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Abstract. In reconstructing 3-D from images based on feature points, one usually defines
a triangular mesh that has these feature points as vertices and displays the scene as a poly-
hedron. If the scene itself is a polyhedron, however, some of the displayed edges may be
inconsistent with the true shape. This paper presents a new technique for automatically de-
tecting and eliminating such inconsistencies by using a special template. All the procedures
do not require any thresholds to be adjusted. Using real images, we demonstrate that our
method is efficient with high capability to correct inconsistencies.

1. Introduction

One of the most important problems for 3-D reconstruction from images is how to
represent the reconstructed shape. If we use stereo vision using calibrated cameras, we
can obtain a dense depth map over all the pixels. By inter-pixel interpolation, we can
display the scene as a curved surface. Alternatively, we can use a technique called space
carving [5] and represent the scene as an aggregate of colored voxels. More sophisticated
methods, called by such names as plenoptic representation [1], light field rendering [6],
and lumigraph [2], are to register all the light rays in the scene to generate new views
seen from an arbitrary viewpoint.

For images taken by uncalibrated cameras, on the other hand, we first extract cor-
responding feature points from them and then compute their 3-D coordinates, whether
we deal with a continuous video stream using a method such as the factorization [10]
or impose the epipolar geometry [3] on separate images. Then, we define a triangular
mesh that has the feature points as vertices and display the scene as a texture-mapped
polyhedron.

The triangular mesh is usually generated by Delaunay triangulation [9] of feature
points in a specified frame. This produces triangles of balanced sizes and shapes,
suitable for polyhedral representation of a curved surface. However, a serious problem
occurs if the scene itself is a polyhedron. In man-made environments such as indoors
and cities, most objects are polyhedra, and the vertices of polyhedral objects are likely
to be chosen as feature points. In such a case, the edges of Delaunay triangulation
may not coincide with the physical edges. If we use such triangulation for polyhedral
representation, the displayed shape may be inconsistent with the true polyhedral shape.

See Fig. 1, for example. The Delaunay triangulation in Fig. 1(a) does not correctly
represent the object shape. The triangulation in Fig. 1(b), on the other hand, correctly
represents the object shape. The aim of this paper is to present a new technique for
automatically transforming a given triangulation into a physically compatible one.

Sec. 2 and 3 describe the principle of our method. The details of the procedure are
described in Sec. 4 ~ 6. In Sec. 7, we show real image examples to demonstrate that
our method is more efficient with higher capability to correct inconsistencies than a
method based on a conventional criterion. The marked characteristic of our method is
that no thresholds are required to be adjusted.



Figure 1: (a) Triangulation inconsistent with the object shape. (b) Triangulation consistent
with the object shape. (c¢) Edge flipping.

2. Compatibility of Triangulation

Many studies have been done in the past for generating optimal triangular meshes.
They are roughly classified into two categories: one is to replace a dense mesh by a
coarser one without impairing the faithfulness of the shape representation; the other is
to upgrade the descriptiveness of the shape by adding vertices and edges. For the former,
Vogiatzis et al. [11] introduced stochastic annealing coupled with Bayesian estimation
on the assumption that the object mostly consists of planar faces. For the latter, Yu et
al. [12] refined the mesh by iteratively estimating both the object shape and the surface
reflectance map.

To our knowledge, however, the only studies of optimizing edges for a given set of
vertices are those of Morris and Kanade [7] and Perrier et al.! [8]. The basic principle for
inconsistency detection is to compare the texture in corresponding triangular patches
in different images. Suppose we have two images of a polyhedral object. If a triangular
patch is defined on a planar surface of it, its texture in one image can be mapped onto
the corresponding patch in the other image by an affine transformation?. Hence, the
intensity difference® after the mapping should be zero in that patch. If not, the patch
is not on a planar surface, so we “flip”* an appropriate edge into the diagonal position
as illustrated in Fig. 1(c). Iterating this, we should end up with a triangular mesh
compatible with the object shape [7].

In reality, however, the intensity difference is not exactly zero due to various distur-
bances such as inaccuracies of feature point matching, viewpoint dependent reflectance
changes, and supposedly planar faces not being exactly planar. However, setting an
appropriate threshold for judging planarity is very difficult. So, Morris and Kanade
[7] and Perrier et al. [8] iteratively flipped edges so as to maximize the similarity (or
minimize the dissimilarity) between the textures of corresponding patches.

As the texture (dis)similarity measure, Morris and Kanade [7] used the sum of
square differences of the corresponding pixel values (to be minimized), while Perrier et
al. [8] used the normalized correlation between the corresponding pixel values (to be

IThey also discuss splitting and merging of the mesh.

2Theoretically, corresponding patches in different views are related by a homography [3], but as
far as individual patches are concerned, as opposed to a global planar scene, the mapping can be
approximated by an affine transformation with negligible differences.

3In this paper, we consider color images and refer to the root-mean-square difference in the R, G,
and B values simply as “intensity difference”.

4Morris and Kanade [7] used the term “swap”, but since only one edge is involved, we use the more
mathematically accepted term “flip” after Perrier et al. [8].
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Figure 2: Two 3-D interpretations of a quadrilateral ABCD and the predicted intensity
difference.

maximized). In this paper, we show that the use of such a patch-based (dis)similarity
measure is insufficient and present a more effective measure. Using real images, we
demonstrate that the use of our measure is more efficient with higher capability to
correct inconsistencies.

3. Principle of Inconsistency Detection

Given a triangular mesh over a polyhedral object scene, we hereafter say that an
edge of the mesh is correct if it entirely lies on a planar face, and incorrect otherwise.
By definition, an incorrect edge connects two points on different faces. We assume that
the texture, color, or brightness of the object is different from face to face.

Figure 2 illustrates the principle of our incorrect edge detection. Consider the 2-D
quadrilateral ABCD in the left of Fig. 2. Two possibilities exist for interpreting it as a
3-D polyhedron: one with faces AABC and ACDA; the other with faces AABD and
ABCD. Suppose we view this object from a different angle. If the former interpretation
is the case, the object should look as shown in the upper middle; if the latter is the
case, it should look as shown in the lower middle. The right figure shows their intensity
difference (darker tones correspond to larger values; the white part has no difference).

Suppose another image shows its true projection viewed from that angle. The above
observation implies that if we map the texture of the original image onto it, the intensity
difference should look as shown in the right figure if the interpretation is incorrect, while
no difference should arise if the interpretation is correct.

Figures 3(a),(b) are real images of a polyhedral object, on which a Delaunay trian-
gulation (based on (a)) is overlaid; we selected the vertices at object corners by hand.
Mapping the texture of Fig. 3(b) onto Fig. 3(a) patch by patch, we obtain Fig. 3(c).
Figure 3(d) shows the intensity difference between Fig. 3(a) and Fig. 3(c). We observe
narrow dark triangular regions that cross incorrect edges, as expected. We hereafter call
such a region where the intensity difference markedly appears an inconsistency region.

4. Inconsistency Detection Template

The above observation leads to the idea of detecting inconsistency regions by a
template specifically designed to detect them. Figure 4(a) shows our template (lighter
tones correspond to larger values). It is defined over a square region ORST of size [ x [
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Figure 3: (a),(b) Real images of a polyhedral object with a Delaunay triangulation (58
edges). (c) Texture mapping of (b) onto (a). (d) Intensity difference between (a) and (c).
Darker tones correspond to larger values.

with the following value:

_(a4y—D?
e 20%(@—y-? r+y<lyz>y
T(x,y)= T(y,x) r+y<lz<y - (1)

“T(l—yl—2x) z+y>1

The template value is symmetric with respect to the diagonal OS and anti-symmetric
with respect to TR. The contour T'(x,y) = constant consists of two line segments
starting from R and 7" and meeting on the diagonal OS. Figure 4(b) shows the cross
section along the diagonal OS: the Gaussian function of mean [/v/2 and standard
deviation alv/2 cut in the middle and placed upside down on the right side®.

For a given edge, we map the intensity difference of the two triangles adjacent to
it onto AOSR and AOST and compute the correlation (the sum of the product of
corresponding pixel values) with this template. We set the template size [ in such a
way that the average area of the triangular patches in the input images is approximately
I2/2. The reason why we use an anti-symmetric template is that we do not know a priori
on which side the inconsistency region appears; it should lie only on one side of the
diagonal of the surrounding quadrilateral (see Figs. 2 and 3(d)). Since the intensity
difference is nearly zero on the other side, we can detect the inconsistency region, on
whichever side it lies, by computing the absolute value of the correlation. It also has the
advantage of canceling small fluctuations in the intensity difference caused by texture
mapping inaccuracy, since such fluctuations are expected to spread randomly and evenly
over the quadrilateral region.

In our experiment, we set the template value T'(z,y) to zero at the pixels on the
diagonal T'R and at the pixels within distance 0.02] pixels from the diagonal OS or from
the boundary. This is to prevent texture mapping discrepancies caused by inaccuracies
in locating feature points, since the periphery of a patch may be encroached by the
texture of an adjacent patch.

5. Evaluation of Edge Incorrectness

Given an initial triangulation over two corresponding images, we first measure the
degree of incorrectness w(AB) of each edge AB using the template T'(z,y) of Eq. (1).

5We experimentally found that a = 0.1 can produce a good result.
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Figure 5: Edge flipping for a concave
quadrilateral would result in a reversed
patch.

Figure 4:  (a) Inconsistency detection
template. Lighter tones correspond to
larger values. (b) Cross section along OS.

For this, we make the computation symmetric with respect to the two images: instead
of mapping the texture from one image onto the other and computing the intensity dif-
ference there as described earlier, we directly map the texture onto the template region
ORST by a homography and compute the intensity difference there. The procedure is
as follows:

1. If the edge AB has only one adjacent triangle, let w(AB) = —1, meaning that
AB is a boundary edge.

2. Let AABP and AABQ be the adjacent triangles. Let w(AB) = 0 if the quadri-
lateral APB(Q is concave in either image, meaning that we do not flip that edge
(since a reversed patch would result; see Fig. 5).

3. Otherwise, map the texture in the quadrilateral APB(Q in the first image onto
the template region ORST by a homography and write down the intensity values
there.

4. Affinely map the texture in AABP and AABQ in the second image onto AOSR
and AOST, respectively, and subtract the intensity values from the values written
there.

5. Map the texture in the quadrilateral APB( in the second image onto the template
region ORST by a homography and add the intensity values to the values written
there.

6. Affinely map the texture in AABP and AABQ in the first image onto AOSR
and AOST, respectively, and subtract the intensity values from the values written
there.

7. Compute the correlation of the values written there with the template T'(z,y) of
Eq. (1), and output its absolute value as w(AB).

Here, we are assuming that at the time of generating the mesh each edge is classified
either into a boundary edge with only one triangles on one side or into an internal edge
with two triangles on both sides.

6. Procedure of Mesh Optimization

Given two images and corresponding feature points on them, we define a Delaunay
triangulation using the feature points in the first image and isomorphically map it
to the corresponding points in the the second image. Then, we compare the signs of
corresponding triangular patches, where we define the sign of AABC to be 1 if the order
of A, B, and C is counterclockwise, —1 if clockwise, and 0 otherwise (i.e., degeneracy
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Figure 6: If one side of the reversed triangle is a boundary edge, we eliminate it.

Figure 7: 1If the reversal occurs inside, we flip an appropriate side of the triangle.

into a line segment).

If the signs are different between the two images, the triangle in the second image is
reversed. We dissolve such reversals as follows®. If one side of the reversed triangle is a
boundary edge, we simply eliminate it (see Fig. 6). If the reversal occurs inside, we flip
an appropriate side of the triangle, as discussed by Morris and Kanade [7] (see Fig. 7).

Once such patch reversals are resolved, no new reversals occur thereafter, since we
check the concavity of the surrounding quadrilateral before flipping edges (Step 2 of
the procedure in Sec. 5).

After resolving patch reversals, we do the following procedure:

Compute the incorrectness measure w() for all the edges (Sec. 5).

Find the edge AB that has the largest value w(AB).

Stop if w(AB) = 0.

Flip the edge AB to PQ as shown in Fig. 1(c) and compute w(PQ).

If w(PQ) > w(AB), eliminate the edge PQ and restore the edge AB. Then, let

w(AB) = 0.

6. Otherwise, recompute w() for edges PA, PB, QA, and @B, if w() is not already
0, with respect to the new mesh configuration.

7. Go back to Step 2.

In this process, the value w itself has no absolute meaning; it is used only for comparison.
Hence, no artificial thresholds need to be introduced. Since the largest value of w()
monotonically and strictly decreases at each flipping, and since edges once checked are
not checked again, the above procedure terminates after all the edges are traversed
once.

The above procedure can correct those incorrect edges that can be corrected by a
single flipping operation. However, not all edges can be corrected that way, in particular

Gl W=

6Theoretically, the reversal can occur more globally, e.g., a large portion of the mesh can be reversed
at the same time. In this paper, however, we assume that the scene can be triangulated in such a way
that its projection onto any image do not contain reversed triangles and that initial reversals can be
resolved by the operations described here.
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Figure 8: If many mesh edges cross one
physical edge (drawn in dashed lines here),
multiple steps of flipping is necessary for re-
solving the inconsistency. See also Fig. 11.

Figure 9:  Optimization of the mesh in
Figs. 3(a),(b). (a) Our method (100% cor-
rect, 2 rounds, 3.43 sec). (b) Patch-similarity
maximization (91.5% correct, 270 iterations,
9.05 sec).

when one physical edge is crossed by multiple mesh edges (Fig. 8; see also Fig. 11). So,
we repeat the above procedure until the mesh configuration does not alter any further?.

7. Experiments

Using real images, we compared the performance of our method with that of patch-
similarity maximization. As the similarity measure, we adopted the normalized corre-
lation used by Perrier et al. [8] rather than the sum of square differences used by Morris
and Kanade [7]. This is because we have found that the Morris-Kanade measure often
detects false intensity differences caused by reflectance changes depending on viewing
angles®.

In our experiment, we used a slightly modified implementation suitable for color
images: instead of directly computing the normalized correlation, we computed the
sum of square intensity differences after normalizing the intensity of each patch by a
linear function® in such a way that the average intensity over the patch is 0 and their
variance is 1 in both images. For maximizing the total similarity (minimizing the total
dissimilarity, to be precise), we randomly selected edges and flipped them as long as
the dissimilarity decreases. We stopped this when no effective flipping occurred for
consecutive F times, where E is the number of the edges of the mesh.

Applying our optimization to Figs. 3(a),(b), we obtain the mesh shown in Fig. 9(a).
The iterations converged in two rounds of the procedure of Sec. 6. The correctness and
the computation time are also written in the caption, where the correctness is measured
by (the number of correct edges)/(the number of non-boundary edges) in percentage.
We used Pentium 4 3.2GHz for the CPU with 2GB main memory and Linux for the
OS.

We compared this result with the patch-similarity maximization. Since the result
changes at each trial because of the randomness of the search, we showed one typical

"We record the history of the flipping and stop the computation if the same configuration appears
twice, which occurs very rarely, though.

8In contrast, our method uses an anti-symmetric template, so intensity differences uniformly caused
by reflectance changes are canceled.

9We used color images and normalized the R, G, and B values by a common linear function so that
the sum of the R, G, and B values over the patch is 0 and their variance is 1.
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Figure 10: (a),(b) Initial triangulation (31 edges). (c) Our method (100% correct, 3 rounds,
3.15 sec). (d) Patch-similarity maximization (75.2% correct, 159 iterations, 5.43 sec).

Figure 11: (a),(b) Initial triangulation (47 edges). (c¢) Our method (100% correct, 3 rounds,
4.03 sec). (d) Patch-similarity maximization (96.2% correct, 313 iterations, 7.62 sec).

result in Fig. 9(b). The correctness, the number of iterations, and the computation
time written there are their averages over 10 trials.

Figures 10~13 show other real image examples. Today, many algorithms are avail-
able for automatically extracting and matching feature points, e.g., [4, 13]. However,
our concern here is not the accuracy of automatic matching but the performance of
mesh optimization, so we selected matching points by hand. In all examples, figures
(a),(b) are input images with the initial Delaunay triangulation overlaid; figures (c),(d)
are the results corresponding to Figs. 9(a),(b), respectively.

8. Observations

From the above results, we can see that our inconsistency detection template works
very well. It is effective even if incorrect edges cannot be corrected by a single flipping
operation (see Figs. 11(a),(b)). Although the inconsistency regions are not so marked
as shown in Fig. 2, they still appear in the form of small narrow blobs crossing incorrect
edges, so our template can also detect such inconsistencies very well.

The effectiveness of our method is not restricted to exactly polyhedral scenes. It is
also effective for objects that have curved surfaces as well (see Fig. 14): our method
yields better polyhedral approximations.

Patch-similarity maximization, on the other hand, sometimes replace all incorrect
edges correctly, but overall our method has higher performance in removing incorrect
edges. This is perhaps because partially distorted texture is not sensitively reflected
if the similarity is measured across the entire patch. In fact, we have found that the
resulting meshes often have much lower dissimilarity than the desired configuration,
meaning that the patch-based correlation is not a good measure of shape consistency.

o71



Figure 12:  (a),(b) Initial triangulation (157 edges). (c) Our method (98.7% correct, 7
rounds, 11.80 sec). (d) Patch-similarity maximization (99.3% correct, 2611 iterations, 19.60
sec).

(a) (b) (c) (d)

Figure 13: (a),(b) Initial triangulation. (c) Our method (96.2% correct, 4 rounds, 11.96
sec). (d) Patch-similarity maximization (83.8%, 866 iterations, 19.70 sec).

In contrast, our method focuses specifically on inconsistency regions where the texture
difference is most conspicuous, thereby sharply detecting inconsistencies.

The computation time of patch-similarity maximization depends on when we stop
the search, and there is no definite criterion for it. If use the stopping condition men-
tioned earlier, the patch-similarity maximization takes more time than our method, as
we can see. Thus, our method is superior in both accuracy and efficiency.

9. Concluding Remarks

We proposed a new technique for automatically transforming a triangular mesh
so that it is compatible with the physical object shape. To do this, we introduced
a template that can sensitively detect shape inconsistencies. Our procedure does not
require any thresholds to be adjusted. Using real images, we demonstrated that our
method is more efficient with higher capability to correct inconsistencies than patch-
similarity maximization.

In this paper, we used only pairs of images, but the principle can be straightfor-
wardly extended to multiple images. Doing some experiments (not shown here for space
shortage), we confirmed that the correctness can sometimes increase by using multiple
images, but in most cases two separate views are sufficient.
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Figure 14:  Triangulation of curved surfaces. (a),(c): Delaunay triangulation. (b),(d):
optimized triangulation. The mesh in (a) was obtained using our automatic matching tool

[4].
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