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Abstract: We present an improved version of the MSL method of Sugaya and Kanatani for multibody motion segmen-
tation. We replace their initial segmentation based on heuristic clustering by an analytical computation based
on GPCA, fitting two 2-D affine spaces in 3-D by the Taubin method. This initial segmentation alone can
segment most of the motions in natural scenes fairly correctly, and the result is successively optimized by the
EM algorithm in 3-D, 5-D, and 7-D. Using simulated and real videos, we demonstrate that our method out-
performs the previous MSL and other existing methods. We also illustrate its mechanism by our visualization
technique.
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1 INTRODUCTION

Separating independently moving objects in a
video stream has attracted attention of many re-
searchers in the last decade, and today we are wit-
nessing a new surge of interest in this problem. The
most classical work is by Costeira and Kanade (1998),
who showed that, under affine camera modeling, tra-
jectories of image points in the same motion be-
long to a common subspace of a high-dimensional
space. They segmented trajectories into different
subspaces by zero-nonzero thresholding of the ele-
ments of the “interaction matrix” computed in rela-
tion to the “factorization method” for affine structure
from motion (Poelman and Kanade, 1997; Tomasi
and Kanade, 1992). Since then, various modifi-
cations and extensions have been proposed. Gear
(1998) used the reduced row echelon form and graph
matching. Ichimura (1999) used the Otsu discrimi-
nation criterion. He also used the QR decomposi-
tion (Ichimura, 2000). Inoue and Urahama (2001)
introduced fuzzy clustering. Kanatani (2001, 2002,
2002a) combined the geometric AIC (kaike Informa-
tion Criterion) (Kanatani, 1996) and robust clustering.
Wu et al. (2001) introduced orthogonal subspace de-
composition. Sugaya and Kanatani (2004) proposed
a multistage learning strategy using multiple models.
Vidal et al. (2005, 2008) applied their GPCA (Gen-

eralized Principal Component Analysis), which fits a
high-degree polynomial to multiple subspaces. Fan et
al. (2006) and Yan and Pollefeys (2006) introduced
new voting schemes for classifying points into dif-
ferent subspaces in high dimensions. Schindler et
al. (2008) and Rao et al. (2008) incorporated model
selection based on the MDL (Minimum Description
Length) principle.

At present, it is difficult to say which is the best
among all these methods. Their performance has been
tested, using real videos, but the result depends on the
test videos and the type of the motion that is taking
place (planar, translational, rotational, etc.). If such
distinctions are disregarded and simply the gross cor-
rect classification ratio is measured using a particular
database, typically the Hopkins155 (Tron and Vial,
2007), all the methods exhibit more or less similar
performance.

A common view behind existing methods seems
to be that the problem is intricate because the seg-
mentation takes place in a high-dimensional space,
which is difficult to visualize. This way of thinking
has lead to introducing sophisticated mathematics one
after another and simply testing the performance us-
ing the Hopkins155 database. In this paper, we show
that the problem is not difficult at all and that the ba-
sis of segmentation lies in low dimensions. Indeed,
we can visualize what is going on in 3-D. This re-
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veals that what is crucial is the type of motion and
that different motions can be easily segmented if the
motion type is known.

Sugaya and Kanatani (2004) assumed multiple
candidate motion types and presented the MSL (Mul-
tiStage Learning) strategy, which does not require
identification of the motion type. To do this, they
exploited the hierarchy of motions (e.g., translations
are included in affine motions) and applied the EM
algorithm by progressively assuming motion models
from particular to general: Once one tested motion
type agrees with the true one, the segmentation is un-
changed in the subsequent stages because general mo-
tions include particular ones. Tron and Vidal (2007)
did extensive comparative experiments and reported
that MSL is highly effective. In this paper, we present
an improved version of MSL.

Since MSL uses the EM algorithm, we need to
provide an appropriate initial segmentation, which is
the key to the performance of the subsequent stages,
in which the segmentation in the preceding stage is
input and the output is sent to the next stage. For com-
puting the initial segmentation, MSL used a rather
heuristic clustering that combines the interaction ma-
trix of Costeira and Kanade (1998) and model selec-
tion using the geometric AIC (Kanatani, 1996). In
this paper, we replace this by the GPCA of Vidal et
al. (2005, 2008): we fit a degenerate quadric in 3-D
by the method of Taubin (1991). Then, we succes-
sively apply the EM algorithm and demonstrate, us-
ing the Hopkins155 database, that our method out-
performs MSL and other existing methods. We also
show, using our visualization technique, why and how
good segmentation results.

2 AFFINE CAMERAS

Suppose N feature points {pα} are tracked over M
image frames. Let (xκα,yκα), κ = 1, ..., M, be the im-
age coordinates of the αth point pα in the κth frame.
We call the 2M-D vector

pα = (x1α, y1α, x2α, y2α, · · · xMα, yMα)>, (1)

the trajectory of pα. Thus, an image motion of each
point is identified with a point in 2M-D. We define
a camera-based XY Z coordinate system such that the
Z-axis coincides with the camera optical axis and re-
gard the scene as moving relative to a stationary cam-
era. We also define a coordinate system fixed to each
of the moving objects. Let (aα,bα,cα) be the coordi-
nates of point pα with respect to the coordinate sys-
tem of the object it belongs to. Let tκ be the origin of
that coordinate system and {iκ, jκ,kκ} the basis vec-
tors in the κth frame. Then, the 3-D position rκα of

the point pα in the κth frame with respect to the cam-
era coordinate system is

rκα = tκ +aαiκ +bαjκ + cαkκ. (2)

The affine camera, which generalizes ortho-
graphic, weak perspective, and paraperspective pro-
jections (Poelman and Kanade, 1997), models the
camera imaging by(

xκα
yκα

)
= Aκrκα +bκ, (3)

where the 2× 2 matrix Aκ and the 2-D vector bκ are
determined by the intrinsic and extrinsic camera pa-
rameters of the κth frame. By substitution of Eq. (2),
Eq. (3) is written in the form(

xκα
yκα

)
= m̃0κ +aαm̃1κ +bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-D vectors de-
termined by the intrinsic and extrinsic camera param-
eters of the κth frame. The trajectory in Eq. (1) is
expressed as the vertical concatenation of Eq. (4) for
κ = 1, ..., M, in the form

pα = m0 +aαm1 +bαm2 + cαm3, (5)

where mi, i = 0, 1, 2, 3, are the 2M-D vectors consist-
ing of m̃iκ for κ = 1, ..., M.

3 GEOMETRIC CONSTRAINTS

Equation (5) states that the trajectories of points
that belong to the same object are in a common “4-D
subspace” spanned by {m0, m1, m2, m3}. Hence,
segmenting trajectories into different motions can be
done by classifying them into different 4-D subspaces
in 2M-D. However, the coefficient of m0 in Eq. (5)
is identically 1, which means that the trajectories of
points that belong to the same object are in a common
“3-D affine space” passing through m0 and spanned
by {m1, m2, m3}. Thus, segmentation can also
be done by classifying trajectories into different 3-D
affine spaces in 2M-D.

In real situations, however, objects and a back-
ground often translate with rotations only around an
axis vertical to the image plane. We say such a mo-
tion is planar; translations in the depth direction can
take place, but they are invisible under the affine cam-
era modeling, so we can regard translations as con-
strained to be in the XY plane. It follows that if we
take the basis vector kκ in Eq. (2) to be in the Z di-
rection, it is invisible to the camera, and hence m3 =
0 in Eq. (5). Thus, the trajectories of points under-
going the same motion are in a common “2-D affine
space” passing through m0 and spanned by {m1, m2}
(Fig. 1(a))．
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Figure 1: (a) If the motions are planar, object and back-
ground trajectories belong to different 2-D affine spaces. (b)
If the motions are translational, object and background tra-
jectories belong to 2-D affine spaces that are parallel to each
other.

If, moreover, objects and a background merely
translate without rotation, we can fix the basis vectors
iκ and jκ in the X and Y directions, respectively. This
means that the vectors m1 and m2 in Eq. (5) are com-
mon to all the objects and the background. Thus, the
2-D affine spaces are parallel to each other (Fig. 1(b)).

It is well known that the interaction-matrix-based
method of Costeira and Kanade (1998) fails if the mo-
tion is planar. Furthermore, if there exist two 2-D
affine spaces parallel to each other, they are both con-
tained in some 3-D affine space, and hence in some
4-D subspace. This means classification of different
motions into 3-D affine spaces or into 4-D subspaces
is impossible. Yet, this type of degeneracy is very fre-
quent in real situations. In fact, almost all “natural”
scenes in the Hopkins155 database undergo such de-
generacy to some extent1. This may be the main rea-
son that many researchers have regarded multibody
motion segmentation as difficult and tried various so-
phisticated mathematics one after another.

The MSL of Sugaya and Kanatani (2004) resolved
this by starting from the translational motion assump-
tion and progressively applying more general assump-
tions so that any degeneracy is not untested. In this
paper, we improve their method by introducing new
analytical initial segmentation and going on to suc-
cessive upgrading in slightly different dimensions.

4 DIMENSION COMPRESSION

In the following, we concentrate on two motions:
an object is moving relative to a background, which is
also moving. If the two motions are both general, the
observed trajectories belong to two 3-D affine spaces
in 2M-D. There exists a 7-D affine space that contains

1The exceptions are the artificial “box” scenes, in which
boxes autonomously undergo unnatural 3-D translations
and rotations. For these, segmentation is very easy.

both. Hence, segmentation of trajectories can be done
in a 7-D affine space: noise components in the out-
ward directions do not affect the segmentation. If we
translate the 7-D affine space so that it passes through
the origin, take seven basis vectors in it, and express
all the trajectories in their linear combinations, each
trajectory can be identified with a point in 7-D. Simi-
larly, if the observed trajectories are in two 2-D affine
spaces in 2M-D, there exists a 5-D affine space that
contains both. Then, each trajectory can be identified
with a point in 5-D. If, moreover, the two 2-D affine
spaces in 2M-D are parallel to each other, there exists
a 3-D affine space that contains both, and each trajec-
tory can be identified with a point in 3-D.

A trajectory in 2M-D can be identified with a point
in d-D by the following PCA (Principal Component
Analysis):
1. Compute the centroid pC of all the trajectories

{pα} and the deviations p̃α from it:

pC =
1
N

N

∑
α=1

pα, p̃α = pα −pC. (6)

2. Compute the SVD (Singular Value Decomposi-
tion) of the following 2M×N matrix in the form(

p̃1 , ... , p̃N

)
= Udiag(σ1 , ... , σr)V>, (7)

where r = min(2M,N), and U and V are 2M × r
and N × r matrices, respectively, having r or-
thonormal columns.

3. Let ui be the ith column of U, and compute the
following d-D vectors rα, α = 1, ..., N:

rα =
(
(p̃α,u1) , ... , (p̃α,ud)

)>
. (8)

In this paper, we denote the inner product of vectors
a and b by (a,b).

5 INITIAL SEGMENTATION

Now, we describe our analytical initial segmenta-
tion that replaces the heuristic clustering of MSL. We
identify trajectories with points in 3-D by the above
procedure and fit two planes (= 2-D affine spaces).
If the object and the background are both in transla-
tional motions, all the 3-D points belong to two paral-
lel planes. This may not hold if the data are noisy or
rotational components exist, but if the noise is small
and the motions are nearly translational, which is the
case in most natural scenes, we can expect that two
planes can fit to all the points fairly well.

A plane Ax+By+Cz+D = 0 in 3-D can be written
as (n,x) = 0, where we put

n = (A, B, C, D)>, x = (x, y, z, 1)>. (9)
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Two planes (n1,x) = 0 and (n2,x) = 0 can be com-
bined into one in the form

(n1,x)(n2,x) = (x,n1n>
2 x) = (x,Qx) = 0, (10)

where we define the following symmetric matrix Q:

Q =
n1n>

2 +n2n>
1

2
. (11)

Note that it is a symmetric matrix that defines a
quadratic form. Equation (11) implies that Q has rank
2 with two multiple zero eigenvalues and that the re-
maining eigenvalues have different signs. Let these
eigenvalues be λ1, 0, 0, −λ2 in descending order, and
u1, u2, u3, u4 the corresponding unit eigenvectors.
Then, Q has the following spectral decomposition:

Q=λ1u1u>
1 −λ2u4u>

4

=
(√λ1

2
u1+

√
λ2

2
u4

)(√λ1

2
u1−

√
λ2

2
u4

)>
+

(√λ1

2
u1−

√
λ2

2
u4

)(√
λ1

2
u1+

√
λ2

2
u4

)>
. (12)

Comparing this with Eq. (11) and noting that vectors
n1 and n2 (hence the matrix Q) have scale indeter-
minacy, we can determine n1 and n2 up to scale as
follows:

n1 =
√

λ1u1+
√

λ2u4, n2 =
√

λ1u1−
√

λ2u4. (13)

Let x1, ..., xN be the 3-D points that represent trajec-
tories. In the presence of noise or rotational compo-
nents, they may not exactly satisfy Eq. (10), so we fit
a quadratic surface (x,Qx) = 0 to them in such a way
that

(xα,Qxα) ≈ 0, α = 1, ...,N. (14)

Once such a Q is obtained (the computation is de-
scribed in the next section), we can determine the
vectors n1 and n2 that specify the two planes by
Eqs. (13). The distance d of a point (x,y,z) to a plane
Ax+By+Cz+D = 0 is

d =
|Ax+By+Cz+D|√

A2 +B2 +C2
. (15)

For each point xα, we compute the distances to the
two planes and classify it to the nearer one. The re-
sulting segmentation is fed to the subsequent learning.

The above computation is a special application of
the GPCA of Vidal et al. (2005, 2008), which ex-
presses multiple subspaces as one high-dimensional
polynomial and classifies points into different sub-
spaces by fitting the high-dimensional polynomial to
all the points. Here, we classify points into two affine
spaces using the same principle.

6 HYPERSURFACE FITTING

The matrix Q that satisfies Eq. (14) is computed
as follows. In terms of the homogeneous coordinate
vector x defined in Eqs. (9), the equation (x,Qx) =
0 for a symmetric matrix Q defines a quadric sur-
face, describing an ellipsoid, a hyperboloid, an ellip-
tic/hyperbolic paraboloid, or their degeneracy includ-
ing a pair of planes. We fit a surface (x,Qx) = 0 to the
points xα in 3-D in the same way as we fit a conic (an
ellipse, a hyperbola, a parabola, or their degeneracy)
to points in 2-D (Kanatani and Sugaya, 2007). If we
define 9-D vectors zα and u by

zα =(x2
α,y2

α,z2
α,2yαzα,2zαxα,2xαyα,2xα,2yα,2zα)>,

v=(Q11,Q22,Q33,Q23,Q31,Q12,Q41,Q42,Q43)>, (16)
Eq. (14) is rewritten as

(zα,v)+Q44 ≈ 0, α = 1, ...,N. (17)
A well known method for computing such v and
Q44 is the method of Taubin (1991), which is known
to be highly accurate as compared with naive least
squares (Kanatani, 2008; Kanatani and Sugaya 2007).
Theoretically, ML (Maximum Likelihood) achieves
higher accuracy (Kanatani, 2008; Kanatani and Sug-
aya, 2007), but the surface (x,Qx) = 0 that degener-
ates into two planes has singularities along their inter-
section. We have observed that iterations for ML fail
to converge when some data points are near the singu-
larities; the corresponding denominators diverge and
become ∞ if they coincide with singularities2.

The Taubin method in this case goes as follows.
Assume that xα, yα, and zα are perturbed by Gaussian
noise ∆xα, ∆yα, and ∆zα, respectively, of mean 0 and
standard deviation σ. Let ∆zα be the perturbation of
zα in Eqs. (16). By first order expansion, we have
∆zα =(2xα∆xα,2yα∆yα,2zα∆zα,2∆yαzα +2yα∆zα,

..., 2∆zα)>, (18)
from which we can evaluate the covariance matrix
V [zα] = E[∆zα∆z>α ] of zα. Noting the relations E[∆xα]
= E[∆yα] = E[∆zα] = 0, E[∆yα∆zα] = E[∆zα∆xα] =
E[∆xα∆yα] = 0, and E[∆x2

α] = E[∆y2
α] = E[∆z2

α] = σ2,
we obtain V [zα] = σ2V0[zα], where

V0[zα] =



x2
α 0 0 0 zαxα xαyα xα 0 0
∗ y2

α 0 yαzα 0 xαyα 0 yα 0
∗ ∗ z2

α yαzα zαxα 0 0 0 zα
∗ ∗ ∗ y2

α + z2
α xαyα zαxα 0 zα yα

∗ ∗ ∗ ∗ z2
α + x2

α yαzα zα 0 xα
∗ ∗ ∗ ∗ ∗ x2

α + y2
α yα xα 0

∗ ∗ ∗ ∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1


.

(19)
2ML minimizes the sum of the distances, measured in

the direction of the surface normals, to the surface, but no
surface normals can be defined at singularities.
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Here, ∗ means copying the element in the symmetric
position. The Taubin method minimizes

JT =
∑N

α=1

(
(zα,v)+Q44

)2

∑N
α=1(v,V0[zα]v)

. (20)

If the denominator is omitted, this becomes the naive
least squares, but the existence of the denominator is
crucial for improving the accuracy as we show later.
The solution {v, Q44} that minimizes Eq. (20) is ob-
tained as follows (Kanatani and Sugaya, 2007):
1. Compute the centroid zC of {zα} and the devia-

tions z̃α from it:

zC =
1
N

N

∑
α=1

zα, z̃α = zα − zC. (21)

2. Compute the following 9×9 matrices:

MT =
N

∑
α=1

z̃αz̃>α , NT =
N

∑
α=1

V0[zα]. (22)

3. Solve the generalized eigenvalue problem

MTv = λNTv, (23)

and compute the unit generalized eigenvector v
for the smallest generalized eigenvalue λ.

4. Compute Q44 as follows:

Q44 = −(zC,v). (24)

7 MULTISTAGE LEARNING

After an initial segmentation is obtained, we fit
affine spaces by the EM algorithm in successively
higher dimensions:
1. Two parallel panes in 3-D.
2. Two 2-D affine spaces in 5-D.
3. Two 3-D affine spaces in 7-D.

If the object and the background are in transla-
tional motions, an optimal solution is obtained in the
first stage, and it is still optimal in the second and the
third stages. If the object and the background undergo
planar motions with rotations, an optimal solution is
obtained in the second stage, and it is still optimal in
the third. If the object and the background are in gen-
eral 3-D motions, an optimal solution is obtained in
the third stage. Because a degenerate motion is a spe-
cial case of general motions, an optimal solution for
a degenerate motion is unchanged when optimized by
assuming a more general motion. This is the basic
principle of MSL of Sugaya and Kanatani (2004).

The EM algorithm for classifying n-D points rα,
α = 1, ..., N, into two d-D affine spaces (n ≥ 2d + 1)
is as follows:

1. Using the initial classification, define the mem-
bership weight W (k)

α of rα to class k (= 1, 2) as
follows

W (k)
α =

{
1 if rα belongs to class k
0 otherwise . (25)

2. For each class k (= 1, 2), do the following compu-
tation:

(a) Compute the prior w(k) of class k as follows.

w(k) =
1
N

N

∑
α=1

W (k)
α . (26)

(b) If w(k) ≤ d/N, stop (the number of points is too
small to span a d-D affine space).

(c) Compute the centroid r(k)
C of class k:

r(k)
C = ∑N

α=1 W (k)
α rα

∑N
α=1 W (k)

α
. (27)

(d) Compute the moment M(k) of class k:

M(k) =
∑N

α=1 W (k)
α (rα − r(k)

C )(rα − r(k)
C )>

∑N
α=1 W (k)

α
.

(28)
Let λ(k)

1 ≥ ·· · ≥ λ(k)
n be the n eigenvalues of

M(k), and u(k)
1 , ..., u(k)

n the corresponding unit
eigenvectors.

(e) Compute the “inward” projection matrix P(k)

onto class k and the “outward” projection ma-
trix P(k)

⊥ onto the space orthogonal to it by

P(k) =
d

∑
i=1

u(k)
i u(k)>

i , P(k)
⊥ = I−P(k). (29)

3. Estimate the square noise level σ2 from the square
sum of the “outward” noise components in the
form

σ̂2 =min[
N

(n−d)(N −d −1)
tr(w(1)P(1)

⊥ M(1)P(1)
⊥

+w(2)P(2)
⊥ M(2)P(2)

⊥ ),σ2
min], (30)

where tr denotes the trace, and σmin is a small
number, say 0.1 pixels, to prevent σ̂2 from becom-
ing exactly 0, which would cause computational
failure in the subsequent computation, The num-
ber (n−d)(N −d −1) accounts for the degree of
freedom of the χ2-distribution of the square sum
of the “outward” noise components (Kanatani,
1996).

4. Compute the covariance matrix V(k) of class k (=
1, 2) as follows:

V(k) = P(k)M(k)P(k) + σ̂2P(k)
⊥ . (31)
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The first term on the right-hand side is for the data
variations within the affine space; the second ac-
counts for the “outward” noise components.

5. Do the following computation for each point rα,
α = 1, ..., N:

(a) Compute the conditional likelihood P(α|k), k =
1, 2, of rα by

P(α|k) =
e−(rα−r(k)

C ,V(k)−1(rα−r(k)
C ))/2

√
detV(k)

. (32)

(b) Update the membership weight W (k)
α , k = 1, 2,

of rα as follows:

W (k)
α =

w(k)P(α|k)
w(1)P(α|1)+w(2)P(α|2)

. (33)

6. Go back to Step 2 and iterate the computation un-
til {W (k)

α } converges.

7. After convergence (or interruption), classify each
rα to the class k for which W (k)

α , k = 1, 2, is larger.

If we let n = 5 and d = 2, the above procedure is
the second stage of the multistage learning, and if we
let n = 7 and d = 3, it is the third stage. The first stage
requires an additional constraint that the two planes be
parallel. For this, we let n = 3 and d = 2 and compute
from the two matrices M(k), k = 1, 2, their weighted
average

M = w(1)M(1) +w(2)M(2). (34)

Let λ1 ≥ ·· · ≥ λn be its n eigenvalues, and u1, ...,
un the corresponding unit eigenvectors. We let the
projection matrices P(k) and P(k)

⊥ coincide in the form

P(1) = P(2) = P and P(1)
⊥ = P(2)

⊥ = P⊥, where

P =
d

∑
i=1

uiu>
i , P⊥ = I−P. (35)

The estimation of the square noise level σ2 in Step 3
is replaced by

σ̂2 = min[
N

(n−d)(N −d −2)
tr(P⊥MP⊥),σ2

min].

(36)
The rest is unchanged.

However, there is an inherent problem in EM-
based learning: If there is no noise, its distribution
cannot be stably estimated. This causes no problem
in real situations but may result in computational fail-
ure when ideal data are used for a testing purpose.
This phenomenon was reported by Tron and Vidal
(2007) for MSL. In the above procedure, this occurs
when points are exactly in a 2-D affine space in 7-D,
in which case the covariance matrix degenerates to

(a)
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Figure 2: Left column: 20 background points and 14 ob-
ject points. (a) Translational motion. (b) Planar motion. (c)
General 3-D motion. Right column: Average misclassifi-
cation ratio over 5000 trials. The horizontal axis is for the
standard deviation σ of added noise. 0) Initial segmentation
by the Taubin method. 1) Parallel plane fitting in 3-D. 2)
2-D affine space fitting in 5-D. 3) 3-D affine space fitting in
7-D. The dotted lines are for initial segmentation by least
squares.

have rank 2 and hence the likelihood cannot be de-
fined: To define P(α|k), the matrix V(k) in Eq. (31)
must have rank n, and detV(k) in the denominator of
Eq. (32) must be positive. To cope with this, our sys-
tem checks if such a degeneracy exists by using the
geometric AIC (Kanatani, 1996), and if so judged, the
3-D affine space is replaced by a 2-D affine space (we
omit the details). Such a treatment does not affect the
performance when real data are used.

8 EXPERIMENTS

8.1 Simulation

The left column of Fig. 2 shows simulated 512×512-
pixel images of 14 object points and 20 background
points in (a) translational motion, (b) planar motion,
and (c) general 3-D motion. These are the 5th of 10
frames; the curves in them are trajectories over the
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(a) (b) (c)

Figure 3: 3-D visualization of image motions in Fig. 2.

10 frames. We added Gaussian noise of mean 0 and
standard deviation σ to the x and y coordinates of each
point in each frame independently, and evaluated the
average misclassification ratio over 5000 independent
trials for each σ. The result is shown in the right col-
umn. The plots 0 – 3 correspond to the initial seg-
mentation by the Taubin method, parallel plane fitting
in 3-D, 2-D affine space fitting in 5-D, and 3-D affine
space fitting in 7-D, respectively. For comparison, we
plot in dotted lines the initial segmentation we would
obtain if naive least squares were used.

We can observe that for the translational motion
(a), the initial segmentation is already correct enough;
an almost complete segmentation is obtained in the
first stage. For the planar motion (b), we obtain an
almost correct segmentation in the second stage, and
for the general 3-D motion in the third. We can also
confirm that the Taubin method (plots 0) for initial
segmentation is more accurate than the naive least
squares (dotted lines).

Figure 3 shows motion trajectories compressed to
3-D by Eq. (13) (d = 3) viewed from a particular an-
gle. For the translational motion (a), all the points
belong to two parallel planes, as predicted. For the
planar motion (b) and the general 3-D motion (c), the
points still belong to nearly parallel and nearly planar
surfaces. This fact explains the high performance of
our Taubin initial segmentation.

8.2 Real Video Experiments

The upper row of Fig. 4 shows six videos from the
Hopkins155 database3 (Tron and Vidal, 2007). The
lower row shows our 3-D visualization of the trajec-
tories. Table 1 lists the correct classification ratios at
each stage of our method4 and some others: the MSL
of Sugaya and Kanatani5 (2004); the method of Vidal
et al.6 (Vidal et al., 2005); RANSAC5; the method
of Yan and Pollefeys5 (2006). We can see that for all
the videos, our method reach high classification ratios
in relatively early stages and 100% in the end, while

3http://www.vision.jhu.edu/data/hopkins155
4http://www.iim.cs.tut.ac.jp/˜sugaya/public-e.html
5The code is at the cite in the footnote 4.
6We used the code placed at the cite in footnote 3.

Table 1: Correct classification ratios (%) for the data in
Fig. 4 in each stage of our method, and comparisons with
other methods: MSL of Sugaya and Kanatani (2004), Vi-
dal et al. (2005, 2008), RANSAC, and Yan and Pollefeys
(2006).

(a) (b) (c) (d) (e) (f)
Initial 88.8 99.1 98.0 100.0 100.0 98.6

1st stage 99.7 99.6 100.0 100.0 100.0 100.0
2nd stage 98.8 99.6 100.0 100.0 100.0 100.0
3rd stage 100.0 100.0 100.0 100.0 100.0 100.0

MSL 99.7 99.6 100.0 100.0 100.0 100.0
Vidal et al. 88.2 99.6 99.2 99.4 100.0 100.0
RANSAC 91.8 99.6 96.6 97.5 100.0 100.0

Yan-Pollefeys 98.5 98.2 97.4 94.3 99.8 80.8

other methods do not necessarily achieve 100%. This
is because we focus on the motion type and take de-
generacies into account, while other methods do not
pay so much attention to them. As the bottom row
of Fig. 4 shows, even when the visible motions look
complicated, it is common for the trajectories to be in
nearly parallel planes. The high performance of our
method is based on this observation.

9 CONCLUSIONS

We presented an improved version of the MSL
of Sugaya and Kanatani (2004). First, we replaced
their initial segmentation based on heuristic clustering
using the interaction matrix of Costeira and Kanade
(1998) and the geometric AIC (Kanatani, 1996) by an
analytical computation based on the GPCA of Vidal et
al. (2005, 2008), fitting two 2-D affine spaces in 3-D
by the method of Taubin (1991). The resulting initial
segmentation alone can segment most of the motions
we frequently encounter in natural scenes fairly cor-
rectly, and the result is successively optimized by the
EM algorithm in 3-D, 5-D, and 7-D. Using simulated
and real videos, we demonstrated that our method be-
haves as predicted and illustrated the mechanism un-
derneath using our visualization technique. This is a
big contrast to all existing methods, whose behavior
is difficult to predict unless tested using a particular
database.
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Figure 4: Top: Feature points detected from 6 video streams of the Hopkins155 database. Bottom: Their their 3-D represen-
tation.
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