;AQMOU
—Ag)\MoN’u. (49)

Comparing this with Eq. (39), we find that an extra term,
— Ao \M 8 Nu, is added. We now evaluate its expectation.

Computing the inner product with « on both
sides of Eq. (48), and noting that (u, M(Asu) and
(u, Ay M yA;u) identically vanish, we obtain

Az)\ _ (’U,7 AQMOU)

(u, Nou) (50)
Its expectation is
o (U,E[AQM()’U,]) 2
E[Ag)\] = (’U,,Nou) =&, (51)

where we have used Eq. (41). Hence, the expectation of
the last term in Eq. (49) cancel the last term of Eq. (43),
resulting in

N
E[Asut] = M, Z(u,VO[E

a=1

oMy €,)E,

N
+e° My Y (€0, Mo E ) Vo€ Ju.  (52)

a=1



Figure 4. 20 points on an ellipse.
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Taubin
T ~ker
0 0.01 o 0.02

Figure 5. Noise level vs. RMS error for the ellipse
data in Fig. 4: LS (thick solid line), Taubin (thin
solid line), and KCR lower bound (dotted line).

In other words, the second order bias —e2 M o Nou of LS
is eliminated by the introduction of IN( on the right-hand
side of Eq. (45). We conclude that this is the cause of the
improved accuracy of the Taubin method as compared with
LS.

Example 3 Figure 4 shows N = 20 points (Z,, J») taken

on ellipse

22 y?

=1 53

502 + 1002 ’ (>3)
with equal intervals. From them, we generated data points
(Za, Yo ) by adding Gaussian noise of mean 0 and standard
deviation o to the x and y coordinates independently. Then,
we fitted an ellipse by LS and the Taubin method.

Figure 5 plots for different o the fitting error evaluated

by the following root mean square over 10,000 independent

trials:

10000

1
D= Poa'Y|? 4
10000 Z I 12. (54)

Here, 4'® is the ath value of 4. The thick and thin line are
for LS and the Taubin method, respectively. The dotted line
is the root mean square given by the corresponding KCR
lower (tr denotes the trace):

N
Dxcr = 20 (Z O

a=1 ’

f“ ))_. (55)

As we can see, the LS solution is of very low accuracy,
while the Taubin solution is fairly accurate. The plots for
LS and Taubin should have, at o = 0, the same slope dis-
tinct from that of the KCR lower bound, as far as the first
order error Aqu is concerned. However, this effect is too
weak to be visible in Fig. 5, implying that the performance
difference between LS and Taubin is mostly due to second
order error Aswu, in particular the last term of Eq. (43). O

4.3. Optimally Weighted Least Squares

A well known correction to LS is to appropriately weight
each summand in Eq. (29) in the form

N
J=> W€, uw)?, (56)

which is minimized by the unit eigenvector of

N
M=>"W.E.E (57)

a=1

for the smallest eigenvalue. The weight W, is determined
so that the covariance matrix of the resulting estimate is as
close to the KCR lower bound as possible.

Following the analysis in Section 4.1, we can easily see
that the first order covariance matrix in Eq. (38) is now re-
placed by

N
Via] =M (3 Walu, Vo€ Ju)é €5 ) M. (58)
a=1

It is not difficult to see that this coincides with the KCR
lower bound if we set

Vo = il )
In fact, we have
N = 2T
Via) = 2M~ (; w%‘é‘;w)M
=M MM =M, (60)
where we define
N T
Lo S

Evidently, Eq. (60) equals the KCR lower bound given by
Eq. (17)).

However, we cannot use Eq. (59), because the true value
u is unknown. So, we do iterations. Namely, we first give
an appropriate initial guess of u, say by LS, substitute it



into Eq. (5§9) and compute the eigenvector of the matrix M
in Eq. (§7) for the smallest eigenvalue. Using the result-
ing solution, we update the weight W, and this process is
iterated. This method is known as optimally weighted (it-
erative) least squares or reweight procedure [26]. The fact
that this method achieves the KCR lower bound to a first
approximation was pointed out by Chernov and Lesort [5].

We now evaluate its accuracy. After the iterations have
converged, the resulting solution « satisfies

Ma = \a, (62)
where N
- £.€
M=) —_Sada 63
2 Ghew ©

Substituting £, =&, + A€, w=u+ Aju+ Agu + - -,
and A = A1\ 4+ As A + - - - into Eq. (62), we have

(M + A M + ATM + Ay M + A3 M)
(u+Aju+ Agu+ - )

where we put
- AgEL HEAL
MM =) e (©
NAg AET
A — (&3 (o]
M =D Vil ) ©0
ATM = —2; ORTTA )Z(Alu,%[ﬁa]u), (67)
. ALl +E.AE
MM ==2) = (A olalw)
N = 2T
gaga _ 2(A2u7 V()[fa}u)
t2 vk (v
+4(A1U7V0[€a]u)2 (Alu VO[&&]A u))
(’LL, VO[&@]U)Q (ua VO[E‘(X}'U‘)
(68)

Here, A7 M and A3 M are, respectively, the first and sec-
ond order perturbations of M for using & in the denomina-
tor in Eq. (63).

Equating first and second order terms on both sides of
Eq. (64), we obtain

MAsyu+ (A1 M + AT M)Aju+ (AsM + ASM)u
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Computing the inner product with w on both sides
of Eq. (69) and noting that (u, Mu), (u, Ay Mu), and
(u, AT Mw) all identically vanish, we find that Ay A = 0.

Multiplying M~ on both sides of Eq. (69) and solving for
A1u, we obtain as before

Alu: —M_AlMU, (71)

whose covariance matrix coincides with the KCR lower
bound, as shown_earlier.
Multiplying M on both sides of Eq. (70) and solving
for Asut (= M~ M Asu), we obtain
AQ’UIJ—
=—M" (A1M+A*{M)A1u—]\_47 (Ao M+ASM)u
=M AMM AMu+M A{MM AiMu
~M AyMu— M AiMu. (72)

Now, we compute its expectation. We first see that

E[M_AlMM_AlM’U,]

AEE +5 AE) N (A€, w)E,
MZ (u, Vo€, Ju) M;w,wsa]u)

a5 M @;) (A8 AL Ju
2y (wVol€aJu) (u, Vol slu)

Y (M €4 E [As A€ u)E,
M Z (u, Vol€,Ju) (u, Vo[€s]u)

Vol€alu
Ju)?

o Vo€ Ju)€,
uVoéa]) '

aﬁl

Sa,
o €2M Z u V()

Wy

a=1

(73)

We also see that
E[]\_/I*A*M]\_/I*A Mu)
Eon Z (A MuM VoléaJutad

M AlM’U,}
al I3
=MD ey

M E[(AlMu)(AlMu)T}]\_/.FEa).

T
[e3

5 (Vol€alu,

(74)

The expectation E[(AyMu)(AyMu) '] is
[(AlMu)(A Mu)T]




u, E[AE AL} w)E £}
(u, Vol€,]u) (u, Vo[€5lu)

-3

a,B=1
N =T N < =T
2 ’LL % u)é(xéa _ 2 £a£a
- (;1 'LL VO a )2 - azzl (uv%[sa]u)
=e2M. (75)
Hence, Eq. (74) becomes
EM™ ATMM ™ A, Mul)
N o
-9 ZM* (VO[£O¢]U’3M MM ga)&a
M T T TP
N o
-9 ZM_ (VO[goz]uaM Sa)éa 76
M Vi w)? 7o
The expectation of M~ Ay M is
(¥7u AE(X
E[M ™ AyMu) = z:: (Vi )]
A€ Aﬁ 22
_M Z M Z u VO
= 52M Nu, (77
where we define
N
N Vb[ga}
= —_— 78
2 whew 79
The expectation of M~ A Mu is
E[M ™~ A5Mul
N _
(Aru, Vo€, ]Ju) (AL, w)€,
=E| —2M "~
QZI (w VolbJu)?
N _ _
U,E AIMU’) ]M Vb[ga]u)ga
=2M"
az::l (U, VO [éa}u)2
(79
The expectation E[AE, (A1 Mu) '] is
(A&, u) ;
E[AE, (A1 Mu)'] = E[AE,, Z (Vo
ol AﬁaAéﬁ]ufg €2V0[£ }Ué
= a2 (80
D A AR AT

Hence, Eq. (79) becomes

E[M ™ AiMu]
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Table 2. The role of the Taubin method and renor-
malization.

‘ no weight iterative reweight
eigenvalue problem LS < optimally weighted LS
. Y Y
generalized Taubin < renormalization

eigenvalue problem

. N U Vb (£Q7M ‘/0[5 ] )ga
=AM (. Vo€ Jup
N -
B £Q7M VE) ] )ga
a zz:l ’LL VO sa] ) , (81)

which is the same as Eq. (76). Thus, the expectation of
Asut in Eq. (72)

E[Agul]
2M Z

£ouM EQ)VO[QXW
M Z (. Vol Ju?

(M€, Vo€ Ju)E,
(u, Vpl€,]u)?

e2M ™~ Nu. (82)

4.4. Renormalization

We can see the similarity between Egs. (37) and (43)
for (unweighted) LS and Eqgs. (71) and (82) for optimally
weighted LS, where the (unweighted) matrix M| is re-
placed by the weighted matrix M. We have also seen that
the last term —e? M o INow in Eq. (43) can be removed by
using the Taubin method, replacing Eq. (31) by Eq. (45) by
inserting the (unweighted) matrix INo. This implies that
the last term —?M  Nwu in Eq. (82) may be removed by
replacing Eq. (62) by

Mu = AN, (83)
by inserting the weighed matrix
N
- Wléa]
- . (84)
Z:: (@, Vol€,]a)

Indeed, this is the idea of the renormalization of
Kanatani [11, 12] (Table 2). His original idea was that
the exact value w is obtained as the eigenvector of M in
Eq. (61) for eigenvalue 0. If we approximate M by M in
Eq. (62), we have

M =M+ AM +ASM + AyM + A5M. (85)



Evidently E[A; M] = O and E[A;M] = O, but we see
from Eq. (66) that
N
_ E[AE,AE,] e2Vpl€
E[AQM]’ZWVO ;UVO Ju)

=¢e2N. (86)
Hence, M — 2NN is closer to M in expectation than M.
Though we do not know €2 and IV, the latter may be ap-
proximated by N. The former is simply regarded as an un-
known to be estimated. Kanatani [11, 12] estimated it as the
value ¢ that make M —cIN singular, since the true value M
has eigenvalue 0. Thus, Kanatani’s renormalization goes as
follows:

1. Initialize u, say by LS, and let ¢ = 0.
2. Solve the eigenvalue problem

(M — cN)u = \u, (87)

and let v be the unit eigenvector for the eigenvalue A
closest to 0.
3. If A = 0, return w and stop. Else, let

c—c+ U «— u, (88)

(u, Nu)’
and go back to Step 2.

This method has been demonstrated to result in dramatic
improvement over (unweighted or optimally weighted) LS
in many computer vision problems including fundamental
matrix computation for 3-D reconstruction and homography
estimation for image mosaicing [17, 18]. We now analyze

its accuracy.
After the iterations have converged, we have

(M —c¢N)@ =0, (89)

which is essentially Eq. (83). As before, we have the per-
turbation expansion

(M+ (A1 M + ATM) + (Ao M + ASM) +
—(A1c+A2c+~-~)(N+A;N+---))(u+A1u
FAsu ) =0, (90)

where

N

AN = -2 Z

A1'“/ VO ga )VO[g(y]
(u, Vol€,]u) ,

oD

which arises from the expansion of the denominator in the
expression of N (the second order perturbation A3 N does
not affect the subsequent analysis).
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Equating first and second order terms on both sides of
Eq. (90), we obtain

MA1U+(A1M+ATM7A16N)’U,:0, (92)
MAQ’U, + (A]_M + ATM - AlcN)Al’U,

Computing the inner product with @ on both sides of
Eq. (92), we find that A;c = 0 as before. Multiplying M ~
on both sides of Eq. (92) and solving for A;u, we again
obtain Eq. (71).

Multiplying M~ on both sides of Eq. (93) and solving
for Asut, we obtain

Asut

=-M AMAju—M AiMAju— M AyMu
—~M~ ASMu + AyeM ™ Nu

=M AMM A /Mu+M ATMM A Mu
~M AsMu— M AsMu+ AscM ™ Nu. (94)

Comparing this with Eq. (72), we find that an extra term,
AocM ™ Nu, is added. We now evaluate its expectation.

Computing the inner product with « on both sides of
Eq. (93) and noting that (u, M Asu), (u, A M Aju), and
(u, A3 M) all identically vanish, we have

(u, AoMu) — (u, AT M A u)
(u, Nu)

Agc = (95)

We first note from the definition of IV in Eq. (78) that

N (u, Vol€,)u)
E (w, Vol€,Ju)

[0}

(96)

The expectation of (u, Ao M) is
E[(u AsMu)]

B uEAEAé])
Z (u, Vo€, ]u)
:Ns.

CH)
The expectation of (u, A; MAju) is

El(u, Ay MA;u)]
= E[(U,AlMM_AlM’U,)]

zuvo S wy

a=1 B=1

(AE[%U’)E[B

(u, VolE )



(’U,7 %[Sa]u)(uv ‘/O[Sﬂ]u)

o (u, Vl€o]u) (6o, M E,)
(u, Vo[€,]u)?

I
[V
-+
~
gw

= c*tr[Py] = (p — 1)?, (98)

where p is the dimension of the parameter vector w. Thus,
from Eq. (95) we have

E[Asd] = (99)

and hence from Eq. (94)

Vo€ u
(U, VO[Sa]u)Q

(100)

Eq. (99) corresponds to the well known formula of unbi-
ased estimation of the noise variance €2 (note that the p-
dimensional unit vector v has p — 1 degrees of freedom).

If the number N of data is fairly large, which is the case
in many vision applications, the last term in Eq. (100) is
insignificant, resulting in the frequently reported dramatic
improvement over optimally weighted LS.

Kanatani’s renormalization was at first not well under-
stood. This was due to the generally held preconception that
parameter estimation should be done by minimizing some-
thing. People wondered what renormalization was actually
minimizing. In this line of thought, Chojnacki et al. [6] in-
terpreted it to be an approximation to maximum likelihood
estimation. We have seen, however, that optimal estimation
does not necessarily mean minimization and that renormal-
ization is an effort to improve accuracy by a direct means.

Example 4 Figure 6 is the RMS error plot corresponding to
Fig. 5 using the ellipse data in Example 3. The thick solid
line is for LS, the dashed line is for optimally weighted LS,
and the thick solid line is for renormalization. The dotted
line is for the KCR lower bound. Although the plots for
optimally weighted LS and renormalization should both be
tangent to that of the KCR lower bound at o = 0, but not
for LS, this is not visible from the figure, again confirming
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Figure 6. Noise level vs. RMS error for the el-
lipse data in Fig. 4: LS (thick solid line), optimally
weighted LS (dashed line), renormalization (thin
solid line), and the KCR lower bound (dotted line).

that the performance difference is mostly due to the second
order error Asu.

In fact, we can see from Fig. 6 that the accuracy gain of
optimally weighted LS over the (unweighted) LS is rather
small, meaning that satisfaction of the KCR lower bound in
the first order is not a good indicator of high accuracy.

In contrast, renormalization performs considerably bet-
ter than optimally weighted LS, clearly demonstrating that
the last term of Eq. (82) has a decisive influence on the ac-
curacy. The situation is similar to the relationship between
LS and the Taubin method. |

4.5. Maximum Likelihood Estimation

Maximum likelihood estimation (ML) minimizes
Eq. (14), which reduces for the linearized constraint of

Eq. (16) to
J = 101
; . VO (101)
Differentiating this with respect to u, we obtain
N
S Mty 2 WS
=1 pyt U V() )2 '
(102)
Hence, the ML estimator « is the solution of
M = La, (103)
where M is defined by Eq. (63) and Lis given by
S Vol€a]
Z ar ¥ Y0lSal (104)
(@, Vol€,]a)?

Equation (103) can be solved using various numerical
schemes. The FNS (fundamental numerical scheme) of
Chojnacki et al. [7] reduces Eq. (103) to iterative eigenvalue



problem solving (see Appendix E), and the HEIV (het-
eroscedastic errors-in-variable) of Leedan and Meer [20]
reduces it to iterative generalized eigenvalue problem solv-
ing (see Appendix F). We may also do Gauss-Newton itera-
tions directly (see Appendix G). We now analyze the accu-
racy of the ML estimator.

Whatever iterative scheme is used, Eq. (103) holds after
the iterations have converged. The perturbation expansion
of Eq. (103) is

(M + A1 M+ ATM + AoM + ASM + - -

—AQL—ASL)(E+A1U+AQU+) = 0, (105)
where
N _
o (A, )’ VolE]
ML= e dwr
N
*r (gonAlu)Z%[ a]
ML =2 R Vi
N =
+2 Z (Son Al'u’) (Agou u)%[ga] (106)

Note that Eq. (104) vanishes if £, and @ are replaced by £,
and u, respectively. Hence, the Oth order term of L is O.
Since Eq. (104) contains the quadratic term (£,,,)?, the
first order perturbations A; L and A} L are also O.

Equating first and second order terms on both sides of
Eq. (106), we obtain

MAsu+ (A1M + ATM)Aju+ (Ao M + A5M
—AoL — AjL)u = 0. (108)

Multiplying M~ on both sides of Eq. (107) and solving for
Aju, we again obtain Eq. (71).

Multiplying M~ on both sides of Eq. (108) and solving
for Asult, we obtain

Asut

~M AMAju—- M ATMAju— M A, Mu

~M A;Mu+ M AsLu+ M~ AjLu

=M AMM A Mu+M ATMM AiMu
~M A;Mu— M AiMua+ M AsLa
+M AjLu

(109)

For computing its expectation, we only need to consider
the new terms M~ A,Lw and M~ AjLu. First, we see
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that
E[M_AQLU]
- S (@ EIAE AL Ju)Vole, )
= (@, Vo€, |u)?
N _ _
Y (u,z—: Vo[é'a} )VO 604]“’
=M TR e
N _
_ 2nr— Vol€.]u 2N N
=M az::l AR M Nu (110)
For M~ AjLu, we have
EM _A*L'u]
£aaEA1'U’A1u }EQ)VO[ga]Ia
=M Z (@, V. Ju)?
+2M Z £omEA1'UJA€ ] ) [ga}ﬂ" (111)

(w, Vo€, ]u)?

We have already seen that the first order error A;u satis-
fies the KCR lower bound, so E[AjulAju'] =M (see
Eq. (60)). On the other hand,
T
E[AjuAE, ]u
—E[M_AlMﬁAE’T] 7

N aeE Ee]
By (w, VolE )

uAg, |

(112)

(113)

Adding Egs. (110) and (113) to Eq. (82), we conclude that

(114)

E[Asut] = 2M "~ Z (M éon[&]a]uka

(u, Vpl€,]u)?



Comparing this with Egs. (82) and (100), we can see the last
two terms there are removed.

There has been a widespread misunderstanding that op-
timally weighted LS can actually compute ML because
Eq. (56) is identical to Eq. (101) if the weight W, is chosen
as in Eq. (59). However, this is not so [7, 12]. The important
thing is not what to minimize but how it is minimized.

Optimally weighted LS minimizes Eq. (101) for w in
the numerator with w in the denominator fixed. Then, the
resulting solution w is substituted into the denominator,
Eq. (101) is minimized for w in the numerator, and this is
iterated. This means that when the solution u is obtained, it
is guaranteed that

(115)

for any infinitesimal perturbation Ju, which the conver-
gence of optimally weighted LS means. This, however,
does not guarantee that

(0,0 + Su)’ Al i
< (4 + ou, Vol€,](a + 0u)) Z uVO )
(1 16)
for any infinitesimal perturbation du, which minimization
of J really means. The difference between Eq. (115) and
Eq. (116) is very large: the latter eliminates the last two
terms of E[Aju'] in Eq. (82). Renormalization is inter-
mediate in the sense that it eliminates only the last term
(almost).

Mz

4.6. Hyperaccuracy Fitting

It has been widely believed that ML is the best method
of all. Indeed, no method has been found that outperforms
ML, aside from the semiparametric approach in the asymp-
totic limit N — oo (cf. Section 2.4).

However, Eq. (114) implies the possibility of improv-
ing the accuracy of ML further. Namely, we “subtract”
Eq. (114) from the ML estimator @. Of course, Eq. (114)
cannot be precisely computed, because it involves the true
values €, and u. So, we approximate them by the data £,
and the ML estimator w. As is well known in statistics (e.g.,
see [12]), the unknown squared noise level €? is estimated
from the residual of Eq. (101) in the following form:

9 (tw, M)
é N1 117)

Thus, the correction has the form

N
@=Nla-M
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Figure 7. Noise level vs. RMS error for the ellipse
data in Fig. 4: Taubin (dashed line), renormaliza-
tion (thin solid line), ML (thick solid line), hyper-
accurate correction (chained line), and the KCR
lower bound (dotted line).

(b)

Figure 8. Two instances of ellipse fitting: LS (bro-
ken line), ML (thick solid line), hyperaccuracy cor-
rection (thin solid line), true ellipse (dotted line).

where the operation N[-] in denotes normalization to unit
norm for compensating for the parallel component Awll
(see Fig. 3).

Example 5§ Figure 7 shows the RMS error plot correspond-
ing to Figs. 5 and 6 using the ellipse data in the Exam-
ple 3. The dashed line is for the Taubin method, the thin
line is for renormalization, and the thick solid line is for
ML,; we used the FNS of Chojnacki et al. [7] for comput-
ing ML. The dotted line is for the KCR lower bound. We
can see that the Taubin method, renormalization, and ML
have comparable accuracy. Their error plots almost agree
with the KCR lower bound when the noise level is low. As
the noise increases, however, their difference from the KCR
lower bound slowly grows.

The chained line shows the result of the hyperaccurate
correction of Eq. (118). We can see that the error is reduced
by this correction and that the resulting RMS almost coin-
cides with the KCR lower bound?.

Figure 8(a) shows one instance of ellipse fitting (¢ =
0.015). The dotted line shows the true ellipse; the broken
line is for LS; the thick solid line is for ML; the thin solid

2The hyperaccuracy correction of ellipse fitting was first presented in
[16], but the term A% L was not taken into account.



Table 3. Average error ratio of different methods.

LS 1.636
Optimally weighted LS 1.575
Taubin 1.144
Renormalization 1.133
ML 1.125
Hyperaccurate correction | 1.007
KCR lower bound 1.000

line is for the hyperaccurate correction. We can see that the
fitted ellipse is closer to the true shape after the correction.
Figure 8(b) is another instance (¢ = 0.015). In this case, the
ellipse given by ML is already very accurate, and it slightly
deviates from the true shape after the correction.

Thus, the accuracy sometimes improves and sometimes
deteriorates. Overall, however, the cases of improvement
is the majority; on average we observe slight improvement
as shown in Fig. 7. Closely examining many examples, we
have observed that the accuracy drop occurs almost always
when the ML fitted ellipse falls inside the true shape. How-
ever, the majority of the fitted ellipses are outside the true
shape. Thus, the correction is effective on average.

We infer that ML is likely to produce ellipses outside
the true shape because it is parameterized in the form of
Eq. (20). If the major or minor axis of the ellipse is a, the
coefficient of 22 or y? is proportional to 1/a?. If 1/a? is
“unbiased”, a is biased to be larger than the true value, as
can be easily seen from the shape of the graph of y = 1/22.

For comparing all the methods tested so far, we define
the “error ratio” D/Dxcr of D in Eq. (54) divided by
Dxcr in Eq. (55) and average it over the tested range of
o. Table 3 list this value for different method. O

5. Conclusions

We have given a rigorous accuracy analysis of various
techniques for geometric fitting. We first pointed out how
our problem is different from traditional statistical analysis
and explained why we need a different framework. After
giving general theories in our new framework, we selected
typical existing techniques and analytically evaluated their
accuracy up to second order terms. Table 4 summarizes the
first order error and the second order bias. We also con-
ducted numerical simulations of ellipse fitting. Our main
observations are as follows:

1. LS and the Taubin method have the same error to a
first approximation. However, the latter achieves much
higher accuracy, because a dominant second order bias
term of LS is removed.
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2. Optimally weighted LS achieves the KCR lower bound
to a first approximation. However, the accuracy gain
over (unweighted) LS is rather small. This is due to
the existence of second order bias terms.

3. Renormalization nearly removes the dominant bias
term of optimally weighted LS, resulting in consider-
able accuracy improvement.

4. ML is less biased than renormalization. However, the
accuracy gain is rather small.

5. By estimating and subtracting the bias term from the
ML solution, we can achieve higher accuracy than ML
(“hyperaccuracy”).

Thus, we conclude that it is the second order bias terms,
not the variance of the first order error, that have dominant
effects over the accuracy. However, not all terms have the
same degree of influence. Detailed evaluation of this re-
quires further investigation.
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Appendix
A: Derivation of the KCR Lower Bound

For simplicity, we consider only the case where no in-
trinsic constraints exist on the data x,, or the parameter u
and the noise is identical and isotropic Gaussian with mean
0 and variance £2. In other words, we assume that the prob-
ability distribution density of each datum x,, is

(m)fL
P(@a) =

Suppose an unbiased estimator @(xq, ...
unbiasedness mean

efl‘xaff‘a‘lz/ZEQ .

(119)

,xy) is given. Its

El&—u] =0, (120)

where F[-] is expectation over the joint probability density
p(x1) - - p(xN). Since this density is parameterized by the



true data values &, Eq. (120) can be viewed as an equation
of &, as well as the unknown w. The crucial fact is that
Eq. (120) should be an identity in &, and u that satisfies
Eq. (1), because unbiasedness is a “property” of the esti-
mator u that should hold for whatever values of ., and u.
Hence, Eq. (120) should be invariant to infinitesimal varia-
tion of &, and u. This means

6/(a—u>p1---dew:—/<6u>p1~--dew
N

+Z/(ﬂ*u)p1~~5pampzvdm

a=1

N
> (pr+++0pa---py)dz, (121)

a=1

- —5u+/('&—u)

where p,, is an abbreviation of p(x,) and [ dz is a short-
hand of [--- [dx,---xn. Note that we consider varia-
tions in &, (not x,,) and w. Since the estimator % is a func-
tion of the data x,,, it does not change for these variations.
The variation du is independent of x, so it can be moved
outside the integral [ da. Also note that [ p; ---pyda = 1.

The infinitesimal variation of Eq. (119) with respect to
T, is

0pa = (la7 &ia)pou (122)
where we define the score [, by
lo, =Vsx, logp, = Jﬁa—z-’L’a. (123)
€

Since Eq. (120) is an identity in &, and w that satisfies
Eq. (1), the variation (121) should vanish for arbitrary in-
finitesimal variations d&,, and du that are compatible with
Eq. (1). If Eq. (122) is substituted into Eq. (121), its vanish-
ing means

N
El(a—u) Y 1)6Z] = bu. (124)
a=1
The infinitesimal variation of Eq. (1) has the form
(VxFu,0%,) + (VuF,, 0u) =0, (125)

where the overbar means evaluating it at = &, for the true
value u. Consider the following particular variations 6%

(VxFo)(VuFo) "

0F = — A
IVxFall?

Su. (126)

Evidently, Eq. (125) is satisfied by whatever w. Substituting
Eq. (126) into Eq. (124), we obtain

N
El(a—u) Y m]]ou = —du, (127)
a=1
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where we define the vectors m,, by

(VuFo)(VxFo)

Me = ~ lo. (128)
[VxFall?

Since Eq. (127) should hold for arbitrary variation du, we
have

N
El(a—u)Y m)]=-I

(129)
a=1
Hence, we have
g - — T]_ Via) —1T
ng mq Zgzlma B - M ,
(130)
where we define the matrix M by
N N T
M (3 m) ()
a=1 ps=1
X (VaFa) (VaFa)T (VaFo) (VaFo)T
IR A e e TN
a,f=1 x4 a x4 a
1 (VuFa)(VuFOJT
= = 131
& [Vabal? (3

In the above equation, we use the identity F [lal;] =
Sapl /e, which is a consequence of independence of the
noise in each datum x,,.

Since the inside of the expectation E| -] on the left-hand
side of Eq. (130) is evidently positive semidefinite, so is
the right-hand side. Hence, the following is also positive

semidefinite:
I M Via] -I I
Mt -I M Mt Mt
L0 -1
_ ( Via) — M - ) (132)
From this, we conclude that
Via] - M. (133)

This result is easily generalized to the case where intrinsic
constraints exist on the data x, and the parameter u and
the covariance matrix V[, ] is not full rank. In the general
case, we obtain Eq. (9).

B: Linear Approximation of ML

For simplicity, we consider only the case where no intrin-
sic constraints exist on the data x,, or the parameter v and
the noise is identical and isotropic Gaussian. Substituting
T, =, — Az, into Eq. (12) and assuming that the noise
term Ax,, is small, we obtain the linear approximation

F, — (VxF,,Az,) =0, (134)



subject to which we want to minimize Z 1 || Az, 2.
troducing Lagrange multlphers A, le
Z ||Awa||2+z/\ (VyFo, Azy)).
(135)

Taking the derivative of L with respect to Az, and setting
it to 0, we have

Az, — Ao ViF, = 0. (136)

Hence, Az, = A\, V< F,. Substitution of this into Eq. (134)
yields

Fy — (ViFo,\aVxFy) =0 (137)
from which we obtain )\, in the form
F,
Ao = ——= . (138)
IVxFal?
Thus,
N N
Z [Az,|* = Z Aa Vi Fall?
N
F? F?
Vi F,|? 139
= 2 W Vetal = Zuv R

This result can easily be generalized to the case where in-
trinsic constraints exist on the data x, and the parameter
u and the covariance matrix V[z,] is not full rank. In the
general case, we obtain (15).

C: Covariance Matrix of ML

For simplicity, we consider only the case where no in-
trinsic constraints exist on the data x,, or the parameter u
and the noise is identical and isotropic Gaussian with mean
0 and variance 2, so V[x,] = ¢?I. Letting ¢, = Z, + Az,
and replacing u by u + Aw in Eq. (15), we can expand J
in the form

N
=3
N (140)

where the overbar means evaluating it at * = &, for the
true value u. Note that replacing Vi F,, by VyF, by in
the denominator does not affect the leading term because
the numerator is O(g?); the difference is absorbed into the
remainder term O(e?).

If we find Aw that minimizes Eq. (140), the ML estima-
tor @ is given by u + Aw. Since the first term on the right-
hand side of Eq. (140) is quadratic in Awu,, the derivative
of J with respect to Aw is

Aeo) + (VuFs
[Vl

+ (VuFo, Au))VuF, +O(e?).

N —
((VxFy,Az,,)
2 E _
[VxFall?

a=1

(141)
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Letting this be 0, we have

F. F)T
(vu a)(Yu a) Au
2 [Vl
N (VaFo) (ViFa)T
- _ wal X 2 Ax, +0(?),  (142)
; [VsFall®
from which we obtain
Y(VuF,) (VuF5)(VuEp) "
711 0( A Au T [3 B
2 A Z IVaF5I?
N a3 P\ T
_ 5 CF)(TF)T 7 (TP (Vul))
aimr IVsFall IV Fal
+0(e%) (143)
Taking expectation on both sides, we obtain
(VuF3)(VuFs) "
az::l IIV F ||2 sz IV Fp12
N —
e (VaFo) (VeFo) T (VaFo)(VaFy) T 4
=Y - - +0(e")
o IVxFal? IVsFall?
N —
(VaFo)(VxFa)" 1
=> AT +0(h (144)
a=1 X+ >

Note that E[O(e%)] = O(g*), because the noise distribution
is isotropic and odd noise terms vanish in expectation. The
first term in the last expression is the KCR lower bound in
this case.

This result can easily be generalized to the case where
intrinsic constraints exist on the data x,, and the parameter
u and the covariance matrix V[z,] is not full rank. We
conclude that the covariance matrix of the ML estimator
agrees with the KCR lower bound except for O(g?).

D: Procedure for the Taubin Method

In most vision applications, the embedded data £, the
parameter u, and the normalized covariance matrix Vj[€,]
Za

are decomposed in the form
I
c ) “\a )’

=
Wzl 0,

Vb [ﬁa] = ( OT 0
where C' and a are constants; see Egs. (21) and (22) for el-
lipse fitting and Eqgs. (25) and (26) for fundamental matrix
computation. Here, z,, and v are (p — 1)-dimensional vec-
tors, and Vp[z,] is a (p—1) x (p— 1) normalized covariance
matrix of z,; see Egs. (23) and (27).

(145)



So, we compute estimates © and a of v and a, respec-

tively. Define (p — 1) x (p — 1) matrices M and N by
N ) N
My=> 2.2, No=Y Vylza],  (146)
a=1 a=1
where
1Y
Za=2Za — Z, z:N;z (147)
Then, Eq. (45) is decomposed into two equations
Myd = ANgd, (9,2)+Ca=0. (148)

Compute the (p — 1)-dimensional unit generalized eigen-
vector ¥ of the first equation for the smallest generalized
eigenvalue \ (see, e.g., [12] for the procedure) . The second
equation gives @, and & is given by

i

=

where N|-] denotes normalization to unit norm.

> D

(149)

E: Procedure for FNS

The FNS of Chojnacki et al. [7] solves Eq. (103) by the
following iterations:

1. Initialize u, say by LS.
2. Compute the matrix M in Eq. (63) and the matrix L
in Eq. (104), and solve the eigenvalue problem
(M — L)u = \u. (150)
Let u be the unit eigenvector for the eigenvalue A clos-
estto 0.

3. If u = u except for sign, stop. Else, let & <+ u and go
back to Step 2.

Later, Chojnacki et al. [9] pointed out that convergence per-
formance improves if we choose in Step 2 not the eigen-
value closest to 0 but the smallest one.

F: Procedure for HEIV

In most vision applications, the embedded data £, the
parameter u, and the normalized covariance matrix Vj[€,]
are decomposed in the form of Egs. (145). So, we compute
estimates ¥ and & of v and a, respectively. Define (p — 1) X
(p — 1) matrices M and L by

al (0,24)* Vo2 ]
AiaA’ L a 0 = )
(9, Vo[za]®) Z

(0, Vo[za]D
a=1

(151)
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where we put

Zo = -z,

N
gvvoza'& ZvVozﬁf)

Then, Eq. (103) is decomposed into the following two equa-
tions:

(152)

Mo =1Lv, (v,z)+Ca=0. (153)
If determine © from the first equation, the second equation
determines G, and the estimate u is given in the form of
Eq. (149). The HEIV of Leedan and Meer [20] solves the
first equation by the following iterations:

1. Initialize v, say by LS. ~
2. Compute the matrices M and L in Eq. (151), and
solve the generalized eigenvalue problem

Mv = \Lwv. (154)

Let v be the unit generalized eigenvector for the gen-
eralized eigenvalue ) closest to 1.

3. If v =~ v except for sign, return v and stop. Else, let ©
« v and go back to Step 2.

Leedan and Meer [20] pointed out that choosing in Step 3
not the generalized eigenvalue closest to 1 but the smallest
one improves the convergence performance.

G: Gauss-Newton Iterations

Since the gradient V,,.J is given by Eq. (102), we can
minimize the function J in Eq. (101) by Newton iterations.
If we evaluate the Hessian ViJ , the increment Awu in u is
determined by solving

(VE)Au = —V,J. (155)

Since V2 .J is singular (the function .J is constant in the di-
rection of u), the solution is indeterminate. However, if we
use pseudoinverse and compute

Au = —(V2J)"VaJ,

we obtain a solution, which is orthogonal to w.

Differentiating Eq. (101) and introducing Gauss-Newton
approximation (i.e., ignoring terms that contain (u,&,)),
we see that the Hessian is nothing but the matrix M in
Eq. (63) for u = u. In order to compute pseudoinverse, we
enforce M, which is generally nonsingular, to have eigen-
value 0, using the projection matrix Py = I — @' . The
iteration procedure goes as follows [19]:

(156)

1. Initialize u, say by LS.

2. Compute
u=N[u—

(PoMPy)~ (M — L)ya).  (157)

3. If u = u, return u and stop. Else, let & <+ u and go
back to Step 2.



